CN113703500A - 一种基于多基色光谱叠加过程的环境光照模拟方法 - Google Patents

一种基于多基色光谱叠加过程的环境光照模拟方法 Download PDF

Info

Publication number
CN113703500A
CN113703500A CN202110617488.2A CN202110617488A CN113703500A CN 113703500 A CN113703500 A CN 113703500A CN 202110617488 A CN202110617488 A CN 202110617488A CN 113703500 A CN113703500 A CN 113703500A
Authority
CN
China
Prior art keywords
channel
value
primary
primary color
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110617488.2A
Other languages
English (en)
Other versions
CN113703500B (zh
Inventor
许向阳
李公伟
李博
张正修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Polytechnic
Original Assignee
Shenzhen Polytechnic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Polytechnic filed Critical Shenzhen Polytechnic
Publication of CN113703500A publication Critical patent/CN113703500A/zh
Application granted granted Critical
Publication of CN113703500B publication Critical patent/CN113703500B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D25/00Control of light, e.g. intensity, colour or phase
    • G05D25/02Control of light, e.g. intensity, colour or phase characterised by the use of electric means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/12Controlling the intensity of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本专利公开一种基于多基色光谱叠加过程的环境光照模拟方法,所述方法包括:步骤一、获取目标参数,获取待模拟的目标环境的参数;步骤二、根据所述目标参数,筛选出组合成多个目标参数的多个单通道拟合子波;其中所述筛选包括采用公式:
Figure DDA0003098446010000011
求得;步骤三、基于筛选出的多个单通道拟合子波确定每个单通道拟合子波所对应的基色光源及其驱动参数。通过上述方法能够准确模拟环境光源的光谱分布。

Description

一种基于多基色光谱叠加过程的环境光照模拟方法
技术领域
本专利属于图像处理技术领域,具体而言涉及一种基于多基色光谱叠加 过程的模拟方法。
背景技术
LED光源因其环保、节能、使用寿命长、色彩丰富等优点,或作为信号 指示灯用或作为照明光源使用,广泛应用在各行各业。家用照明方面,随着 大健康、智能家具、健康照明等新词的出现,人们对家用照明灯光也有了新 的要求,如要求色温、亮度等可调,甚至可实现智能控制等。商业照明方面, 大型商场中的品牌服饰店、珠宝店、手机等消费电子展示旗舰店等对能够忠 实再现色彩的环境照明也要求越来越高,如照明灯光的显色指数不低于85 等。成像技术与影像复制行业相对要求更高,摄像头相关行业对成像设备成 像色彩标定中要求光源的光谱符合标准、如符合国际照明协会规定的标准光 谱功率分布等;影像复制行业对照明环境的要求,显色指数CRI大于95等。 新业态的新需求,推动了以LED为基色的混合光源技术的发展,市场上出现 了2基色、4基色等色温及亮度可调的光源,不同程度上满足了部分市场的 需求。
近几年来,以LED为基色的多通道混合光源研究,提出上了日程,该技 术发展目标趋向于模拟日光光谱的应用技术开发:1)为满足成像技术领域 标准光色标定的使用,需要一款科学级的光源,该光源需光谱可调,光谱范 围不仅仅在380-780nm的可见光范围内,应拓展到红外940nm更甚者到 1050nm;2)为满足健康照明、智能照明等的使用需求,光源的色温及亮度 需智能可调,模拟日光色温从早到晚的变化,如色温的调节范围需实现 1600-25000范围等;3)为满足影像再现与复制业的标准化照明环境的需求, 光源光谱功率分布需符合CIE A、B、C、D50、D55、D65、D75等标准光源的 规定,显色指数不低于90,且能提供的照度不低于3000Lux等。
以LED为基色的混合色光光源,主要目的是实现色温与亮度可调,可以 分为两种:一种是以色坐标为目标值的匹配方式,另一种是以光谱为目标的 匹配方式。色坐标的匹配方式是同色异谱色,目前主要有两基色、四基色的 等。两基色混光是指参与混合的基色由2个LED灯组成,如冷白LED和暖白 LED的混合,混合色光的色温调节范围只能在两个基色色温之间。四基色混 光是指参与混合的基色由4个LED灯组成,如RGB+白色(暖白或者冷白),相对于两基色的来说,四基色混合显色指数得到提高,色坐标的匹配精度提 高很多,且色温调节范围广,由于匹配同一色温时的四基色系数解不唯一, 导致光谱不固定或者光谱分布范围不理想。以光谱为目标的匹配方式期望同 色同谱匹配,参与混合的基色需要多个,如有采用11、14、15通道的方案, 通过优选不同峰值波长的LED,波长范围350-700nm或者400-730nm,实现 光谱功率分布可调。多通道混光在硬件上需要优选基色LED,需要解决多少 个、单个的分布范围如何等。多通道混光在软件上需要开发光谱匹配的算法, 光谱匹配精度是一个挑战,需要统筹LED基色的光谱的分布属性,同时也受 限于LED光谱的分布状态。多通道混光的方式相对于低通道的来说,解决了 显色指数低、色坐标匹配精度低、色温误差大等问题,并且从概念上实现了 光谱配光的模拟,是目前光源配色技术的一个研究方向和解决方案。
依照色度学计算理论,两基色混合色光的色温只能在两个基色色温之间, 匹配同一色温时,所用基色的份数不变,解是唯一的,但有时偏离黑体轨迹 远,色差大于0.005,不满足国标对色坐标精度的要求,显色指数低,适合 于普通家用照明使用。
四基色的相对于两基色的来说,显色指数可以提高,色坐标的匹配精度 也提高很多,且色温调节范围广,匹配黑体色坐标时,若配置循环校正算法, 色坐标可距离黑体轨迹很近,视觉上光色较好,且大多情况可以满足国标精 度的要求,但匹配同一色温或者色坐标时,参与混色的基色可能有多组系数, 解不唯一,光谱难以固定。
以光谱为目标的匹配方式期望同色同谱匹配,参与混合的基色需要多个, 如10多个,无论是基色的选择还是匹配光谱的算法难度都很大。并且受到 现有LED基色光谱的限制,以较高精度实现CIE标准光源光谱分布匹配的算 法或者产品较少。目前多通道LED色光混合的方式可完成CIE标准光源的匹 配,但与CIE A、CIE B、CIE D系列等光谱曲线的差别仍十分明显,并且受 限于可选的LED数量和基色光谱分布特性,还不能或很难完成日光光谱的模 拟。
发明内容
鉴于此,为解决上述技术问题或部分技术问题,本专利提出一种一种基 于多基色光谱叠加过程的环境光照模拟方法和装置,以通过多个通道模拟环 境光的光谱特性。
为了解决上述技术问题,本专利提供的技术方案包括:
一种基于多基色光谱叠加过程的环境光照模拟方法,其特征在于,所述 方法包括:步骤一、获取目标参数,获取待模拟的目标环境的参数;步骤二、 根据所述目标参数,筛选出组合成多个目标参数的多个单通道拟合子波;其 中所述筛选包括采用公式:
Figure BDA0003098442990000031
求得;式中, y表示目标光谱;x表示单通道光谱的波形;ai bi ci是系数,其中ai不可以 是负值;i从1到n,表示通道数量;ai值的物理意义是可以表示参与混色基 色的比例,bi值的物理意义是可以表示参与混色基色通道的峰值位置,ci值 的物理意义是可以表示参与混色基色通道的带宽;步骤三、基于筛选出的多 个单通道拟合子波确定每个单通道拟合子波所对应的基色光源及其驱动参 数。
优选地,在所述步骤三中,判断每一个所述一级拟合子波是否有对应的 单通道基色光源,如果不存在对应的单通道,则以该一级拟合子波为目标参 数,筛选出下一级拟合子波,重复此过程直到得到与所有一级子波对应的单 通道及该单通道的驱动参数。
优选地,判断每一个所述一级拟合子波是否有对应的单通道基色光源包 括判断该拟合子波的光谱数据范围与单通道基色光源范围的重叠程度是否 在预定的范围之内。
优选地,所述方法还包括单通道线性校正步骤,所述单通道线性矫正步 骤包括:S001获取单通道的基色数据,所述基色数据包括从最小值到最大值 驱动信号下的基色灯的照度值或光谱功率分布参数;在首次进行线性化矫正 时,记录单通道的电源控制器从0开始按照一定的驱动信号步长输送直流电 给单通道基色灯,直至基色灯达到最亮状态,使用环境光测量传感器记录每 一个步长发光状态的照度或光谱功率分布参数,按照对应关系记录成表;对 于非首次进行线性化矫正时,截取环境光传感器最低照度值反应时的步长值 为线性化数据的起始值,然后按照此步长值依次调整电流并记录相应的照度 值或光谱功率分布的峰值,直到截取环境光传感器出现第一个最大照度值反 应时记录的数据作为线性化数据的终值;S002根据单通道的基色数据确定步 长值与照度值或步长值与照度值或光谱功率分布参数的线性函数关系。
优选地,所述方法还包括:步骤四、确定模拟方案的模拟精度是否在预 定范围之内;如果模拟精度超出了预定范围,则调整步骤二的公式参数重新 进行步骤二至步骤四。
以及一种基于多基色光谱叠加过程的环境光照模拟装置,其特征在于, 所述装置包括:目标参数获取模块,用于获取目标参数,获取待模拟的目标 环境的参数;拟合子波筛选模块,用于根据所述目标参数,筛选出组合成多 个目标参数的多个单通道拟合子波;其中所述筛选包括采用公式:
Figure BDA0003098442990000041
求得;式中,y表示目标光谱;x表示单 通道光谱的波形;ai bi ci是系数,其中ai不可以是负值;i从1到n,表示 通道数量;ai值的物理意义是可以表示参与混色基色的比例,bi值的物理意 义是可以表示参与混色基色通道的峰值位置,ci值的物理意义是可以表示参 与混色基色通道的带宽;基色光源确定模块,用于基于筛选出的多个单通道 拟合子波确定每个单通道拟合子波所对应的基色光源及其驱动参数。
优选地,在所述基色光源确定模块中,判断每一个所述一级拟合子波是 否有对应的单通道基色光源,如果不存在对应的单通道,则以该一级拟合子 波为目标参数,筛选出下一级拟合子波,重复此过程直到得到与所有一级子 波对应的单通道及该单通道的驱动参数。
优选地,判断每一个所述一级拟合子波是否有对应的单通道单通道基色 光源包括判断该拟合子波的光谱数据范围与单通道基色光源范围的重叠程 度是否在预定的范围之内。
优选地,所述装置还包括单通道线性矫正模块,所述单通道线性矫正模 块包括:获取单通道的基色数据,所述基色数据包括从最小值到最大值驱动 信号下的基色灯的照度值或光谱功率分布参数;在首次进行线性化矫正时, 记录单通道的电源控制器从0开始按照一定的驱动信号步长输送直流电给单 通道基色灯,直至基色灯达到最亮状态,使用环境光测量传感器记录每一个 步长发光状态的照度或光谱功率分布参数,按照对应关系记录成表;对于非 首次进行线性化矫正时,截取环境光传感器最低照度值反应时的步长值为线 性化数据的起始值,然后按照此步长值依次调整电流并记录相应的照度值或 光谱功率分布的峰值,直到截取环境光传感器出现第一个最大照度值反应时 记录的数据作为线性化数据的终值;根据单通道的基色数据确定步长值与照 度值或步长值与照度值或光谱功率分布参数的线性函数关系。
优选地,所述方法还包括:精度确定模块,用于确定模拟方案的模拟精 度是否在预定范围之内;如果模拟精度超出了预定范围,则调整拟合子波筛 选模块的公式参数重新运行拟合子波筛选模块、基色光源确定模块和精度确 定模块。
附图说明
为了更清楚地说明本说明书实施例或现有技术中的技术方案,下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下 面描述中的附图仅仅是本说明书实施例中记载的一些实施例,对于本领域普 通技术人员来讲,还可以根据这些附图获得其他的附图。
图1是本专利方法的流程图
图2是光源匹配过程的流程图
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申 请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述, 显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于 本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例,都属于本申请保护的范围。
为便于对本申请实施例的理解,下面将结合附图以具体实施例做进一步 的解释说明,实施例并不构成对本申请实施例的限定。
在本具体实施例中,所述方法优选采用计算机程序实现,因此,本实施 例也可以理解为一种虚拟装置,即使用模块对应具体方法步骤来表述的虚拟 装置。所述基于多基色光谱叠加过程的环境光照模拟系统还包括数据处理装 置。
本具体实施方式的方法包括如下步骤:
单通道线性矫正步骤
在本具体实施方式中,所述通道是某一具体的光谱,在物理上通过具有 相同光谱特性的灯,例如在光源中理论上或者目标上发射具有相同光谱特性 的光的灯的集合来实现与该通道对应的硬件。
在本实施例中,所述单通道线性矫正步骤,对每个通道分别进行线性矫 正。所述线性矫正是指使得对应于所述通道的光源的输入驱动电流和输出光 谱特性呈现大致线性的变化关系。通过对于单通道的线性化矫正能够实现基 于光源输入信号来调节光源的输出特性。因此所述单通道线性校正步骤是系 统运行的初始化步骤,是系统运行稳定和准备的前提。依据匹配的环境光参 数,优选能够模拟环境光光谱功率分布的基础通道,才能构建应用场景。基 色通道线性化是建立基色通道硬件与智能匹配算法之间的基础数据。
在本具体实施方式中,所述单通道线性矫正步骤的具体工作过程包括:
S001获取单通道的基色数据,所述基色数据包括从最小值到最大值驱动 信号下的基色灯的照度值或光谱功率分布参数
在本步骤中,优选地可以采用如下具体的操作来实现,例如,在首次进 行线性化矫正时,记录单通道的电源控制器从0开始按照一定的驱动信号步 长输送直流电给单通道基色灯,直至基色灯达到最亮状态,使用环境光测量 传感器记录每一个步长发光状态的照度或光谱功率分布参数,按照对应关系 记录成表。
对于非首次进行线性化矫正时,截取环境光传感器最低照度值(大于0) 反应时的步长值为线性化数据的起始值,然后按照此步长值依次调整电流并 记录相应的照度值或光谱功率分布的峰值,直到截取环境光传感器出现第一 个最大照度值反应时记录的数据作为线性化数据的终值。
S002确定线性化关系,根据单通道的基色数据和进行线性化的步长值确 定步长值与照度值或者光谱功率分布的线性函数关系
在本步骤中,优选地,可以根据如下两种情况实现,首先绘制步长值与 照度值或者光谱功率分布的峰值之间曲线,如果曲线是线性的,拟合线性函 数作为基色的线性化关系;如果曲线是非线性的,建立步长值与照度值或者 光谱功率分布的峰值的查找表,步长之间的数据使用临近插值求解,作为基 色的线性化关系。
由此对每个通道逐一进行线性化关系建立。
虽然光源需要进行线性化,但是线性化并不是每一次运行本专利的方法 时都需要运行的,因为线性化耗时较长因此可以在一定时间段内对基色光源 进行一次线性化,或者在选择光源安装时就选择已经进行了线性化矫正后的 光源。
目标光谱自动匹配步骤
用于匹配目标光谱的输出,该模块用于优选出基色通道,调用线性化的 数据,以所匹配的环境光光谱和照度为目标值求得最优的拟合光谱。目标光 谱自动匹配模块的工作过程包括:
S101获取目标参数
在本步骤中,获取待模拟的目标环境的参数。可以通过输入的方式来获 取目标参数,例如通过输入的方式获取目标光谱以及目标照度值、色温、显 色指数等参数;也可以通过系统配置的环境光传感器测量获取目标光谱以及 目标照度值、色温、显色指数等参数。
目标参数是模拟相关环境的目标值。确定目标参数后,就可以在接下来 根据目标参数来调配相应的光源,实现匹配。
S102根据所述目标参数,筛选出多个一级拟合子波
然后优选出基色通道,将目标光谱使用基色优选方案算法分解出最佳的 基色通道组合,记录各基色组合的比例系数。
核心算法:
Figure BDA0003098442990000071
式中,y表示目标光谱,ai bi ci是系数,其中ai不可以是负值;i从1到n, 表示通道数量。算法的原理是以高斯函数组成小波,对目标光谱进行分解, 得到一级小波分解参数,包括高斯函数的数量,高斯函数的系数。ai值的物 理意义是可以表示参与混色基色的比例,bi值的物理意义是可以表示参与混 色基色通道的峰值位置,ci值的物理意义是可以表示参与混色基色通道的带 宽。
S103判断每一个所述一级拟合子波是否有对应的单通道,如果不存在对 应的单通道,则以该一级拟合子波的参数作为目标参数,筛选出下一级拟合 子波,重复此过程直到得到与所有一级子波对应的单通道及该单通道的驱动 参数。
如图2所示,在本步骤中进行基色模拟,其主要目标是,a)管理LED基 色通道的数量,自定义基色通道;b)依据目标光谱,推荐最佳基色叠加过 程。光谱基色优先技术路线。
鉴于LED基色的带宽较窄,一级小波分解的结果可能存在超宽带宽的情 况存在,需要进行二级小波分解,如此循环一次,可以得到多级分解系数。 还原目标光谱时,需将分解过程进行逆运算,从最小的分解开始叠加,最后 得到目标光谱的逼近光谱。x为单通道光谱的波形。
在本步骤中,将上一级子波作为目标参数,分解得到组成上一级子波的 下一级子波的算法和步骤S102中相同,即,以高斯函数组成小波,对目标光 谱进行分解。因此在本步骤中不再详细描述。
即,目标光谱的分解与拟合过程表现为树状结构。
然后确定基色输入值,各基色通道比例系数与目标照度相乘,得到各基 色参与混合光时所需的照度,调用基色线性化关系或查找表,求解各基色线 性化的步长值。
再确定电源控制器输入值,依据线性化过程中的电源控制器电流与线性 化步长值,确定电源控制器输入直流电的数值。
S104确定模拟方案的模拟精度是否在预定范围之内
筛选出来的基色光源与理论上计算得到的子波在光谱参数上有一定的 区别。因此需要模拟光源的模拟效果,以确定模拟方案是否能够达到预定的 目标。
在本步骤中,使用上文所述的核心算法的逆运算得到模拟出来的结果。 在本步骤中,使用电源控制器输送预计算的电流值,输出各基色光谱,将各 基色光谱相加,输出目标光谱。最后评价环境光模拟精度,评价光谱误差, 计算拟合光谱与目标光谱的RMSE评价曲线精度或同色异谱指数,数值越小精 度越高;依据拟合的光谱计算模拟环境光的色温、色坐标,分别与目标环境 的色温差和色差,依据行业标准,要求色温误差在100K以内、色坐标DeltaUV 小于0.005等。
如果没达到要求,可重复S101-S103步骤,优化基色组合,致使达到使 用需求。也可以适度调节基色光源,然后通过动态调节的方式来达到目标光 源的要求。
采用上述方案对于CIE标准光源A、B、C、D50、D55、D65、D75进行光谱 模拟的一种结果可以参考下表所示:
Figure BDA0003098442990000091
在一级分级的情况下即可模拟CIE标准光源的光谱,其中采用的全光谱基 色还可以进行二级分解,分解为窄带基色。如需要平滑的光谱使用全光谱基 色,如需要锐利的光谱继续进行二级分解,采用窄带组合。表中绘制“---” 的位置,是本技术方案的优选方案的体现,可以用表中其他窄带基色替换。
专业人员可以进一步意识到,结合本文中所公开的实施例描述的各示例 的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现, 为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性 地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定 的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理 器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器 (RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、 寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式 的存储介质中。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行 了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而 已,并不用于限定本申请的保护范围,凡在本申请的精神和原则之内,所做 的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种基于多基色光谱叠加过程的环境光照模拟方法,其特征在于,所述方法包括:
步骤一、获取目标参数,获取待模拟的目标环境的参数;
步骤二、根据所述目标参数,筛选出组合成多个目标参数的多个单通道拟合子波;其中所述筛选包括采用公式:
Figure FDA0003098442980000011
求得;
式中,y表示目标光谱;x表示单通道光谱的波形;ai bi ci是系数,其中ai不可以是负值;i从1到n,表示通道数量;ai值的物理意义是可以表示参与混色基色的比例,bi值的物理意义是可以表示参与混色基色通道的峰值位置,ci值的物理意义是可以表示参与混色基色通道的带宽;
步骤三、基于筛选出的多个单通道拟合子波确定每个单通道拟合子波所对应的基色光源及其驱动参数。
2.根据权利要求1所述的一种基于多基色光谱叠加过程的环境光照模拟方法,其特征在于,
在所述步骤三中,判断每一个所述一级拟合子波是否有对应的单通道基色光源,如果不存在对应的单通道,则以该一级拟合子波为目标参数,筛选出下一级拟合子波,重复此过程直到得到与所有一级子波对应的单通道及该单通道的驱动参数。
3.根据权利要求3所述的一种基于多基色光谱叠加过程的环境光照模拟方法,其特征在于,判断每一个所述一级拟合子波是否有对应的单通道基色光源包括判断该拟合子波的光谱数据范围与单通道基色光源范围的重叠程度是否在预定的范围之内。
4.根据权利要求1或2所述的一种基于多基色光谱叠加过程的环境光照模拟方法,其特征在于,所述方法还包括单通道线性校正步骤,所述单通道线性矫正步骤包括:
S001获取单通道的基色数据,所述基色数据包括从最小值到最大值驱动信号下的基色灯的照度值或光谱功率分布参数;在首次进行线性化矫正时,记录单通道的电源控制器从0开始按照一定的驱动信号步长输送直流电给单通道基色灯,直至基色灯达到最亮状态,使用环境光测量传感器记录每一个步长发光状态的照度或光谱功率分布参数,按照对应关系记录成表;对于非首次进行线性化矫正时,截取环境光传感器最低照度值反应时的步长值为线性化数据的起始值,然后按照此步长值依次调整电流并记录相应的照度值或光谱功率分布的峰值,直到截取环境光传感器出现第一个最大照度值反应时记录的数据作为线性化数据的终值;
S002根据单通道的基色数据确定步长值与照度值或步长值与照度值或光谱功率分布参数的线性函数关系。
5.根据权利要求1或2所述的一种基于多基色光谱叠加过程的环境光照模拟方法,其特征在于,所述方法还包括:
步骤四、确定模拟方案的模拟精度是否在预定范围之内;如果模拟精度超出了预定范围,则调整步骤二的公式参数重新进行步骤二至步骤四。
6.一种基于多基色光谱叠加过程的环境光照模拟装置,其特征在于,所述装置包括:
目标参数获取模块,用于获取目标参数,获取待模拟的目标环境的参数;
拟合子波筛选模块,用于根据所述目标参数,筛选出组合成多个目标参数的多个单通道拟合子波;其中所述筛选包括采用公式:
Figure FDA0003098442980000021
求得;
式中,y表示目标光谱;x表示单通道光谱的波形;ai bi ci是系数,其中ai不可以是负值;i从1到n,表示通道数量;ai值的物理意义是可以表示参与混色基色的比例,bi值的物理意义是可以表示参与混色基色通道的峰值位置,ci值的物理意义是可以表示参与混色基色通道的带宽;
基色光源确定模块,用于基于筛选出的多个单通道拟合子波确定每个单通道拟合子波所对应的基色光源及其驱动参数。
7.根据权利要求6所述的一种基于多基色光谱叠加过程的环境光照模拟装置,其特征在于,
在所述基色光源确定模块中,判断每一个所述一级拟合子波是否有对应的单通道基色光源,如果不存在对应的单通道,则以该一级拟合子波为目标参数,筛选出下一级拟合子波,重复此过程直到得到与所有一级子波对应的单通道及该单通道的驱动参数。
8.根据权利要求7所述的一种基于多基色光谱叠加过程的环境光照模拟装置,其特征在于,判断每一个所述一级拟合子波是否有对应的单通道单通道基色光源包括判断该拟合子波的光谱数据范围与单通道基色光源范围的重叠程度是否在预定的范围之内。
9.根据权利要求6或7所述的一种基于多基色光谱叠加过程的环境光照模拟装置,其特征在于,所述装置还包括单通道线性矫正模块,所述单通道线性矫正模块包括:
获取单通道的基色数据,所述基色数据包括从最小值到最大值驱动信号下的基色灯的照度值或光谱功率分布参数;在首次进行线性化矫正时,记录单通道的电源控制器从0开始按照一定的驱动信号步长输送直流电给单通道基色灯,直至基色灯达到最亮状态,使用环境光测量传感器记录每一个步长发光状态的照度或光谱功率分布参数,按照对应关系记录成表;对于非首次进行线性化矫正时,截取环境光传感器最低照度值反应时的步长值为线性化数据的起始值,然后按照此步长值依次调整电流并记录相应的照度值或光谱功率分布的峰值,直到截取环境光传感器出现第一个最大照度值反应时记录的数据作为线性化数据的终值;
根据单通道的基色数据确定步长值与照度值或步长值与照度值或光谱功率分布参数的线性函数关系。
10.根据权利要求6或7所述的一种基于多基色光谱叠加过程的环境光照模拟装置,其特征在于,所述方法还包括:
精度确定模块,用于确定模拟方案的模拟精度是否在预定范围之内;如果模拟精度超出了预定范围,则调整拟合子波筛选模块的公式参数重新运行拟合子波筛选模块、基色光源确定模块和精度确定模块。
CN202110617488.2A 2020-10-27 2021-06-03 一种基于多基色光谱叠加过程的环境光照模拟方法和装置 Active CN113703500B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011167809 2020-10-27
CN2020111678095 2020-10-27

Publications (2)

Publication Number Publication Date
CN113703500A true CN113703500A (zh) 2021-11-26
CN113703500B CN113703500B (zh) 2023-11-14

Family

ID=78648084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110617488.2A Active CN113703500B (zh) 2020-10-27 2021-06-03 一种基于多基色光谱叠加过程的环境光照模拟方法和装置

Country Status (1)

Country Link
CN (1) CN113703500B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991988A (zh) * 2015-05-21 2015-10-21 大连工业大学 基于多颗单色大功率led实现类日光光源的方法
CN105241549A (zh) * 2015-10-28 2016-01-13 广州市雷腾照明科技有限公司 Led植物生长灯光谱拟合算法及led植物灯
CN105934020A (zh) * 2016-04-27 2016-09-07 浙江大学 一种多色led匹配光谱和照度的方法
CN106061000A (zh) * 2016-05-12 2016-10-26 齐鲁工业大学 基于光谱峰值辐亮度参数的多通道led照明系统的光谱匹配方法
US20160341670A1 (en) * 2015-05-22 2016-11-24 Nanometrics Incorporated Optical metrology using differential fitting
CN110070004A (zh) * 2019-04-02 2019-07-30 杭州电子科技大学 一种应用于深度学习的近地高光谱数据扩展方法
CN110084227A (zh) * 2019-05-22 2019-08-02 黑龙江八一农垦大学 基于近红外光谱技术的模式识别方法
CN110334089A (zh) * 2019-04-10 2019-10-15 中山大学 类日光谱的通照共用led模块匹配方法
CN110332991A (zh) * 2019-05-22 2019-10-15 合刃科技(深圳)有限公司 一种光谱的重构方法、装置和电子设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991988A (zh) * 2015-05-21 2015-10-21 大连工业大学 基于多颗单色大功率led实现类日光光源的方法
US20160341670A1 (en) * 2015-05-22 2016-11-24 Nanometrics Incorporated Optical metrology using differential fitting
CN105241549A (zh) * 2015-10-28 2016-01-13 广州市雷腾照明科技有限公司 Led植物生长灯光谱拟合算法及led植物灯
CN105934020A (zh) * 2016-04-27 2016-09-07 浙江大学 一种多色led匹配光谱和照度的方法
CN106061000A (zh) * 2016-05-12 2016-10-26 齐鲁工业大学 基于光谱峰值辐亮度参数的多通道led照明系统的光谱匹配方法
CN110070004A (zh) * 2019-04-02 2019-07-30 杭州电子科技大学 一种应用于深度学习的近地高光谱数据扩展方法
CN110334089A (zh) * 2019-04-10 2019-10-15 中山大学 类日光谱的通照共用led模块匹配方法
CN110084227A (zh) * 2019-05-22 2019-08-02 黑龙江八一农垦大学 基于近红外光谱技术的模式识别方法
CN110332991A (zh) * 2019-05-22 2019-10-15 合刃科技(深圳)有限公司 一种光谱的重构方法、装置和电子设备

Also Published As

Publication number Publication date
CN113703500B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
Houser et al. Tutorial: color rendering and its applications in lighting
CN101485234B (zh) 根据目标光分布控制照明系统的方法
US8981672B2 (en) Color control of dynamic lighting
CN106531060B (zh) Led显示装置亮色度校正方法及装置
CN104299565B (zh) Led显示装置的低灰阶校正方法及系统
Smet et al. A memory colour quality metric for white light sources
CN104464623B (zh) 一种调整发光二极管低灰阶的方法及装置
CN105898263B (zh) 一种图像白平衡方法、装置和计算设备
CN103293720A (zh) 自适应显示器校准的方法和装置
CN110677954B (zh) 一种超三色led光源的精确调光方法及系统
Llenas et al. Arbitrary spectral matching using multi-LED lighting systems
US10736192B2 (en) Calibration of drivers of a light source
CN106304527A (zh) 一种照明控制系统和照明控制方法
WO2001013355A2 (en) Method for measuring a lighting condition and an apparatus thereof
US10959305B2 (en) Controlling a lighting device having at least two electric light sources
Yuan et al. A multiprimary lighting system for customized color stimuli
Goudjil et al. An interior-points algorithm for color and CCT control of multichannel LED lighting system using a Smart 18-Channel Spectral Sensor
CN113703500B (zh) 一种基于多基色光谱叠加过程的环境光照模拟方法和装置
CN113961026B (zh) 一种基于多基色光谱叠加过程的环境光照模拟系统
US11363689B2 (en) Method for generating light spectra and corresponding device
Nezamabadi et al. Effect of image size on the color appearance of image reproductions using colorimetrically calibrated LCD and DLP displays
Yu et al. The influence of material colors on the effective color rendering and temperature through mutual illumination
Hunt Saturation, superfluous or superior?
CN215636704U (zh) 一种基于多基色光谱叠加过程的环境光照模拟光源
RavindraKumar et al. A Tunable LED Daylight Luminaire for Textile and Printing Light Booth Application with Optimum LEDs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant