CN113703432A - 航向校正方法、系统、自移动装置、可读存储介质 - Google Patents

航向校正方法、系统、自移动装置、可读存储介质 Download PDF

Info

Publication number
CN113703432A
CN113703432A CN202010387266.1A CN202010387266A CN113703432A CN 113703432 A CN113703432 A CN 113703432A CN 202010387266 A CN202010387266 A CN 202010387266A CN 113703432 A CN113703432 A CN 113703432A
Authority
CN
China
Prior art keywords
self
moving device
moving
course
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010387266.1A
Other languages
English (en)
Inventor
朱绍明
崔江伟
宗畅
袁立超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Cleva Electric Appliance Co Ltd
Suzhou Cleva Precision Machinery and Technology Co Ltd
Original Assignee
Suzhou Cleva Precision Machinery and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Cleva Precision Machinery and Technology Co Ltd filed Critical Suzhou Cleva Precision Machinery and Technology Co Ltd
Priority to CN202010387266.1A priority Critical patent/CN113703432A/zh
Priority to PCT/CN2020/117439 priority patent/WO2021227334A1/zh
Publication of CN113703432A publication Critical patent/CN113703432A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种航向校正方法、系统、自移动装置及可读存储介质,所述航向校正方法包含:检测所述自移动装置从第一位置移动至第二位置的移动状态,所述移动状态包括曲线移动、直线移动其中之一;当检测的移动状态为曲线移动时,根据第一航向角校正值和第二航向角获得所述自移动装置到达所述第二位置时的航向角。本发明的航向校正方法使得自移动装置在进行曲线移动时,也可以准确地进行航向校正,从而使得自移动装置定位更加准确,提高工作效率。

Description

航向校正方法、系统、自移动装置、可读存储介质
技术领域
本发明涉及了自动控制技术领域,尤其涉及一种航向校正方法、系统、自移动装置及可读存储介质。
背景技术
近年来,自移动装置逐渐成为了我们生活中不可缺少的一部分,其中,智能吸尘器普遍地运用于家庭室内环境的清洁,而自动割草机则运用于花园中草坪的维护。为了避免自动割草机作业时对花园中草坪造成损害,需要自动割草机可进行有规划地割草,而获得准确的航向是自动割草机能够进行有规划割草的基础。
自动割草机一般通过UWB(ULTRAWIDEBAND,超宽带)技术或惯性导航技术以获得航向,其中,UWB无法直接获得自动割草机的航向,故通常采用带反射标的激光测角方法来进行辅助,然而这种方法易受干扰、易被遮挡,从而易于产生航向误差;通过惯性导航技术获得航向,其中,陀螺仪是一种常见的选择,然而陀螺仪由于零位漂移和白噪声,会积累航向误差。以此,如何进行航向校正,以降低甚至消除自动割草机的航向误差,成为了亟待解决的问题。
现有的航向校正方法主要包含以下两种,具体为:1、通过惯性导航系统获得航向,并利用UWB进行辅助校正;2、利用惯性导航系统获得航向,并通过地磁来进行航向校正。
但是上述两种航向校正方法存在以下问题:地磁场容易受到诸如汽车、铁磁材料以及交直流切换等因素的干扰,从而通过地磁进行航向校正,有时候会产生较大的误差,使得自动割草机偏离预设的航向;UWB仅在自动割草机直线移动时,才能获得准确的航向,从而对惯性导航系统获得的航向进行校正,而当自动割草机曲线移动时,UWB获得的航向仍是自动割草机直线移动的航向,以此,此时UWB获得的航向与自动割草机的准确航向偏差较大,若此时利用UWB获得的航向进行校正,反而会使得自动割草机偏离预设的航向。
发明内容
为了克服自移动装置在进行曲线移动时无法准确地进行航向校正的缺陷,本发明实施例提供了一种航向校正方法,用于自移动装置,所述自移动装置包括惯性导航系统和无线电探测系统,其特征在于,所述方法包括:
检测所述自移动装置从第一位置移动至第二位置的移动状态,所述移动状态包括曲线移动、直线移动其中之一;
当所述移动状态为所述曲线移动时,根据第一航向角校正值和第二航向角获得所述自移动装置到达所述第二位置时的航向角;
其中,
所述第一航向角校正值根据所述无线电探测系统测量的所述自移动装置到达所述第二位置时的第一航向角和所述惯性导航系统测量的所述自移动装置从所述第一位置移动至所述第二位置的累计航向变化值获得;所述第二航向角根据所述自移动装置的初始航向角和所述惯性导航系统测量的所述自移动装置从初始位置移动至所述第二位置的累计航向变化值获得。
进一步地,当所述移动状态为所述直线移动时,根据所述第一航向角和所述第二航向角获得所述自移动装置到达所述第二位置时的航向角。
进一步地,所述初始航向角通过以下方式获得:
当所述自移动装置以充电站作为所述初始位置出发时,所述初始航向角为0。
进一步地,所述初始航向角通过以下方式获得:
当所述自移动装置以所述充电站之外的位置作为所述初始位置出发时,以所述自移动装置从所述初始位置移动预设距离后所到达的位置时,所述无线电探测系统测量的航向角为所述初始航向角。
进一步地,所述自移动装置到达所述第二位置时的航向角通过如下表达式获得:
φj=n1·a1+n2·a2
其中,φj为所述自移动装置到达所述第二位置时的航向角,a1为所述第一航向角校正值,a2为所述第二航向角,n1、n2均为正数,并且如果所述自移动装置从所述初始位置移动至所述第二位置时的累计时间达到预设时间时,n1大于n2;如果所述自移动装置从所述初始位置移动至所述第二位置时的累计时间未达到所述预设时间时,n1小于n2
进一步地,所述“检测所述自移动装置从第一位置移动至第二位置的移动状态”包括:根据预设的工作计划获得所述自移动装置从第一位置移动至第二位置的移动状态,其中,所述预设的工作计划包含所述自移动装置的位置与移动状态的对应关系。
进一步地,所述第一航向角校正值等于所述第一航向角与二分之一的所述惯性导航系统测量的所述自移动装置从所述第一位置移动至所述第二位置的累计航向变化值之和。
为了克服自移动装置在进行曲线移动时无法准确地进行航向校正的缺陷,本发明实施例提供了一种自移动装置的控制系统,其特征在于,所述控制系统包含:
检测模块,配置为检测所述自移动装置从第一位置移动至第二位置的移动状态,所述移动状态包括曲线移动、直线移动其中之一;
获取模块,配置为根据无线电探测系统测量的所述自移动装置到达所述第二位置时的第一航向角和惯性导航系统测量的所述自移动装置从所述第一位置移动至所述第二位置的累计航向变化值获得第一航向角校正值,根据所述自移动装置的初始航向角和所述惯性导航系统测量的所述自移动装置从初始位置移动至所述第二位置的累计航向变化值获得第二航向角;
计算模块,配置为当所述移动状态为所述曲线移动时,根据所述第一航向角校正值和所述第二航向角获得所述自移动装置到达所述第二位置时的航向角。
为了克服自移动装置在进行曲线移动时无法准确地进行航向校正的缺陷,本发明实施例提供了一种自移动装置,其特征在于,所述自移动装置还包括:一个或多个处理器;存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述任一所述的航向校正方法。
为了克服自移动装置在进行曲线移动时无法准确地进行航向校正的缺陷,本发明实施例提供了一种可读存储介质,其特征在于,所述计算机程序被处理器执行时实现上述任一项所述航向校正方法。
本发明的有益效果如下:
在自移动装置处于曲线移动状态时,虽然无线电探测系统检测到的航向角是自移动装置直线移动时的航向角,并不能直接地用于航向校正,但是利用惯性导航系统检测到的航向变化值,可对无线电探测系统检测到的航向角进行校正,从而可获得自移动装置曲线移动的第一航向校正值,根据所述惯性导航系统获得的第二航向角及所述第一航向校正值,则可以获得较为准确所述自移动装置到达所述第二位置时的航向角。通过本发明的航向校正方法,自移动装置在曲线移动时,也可以通过无线电探测系统及惯性导航系统的结合以准确地进行航向校正。
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中的自移动装置、充电站及超宽带基站示意图;
图2是本发明实施例中的自移动装置曲线移动时航向校正的示意图;
图3是本发明实施例中的自移动装置的航向校正方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或隐含地包括一个或者更多个该特征。
为达到上述目的,本发明提供了一种自移动装置,在优选的实施例中,所述自移动装置为自动割草机1,当然,在其他实施例中,所述自移动装置也可以是扫地机器人,或其他自动设备,相关内容这里不再赘述。
请具体参考图1,本发明所述的自动割草机1包含主动轮11,通常,所述主动轮11设有两个,且两个所述主动轮11相对于所述自动割草机1的中心线对称设置。所述主动轮11由电机(未图示)驱动,通过所述主动轮11,所述自动割草机1可进行移动作业,在本实施例中,所述电机为带减速箱和霍尔传感器的无刷电机,以此,通过控制两个所述主动轮11的速度和方向便可以实现所述自动割草机1的前进、后退、转弯及圆弧等行驶动作。进一步地,所述自动割草机1还包含万向轮12,在本实施例中,所述万向轮12设于所述主动轮11的前方,通过所述万向轮12,所述自动割草机1可更为平衡稳定地进行行走。
所述自动割草机1还包含惯性导航系统,通过所述惯性导航系统,在所述自动割草机1的工作过程中,所述自动割草机1可实时获得航向及位置,从而可便于自动割草机1按照规划的路径及工作模式进行作业。在本实施例中,所述惯性导航系统具体包含陀螺仪15,所述陀螺仪15具体可以是一轴,或者三轴陀螺仪。
进一步地,所述自动割草机1还包含无线电探测系统,通过所述无线电探测系统,在所述自动割草机1的工作过程中,所述自动割草机1也可实时获得航向及位置,通过所述无线电探测系统,可对所述惯性导航系统获得的航向进行校正,从而使得所述自动割草机1能够稳定地按照预设航向进行作业,提高了工作效率。在本实施例中,所述无线电探测系统具体通过超宽带技术实现所述自动割草机1的定位,具体来说,所述自动割草机1上设有超宽带标签14,对应地,草地上设有超宽带基站31(32,33),所述自动割草机1还包含控制模块13,所述控制模块13通过串口或者I2C等方式与所述超宽带标签14和陀螺仪15进行数据接收或交换。需要注意的是,设有3个所述超宽带基站仅是一种实施例,在其他实施例中,所述超宽带基站也可以是设置4个或根据草地的面积进行具体设置。当然,还需要注意的是,所述无线电探测系统具体通过超宽带技术进行工作仅一种优选的实施例,在其他实施例中,所述无线电探测系统也可以是通过GPS或DGPS进行工作。
进一步地,在本实施例中,所述自动割草机1上仅设有一个超宽带标签14,以此,可降低成本,当然,在其他实施例中,所述自动割草机1上也可以是设有两个所述超宽带标签,且所述两个所述超宽带标签,其中一个位于另一个正前方,以此,在所述自动割草机1开始进行作业时,可以直接获得所述两个所述超宽带标签的绝对坐标,并以此计算获得初始航向,更为方便。
所述自动割草机1还包含充电模块(未图示),当所述自动割草机1的电量低于预设值时,其会返回充电站2进行充电。当然,需要注意的是,在本实施例中,当所述超宽带基站的电量较低时,所述自动割草机1可以移动至所述超宽带基站处,并与所述超宽带基站对接,从而对所述超宽带基站进行充电,以此,用户无需经常为所述超宽带基站换电池,提高了用户体验。
本发明还提供了一种航向校正方法,所述航向校正方法用于自移动装置。
在本实施例中,所述航向校正方法用于所述自动割草机1,在所述自动割草机1按照工作计划进行了一段时间的作业后,由于草地的工作环境的影响及惯性导航系统积累的误差的影响,所述自动割草机1通过所述惯性导航系统获得的航向与准确的航向存在偏差,故需要进行航向校正,以使得所述自动割草机1继续按照准确的航向进行作业。
请具体参考图3,所述航向校正方法包含:
S1:检测所述自移动装置从第一位置移动至第二位置的移动状态,所述移动状态包括曲线移动、直线移动其中之一;
在本实施例中,在所述自动割草机1进行作业前,由用户设置工作计划或所述自动割草机1读取存储于本地存储器或网络服务器的已设置完成的工作计划,所述自动割草机1根据预设的工作计划进行作业。具体地,所述预设的工作计划包含所述自移动装置的位置与移动状态的对应关系,以此,所述自动割草机1可根据预设的工作计划获得从所述第一位置移动至所述第二位置的移动状态,即:当所述自动割草机1移动至所述第一位置或者移动至所述第一位置与所述第二位置之间时,获取所述工作计划,并根据所述工作计划,获得在所述第一位置及所述第二位置间的具体移动状态。需要注意的是,在其他实施例中,所述移动状态也可以是用户通过移动终端发出,即:用户在观察到所述自动割草机1偏离了预定的前进方向,可通过移动终端发出指令以控制所述自动割草机的移动状态。当然,所述移动状态可以是通过所述惯性导航系统获得的,即:所述自动割草机1通过所述惯性导航系统,实现获取航向数据,根据航向数据判断当前的具体移动状态。
S2:当所述移动状态为曲线移动时,根据第一航向角校正值和第二航向角获得所述自移动装置到达所述第二位置时的航向角;
其中,所述第一航向角校正值根据所述无线电探测系统测量的自移动装置到达所述第二位置时的第一航向角和所述惯性导航系统测量的自移动装置从所述第一位置移动至所述第二位置的累计航向变化值获得。所述第二航向角根据自移动装置的初始航向角和所述惯性导航系统测量的自移动装置从初始位置移动至所述第二位置的累计航向变化值获得。
具体来说,当所述自动割草机1以曲线移动的移动状态由所述第一位置移动到所述第二位置时,由于草坪环境、超宽带系统的精度及惯性导航系统的精度等的影响,所述自动割草机1的航向角可能会产生误差,从而需要对所述自动割草机的航向角进行校正,以获得更为准确的航向角。
所述第二航向角根据自移动装置的初始航向角和所述惯性导航系统测量的自移动装置从初始位置移动至所述第二位置的累计航向变化值获得。在本实施例中,所述航向为所述自动割草机1的当前运动方向与X轴正方向的夹角,所述充电站2通常设置于X轴上。以此,当所述自动割草机1以所述充电站2作为初始位置出发时,所述初始航向角为0。当所述自动割草机1位于所述第二位置时,通过所述惯性导航系统可获得所述自动割草机1从初始位置移动至所述第二位置的累计航向变化值,将所述自动割草机1从初始位置移动至所述第二位置的累计航向变化值与所述初始航向角进行叠加,可获得所述自动割草机1的所述第二航向角。在所述自动割草机1按照预设的工作计划进行作业的过程中,所述惯性导航系统始终处于工作状态,并可实时获取所述自动割草机1的航向角,然而由于工作环境及陀螺仪精度的影响,所述惯性导航系统获得的所述第二航向角通常存在一定的误差,尤其是所述自动割草机1进行了长时间的工作后,所述第二航向角的误差逐渐累积,若不进行校正,则所述自动割草机1会偏离预定的移动方向,从而无法进行正常的作业。故,通常可通过所述超宽带系统对所述惯性导航系统获得的航向角进行校正,但是,当所述自动割草机1的移动状态为曲线移动时,所述超宽带系统获得的航向角仍是直线移动时的航向角,若以此航向角对所述惯性导航系统获得的航向角进行校正,则会使得自动割草机1偏离预定的移动方向,无法正常的作业。
以此,在本发明的优选实施例中,根据所述无线电探测系统测量的自移动装置到达所述第二位置时的第一航向角和所述惯性导航系统测量的自移动装置从所述第一位置移动至所述第二位置的累计航向变化值可获得第一航向角校正值。以此,通过所述第一航向角校正值,可对所述第二航向角进行校正,从而获得了所述自动割草机1处于所述第二位置时的更为准确的航向,并提高了所述自动割草机1定位的准确性。
具体来说,所述第一航向角校正值等于所述第一航向角与二分之一的所述惯性导航系统测量的所述自移动装置从所述第一位置移动至所述第二位置的累计航向变化值之和。请具体参阅图2,所述自动割草机1从初始位置(未图示)移动至图示的A位置(即:所述第一位置),所述自动割草机1根据所述预设的工作计划,获得从所述A位置移动到B位置(即:所述第二位置)的移动状态为曲线移动。所述自动割草机1在A位置的移动方向为图示的v1方向,所述航向角为所述自动割草机1的移动方向与X轴正方向的夹角,则当所述自动割草机1处于所述A位置时,其航向角设为A点航向角,即为图示的φ2。所述自动割草机1移动至图示B位置时,所述自动割草机1的移动方向为图示的v2方向,其航向角为所述第一航向角校正值,即为图示的φ4,图中所示的C点即为所述自动割草机1由A位置运动到B位置形成的圆弧的圆心。当所述自动割草机1以曲线移动的移动状态行驶至图示的B位置时,所述超宽带系统检测到的所述第一航向角为图示的φ3,而惯性导航系统检测到的所述自动割草机1从所述A位置移动至所述B位置的累计航向变化值为φ42。由图2可知,φ4=∠C+φ2
Figure BDA0002484512940000071
以此,可得
Figure BDA0002484512940000072
从而可得所述第一航向角校正值等于所述第一航向角与二分之一的所述惯性导航系统测量的所述自移动装置从所述第一位置移动至所述第二位置的累计航向变化值之和。
综上所述,当所述自动割草机1以曲线移动的移动状态由A移动至B时,通过超宽带系统获得的所述第一航向角是所述自动割草机1以直线移动的移动状态由A移动至B时获得的航向角,故,若直接用所述第一航向角对所述惯性导航系统获得的所述第二航向角进行校正,则明显会使得所述校正航向偏离了正确的航向。以此,在本实施例中,通过将所述超宽带系统直接获得的所述第一航向角与所述惯性导航系统检测到的所述自移动装置从所述第一位置移动至所述第二位置的累计航向变化值进行结合,获得了所述自动割草机1执行曲线移动时的所述第一航向角校正值,然后,再通过所述第一航向角校正值,对所述惯性导航系统获得的所述第二航向角进行校正,则可获得更为准确的所述自移动装置到达所述第二位置时的航向角。
进一步地,所述自移动装置到达所述第二位置时的航向角通过如下表达式获得:
φj=n1·a1+n2·a2
其中,φj为所述自移动装置到达所述第二位置时的航向角,a1为所述第一航向角校正值,a2为所述第二航向角,n1、n2均为正数,并且如果所述自移动装置从所述初始位置移动至所述第二位置时的时间达到预设时间时,n1大于n2;如果所述自移动装置从所述初始位置移动至所述第二位置时的时间未达到预设时间时,n1小于n2
具体来说,在本实施例中,若所述自移动装置从所述初始位置移动至所述第二位置时的累计时间未达到预设时间,则说明所述自动割草机1行驶时间较短,则此时所述惯性导航系统检测获得的第二航向角较为准确,从而将所述第二航向角的权重提高,并降低综合利用超宽带系统及惯性导航系统获得的所述第一航向角校正值的权重,以此,可提高所述自移动装置到达所述第二位置时的航向角的准确度。相反地,若所述自移动装置从所述初始位置移动至所述第二位置时的累计时间达到所述预设时间,则说明所述自动割草机1的行驶时间较长,此时综合利用超宽带系统及惯性导航系统获得的所述第一航向角校正值较为准确,从而降低所述惯性导航系统检测到的第二航向角的权重,并提高综合利用超宽带系统及惯性导航系统获得的所述第一航向角校正值的权重,以此,可提高所述自移动装置到达所述第二位置时的航向角的准确度。当然,在其他实施例中,所述自移动装置到达所述第二位置时的航向角可以是通过卡尔曼滤波技术获得,而不局限于通过上述算法获得。
进一步地,在其他实施例中,当自移动装置以充电站之外的位置作为初始位置出发时,以自移动装置从初始位置移动预设距离后所到达的位置时所述无线电探测系统测量的航向角为所述初始航向角。具体地,当所述自动割草机1已离开所述充电站2,则控制所述自动割草机1从初始位置以直线移动至预设距离,并获取超宽度系统检测到的即时航向,以此航向为初始航向角。需要注意的是,若所述自动割草机1设有两个所述超宽度标签14,则所述自动割草机1也可以是获得所述两个所述超宽带标签14的绝对坐标,并计算获得初始航向角。
进一步地,所述航向校正方法还包含:
当检测的移动状态为直线移动时,根据所述第一航向角和所述第二航向角获得自移动装置到达所述第二位置时的航向角。
具体来说,当所述自动割草机1由所述第一位置移动至所述第二位置的移动状态为直线移动时,则所述超宽带系统可直接获得第一航向角,而根据初始航向角及所述惯性导航系统测量的自移动装置从初始位置移动至所述第二位置的累计航向变化值可获得第二航向角。根据所述第一航向角和所述第二航向角可获得所述自动割草机1到达所述第二位置时的航向角。以此,当所述自动割草机1直线移动时,可通过超宽带系统获得的航向对所述惯性导航系统获得的航向进行校正,从而提高了所述自动割草机1到达所述第二位置时的航向角的准确性。
进一步地,所述自移动装置到达所述第二位置时的航向角通过如下表达式获得:
φj=n1·a3+n2·a2
其中,φj为所述自移动装置到达所述第二位置时的航向角,a3为所述第一航向角,a2为所述第二航向角,n1、n2均为正数,并且如果所述自移动装置从所述初始位置移动至所述第二位置时的时间达到预设时间时,n1大于n2;如果所述自移动装置从所述初始位置移动至所述第二位置时的时间未达到预设时间时,n1小于n2
在本实施例中,若所述自移动装置从所述初始位置移动至所述第二位置时的累计时间未达到预设时间时,则说明所述自动割草机1行驶时间较短,则此时所述惯性导航系统检测获得的第二航向角较为准确,从而将所述第二航向角的权重提高,并降低利用超宽带系统获得的所述第一航向角的权重,以此,可提高所述自移动装置到达所述第二位置时的航向角的准确度。相反地,若所述自移动装置从所述初始位置移动至所述第二位置时的累计时间达到所述预设时间时,则说明所述自动割草机1的行驶时间较长,此时利用超宽带系统所述第一航向角较为准确,从而降低所述惯性导航系统检测到的第二航向角的权重,并提高利用超宽带系统获得的所述第一航向角的权重,以此,可提高所述自移动装置到达所述第二位置时的航向角的准确度。当然,在其他实施例中,所述自移动装置到达所述第二位置时的航向角可以是通过卡尔曼滤波技术获得,而不局限于通过上述算法获得。
在本发明的另一实施例中,还提供了一种自移动装置的控制系统,其特征在于,所述控制系统包含:
检测模块,配置为检测所述自移动装置从第一位置移动至第二位置的移动状态,所述移动状态包括曲线移动、直线移动其中之一;
获取模块,配置为根据所述无线电探测系统测量的自移动装置到达所述第二位置时的第一航向角和所述惯性导航系统测量的自移动装置从所述第一位置移动至所述第二位置的累计航向变化值获得所述第一航向角校正值,根据自移动装置的初始航向角和所述惯性导航系统测量的自移动装置从初始位置移动至所述第二位置的累计航向变化值获得所述第二航向角;
计算模块,配置为当所述移动状态为曲线移动时,根据第一航向角校正值和第二航向角获得所述自移动装置到达所述第二位置时的航向角。
进一步地,所述控制系统还包含计时模块,当所述自动割草机1开始进行作业时,所述计时模块开始记录行驶时间;在所述自动割草机1的工作过程中,所述计时模块始终在进行行驶时间的记录,同时进行所述行驶时间的累加。
在本发明的另一实施例中,还提供了一种自移动装置,所述自移动装置还包括:
一个或多个处理器;存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的航向校正方法。关于航向校正方法,这里不再赘述。
在本发明的另一实施例中,还提供了一种可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现上述航向校正方法。关于航向校正方法,这里不再赘述。
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种航向校正方法,用于自移动装置,所述自移动装置包括惯性导航系统和无线电探测系统,其特征在于,所述方法包括:
检测所述自移动装置从第一位置移动至第二位置的移动状态,所述移动状态包括曲线移动、直线移动其中之一;
当所述移动状态为所述曲线移动时,根据第一航向角校正值和第二航向角获得所述自移动装置到达所述第二位置时的航向角;
其中,
所述第一航向角校正值根据所述无线电探测系统测量的所述自移动装置到达所述第二位置时的第一航向角和所述惯性导航系统测量的所述自移动装置从所述第一位置移动至所述第二位置的累计航向变化值获得;所述第二航向角根据所述自移动装置的初始航向角和所述惯性导航系统测量的所述自移动装置从初始位置移动至所述第二位置的累计航向变化值获得。
2.根据权利要求1所述的航向校正方法,其特征在于,所述方法还包括:
当所述移动状态为所述直线移动时,根据所述第一航向角和所述第二航向角获得所述自移动装置到达所述第二位置时的航向角。
3.根据权利要求1所述的航向校正方法,其特征在于,所述初始航向角通过以下方式获得:
当所述自移动装置以充电站作为所述初始位置出发时,所述初始航向角为0。
4.根据权利要求3所述的航向校正方法,其特征在于,所述初始航向角通过以下方式获得:
当所述自移动装置以所述充电站之外的位置作为所述初始位置出发时,以所述自移动装置从所述初始位置移动预设距离后所到达的位置时,所述无线电探测系统测量的航向角为所述初始航向角。
5.根据权利要求1所述的航向校正方法,其特征在于,所述自移动装置到达所述第二位置时的航向角通过如下表达式获得:
φj=n1·a1+n2·a2
其中,φj为所述自移动装置到达所述第二位置时的航向角,a1为所述第一航向角校正值,a2为所述第二航向角,n1、n2均为正数,并且如果所述自移动装置从所述初始位置移动至所述第二位置时的时间达到预设时间时,n1大于n2;如果所述自移动装置从所述初始位置移动至所述第二位置时的时间未达到所述预设时间时,n1小于n2
6.根据权利要求1所述的航向校正方法,其特征在于,所述“检测所述自移动装置从第一位置移动至第二位置的移动状态”包括:根据预设的工作计划获得所述自移动装置从第一位置移动至第二位置的移动状态,其中,所述预设的工作计划包含所述自移动装置的位置与移动状态的对应关系。
7.根据权利要求1所述的航向校正方法,其特征在于,所述第一航向角校正值等于所述第一航向角与二分之一的所述惯性导航系统测量的所述自移动装置从所述第一位置移动至所述第二位置的累计航向变化值之和。
8.一种自移动装置的控制系统,其特征在于,所述控制系统包含:
检测模块,配置为检测所述自移动装置从第一位置移动至第二位置的移动状态,所述移动状态包括曲线移动、直线移动其中之一;
获取模块,配置为根据无线电探测系统测量的所述自移动装置到达所述第二位置时的第一航向角和惯性导航系统测量的所述自移动装置从所述第一位置移动至所述第二位置的累计航向变化值获得第一航向角校正值,根据所述自移动装置的初始航向角和所述惯性导航系统测量的所述自移动装置从初始位置移动至所述第二位置的累计航向变化值获得第二航向角;
计算模块,配置为当所述移动状态为所述曲线移动时,根据所述第一航向角校正值和所述第二航向角获得所述自移动装置到达所述第二位置时的航向角。
9.一种自移动装置,其特征在于,所述自移动装置还包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7中任一所述的航向校正方法。
10.一种可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-7中任一项所述航向校正方法。
CN202010387266.1A 2020-05-09 2020-05-09 航向校正方法、系统、自移动装置、可读存储介质 Pending CN113703432A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010387266.1A CN113703432A (zh) 2020-05-09 2020-05-09 航向校正方法、系统、自移动装置、可读存储介质
PCT/CN2020/117439 WO2021227334A1 (zh) 2020-05-09 2020-09-24 航向校正方法、系统、自移动装置、可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010387266.1A CN113703432A (zh) 2020-05-09 2020-05-09 航向校正方法、系统、自移动装置、可读存储介质

Publications (1)

Publication Number Publication Date
CN113703432A true CN113703432A (zh) 2021-11-26

Family

ID=78526027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010387266.1A Pending CN113703432A (zh) 2020-05-09 2020-05-09 航向校正方法、系统、自移动装置、可读存储介质

Country Status (2)

Country Link
CN (1) CN113703432A (zh)
WO (1) WO2021227334A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592493A (zh) * 2009-07-06 2009-12-02 北京航空航天大学 车载导航系统中的航向更新方法
CN106153042A (zh) * 2015-03-31 2016-11-23 日本电气株式会社 航向角获取方法和装置
CN106443745A (zh) * 2016-10-27 2017-02-22 广州日滨科技发展有限公司 一种航向角校正的方法及装置
US9943022B1 (en) * 2017-08-02 2018-04-17 Caterpillar Trimble Control Technologies Llc Determining yaw and center-of-rotation of a rotating platform using a single position sensor
CN110764506A (zh) * 2019-11-05 2020-02-07 广东博智林机器人有限公司 移动机器人的航向角融合方法、装置和移动机器人

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183960B (zh) * 2011-05-06 2013-07-03 北京航空航天大学 一种适用于独立式自动跟踪的局部可柔度虚杆转弯控制系统
CN105890595A (zh) * 2015-01-08 2016-08-24 北京中坤天朗信息技术有限公司 基于信息滤波的车载组合导航系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592493A (zh) * 2009-07-06 2009-12-02 北京航空航天大学 车载导航系统中的航向更新方法
CN106153042A (zh) * 2015-03-31 2016-11-23 日本电气株式会社 航向角获取方法和装置
CN106443745A (zh) * 2016-10-27 2017-02-22 广州日滨科技发展有限公司 一种航向角校正的方法及装置
US9943022B1 (en) * 2017-08-02 2018-04-17 Caterpillar Trimble Control Technologies Llc Determining yaw and center-of-rotation of a rotating platform using a single position sensor
CN110764506A (zh) * 2019-11-05 2020-02-07 广东博智林机器人有限公司 移动机器人的航向角融合方法、装置和移动机器人

Also Published As

Publication number Publication date
WO2021227334A1 (zh) 2021-11-18

Similar Documents

Publication Publication Date Title
US11841710B2 (en) Automatic working system, self-moving device, and methods for controlling same
US20200191973A1 (en) Navigation for a Robotic Work Tool
CN108226965B (zh) 自移动设备的定位故障处理方法、装置和电子设备
EP3764186B1 (en) Method for controlling autonomous mobile robot to travel along edge
WO2017133707A1 (zh) 自动工作系统,自移动设备及其控制方法
US9104206B2 (en) Self-steering vehicle
JP2020529061A (ja) 移動ロボットの地図作成方法および当該地図に基づく経路計画方法
US10078336B2 (en) System and method for navigating a robotic working tool
KR20170088228A (ko) 다중로봇의 자기위치인식에 기반한 지도작성 시스템 및 그 방법
US20110125358A1 (en) Control method for a robot vehicle, and robot vehicle
KR20100073190A (ko) 이동체의 위치 및 방향 인식 장치 및 그 방법
US20240061442A1 (en) Mobile Robot Positioning Method and System Based on Wireless Ranging Sensors, and Chip
CN112034846A (zh) 虚拟边界作业方法、系统、移动终端及存储介质
WO2022042360A1 (zh) 一种自移动设备及回归充电站的方法
GB2545960A (en) Method for guiding an off-road vehicle along a curved path
CN114111780A (zh) 一种定位误差校正方法、装置、自移动设备及系统
Höffmann et al. Coverage path planning and precise localization for autonomous lawn mowers
US10527434B2 (en) Autonomous mobility apparatus
US20230015335A1 (en) Working map construction method and apparatus, robot, and storage medium
CN113703432A (zh) 航向校正方法、系统、自移动装置、可读存储介质
CN108801275B (zh) 基于无线网络和地磁信号的室内移动机器人指纹地图建立方法
CN109737957B (zh) 一种采用级联FIR滤波的INS/LiDAR组合导航方法及系统
JP2017107275A (ja) 自律移動装置、自律移動方法及びプログラム
CN112256027B (zh) 一种机器人基于视觉角度纠正惯性角度的导航方法
JP2012154930A (ja) 物体の位置を特定する電子システム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230602

Address after: 215000 No. 8 Ting Rong Street, Suzhou Industrial Park, Jiangsu, China

Applicant after: Suzhou Cleva Precision Machinery & Technology Co.,Ltd.

Applicant after: SKYBEST ELECTRIC APPLIANCE (SUZHOU) Co.,Ltd.

Address before: No.18, Huahong street, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215000

Applicant before: Suzhou Cleva Precision Machinery & Technology Co.,Ltd.

TA01 Transfer of patent application right