CN113703170A - 一种新型三维中空形光场生成方法与装置 - Google Patents

一种新型三维中空形光场生成方法与装置 Download PDF

Info

Publication number
CN113703170A
CN113703170A CN202110886687.3A CN202110886687A CN113703170A CN 113703170 A CN113703170 A CN 113703170A CN 202110886687 A CN202110886687 A CN 202110886687A CN 113703170 A CN113703170 A CN 113703170A
Authority
CN
China
Prior art keywords
light
lens
wave plate
light beam
slm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110886687.3A
Other languages
English (en)
Other versions
CN113703170B (zh
Inventor
朱大钊
丁晨良
匡翠方
徐良
李海峰
刘旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Zhejiang Lab
Original Assignee
Zhejiang University ZJU
Zhejiang Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, Zhejiang Lab filed Critical Zhejiang University ZJU
Priority to CN202110886687.3A priority Critical patent/CN113703170B/zh
Publication of CN113703170A publication Critical patent/CN113703170A/zh
Application granted granted Critical
Publication of CN113703170B publication Critical patent/CN113703170B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0988Diaphragms, spatial filters, masks for removing or filtering a part of the beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种新型三维中空形光场调控方法和装置,属于光学工程领域。该方法使用两种旋向相反的0‑2π涡旋相位板对偏振光的两个分量分别调至,在转化成圆偏光,两个分量的光干涉形成一种复杂的柱状矢量偏振光,聚焦形成新型三维中空光场。该装置,包括起偏器、半波片、滤波透镜、滤波小孔、准直透镜、第一锥透镜、第二锥透镜、DMD、SLM,第一1/4波片、反射镜和第二1/4波片。相对于传统的方法产生更高质量的3D HLF,并且利用SLM的偏振选择特性,可以采用单路光形成3D HLF且不产生相干缺陷。本发明采用SLM调控光束可以同时实现像差优化,采用环形光束可以挡掉中心低频部分进一步提高光束质量。

Description

一种新型三维中空形光场生成方法与装置
技术领域
本发明属于光学工程领域,特别涉及一种新型三维中空光场生成装置。
背景技术
三维中空形光场(3D Hollow Light Field,以下简称“3D HLF”)是一种中心区域光场为零或强度较低而外围被高强度光场包围的聚焦光场。这种3D HLF在诸多领域中有着极为广泛的应用,如光学测量、激光加工制造、光学成像、光学跟踪等。特别是近年来提出的PPI激光直写技术,该技术是一项用于提升传统激光打印装置分辨率的技术,其利用另一束光形成空心光斑,抑制用于激光直写的实心光斑的作用区域,进而获得更高的特征尺寸,提高打印分辨率。此外,在光学超分辨技术中,基于点扫描成像系统的STED技术(stimulatedemision depletion)和FED技术(fluorescence emission difference)都用到了中空形光场。STED技术通过空心光场抑制荧光发光区域,减小系统点扩散函数(PSF),进而提升分辨率。而FED技术通过二次成像,在时空上等效的缩小系统的PSF,实现最终图像对比度和分辨率的提升。可以看出,虽然两种技术的原理不同,但是中空形光场是制约两者成像质量的关键因素。
当前3D HLF虽然得到广泛应用,技术方案逐渐成熟,但无法解决采用单路连续光产生3D HLF与光束相干引入缺陷的矛盾问题。本发明基于偏振原理,提出了一种产生新型3D HLF的装置,在一定程度上解决了上述问题,并可获得更高质量的3D HLF。
发明内容
本发明的目的是一种新型3D HLF生成方法。利用该方法,可以在单束光条件下产生高质量、无相干缺陷的3D HLF,可用于进一步提升双光子激光打印装置的分辨率和精度。
本发明的目的是通过以下技术方案来实现的:
一种新型三维中空形光场生成装置,沿光路依次包括:起偏器、1/2半波片、滤波透镜、滤波小孔、准直透镜、第一锥透镜、第二锥透镜、DMD、SLM、第一1/4波片、反射镜和第二1/4波片,光束进入该装置后,经起偏器转化为线偏光,线偏光经过所述1/2波片之后光束由滤波透镜汇聚,在滤波透镜的焦面上设置滤波小孔,经过滤波小孔后的光束被准直透镜再次准直为平行光;
准直之后的平行光依次经过第一锥透镜和第二锥透镜,入射到DMD,光束被DMD反射至SLM左半屏幕上,再被反射至所述反射镜,被反射镜反射后入射到SLM右半屏幕上,光束在SLM和反射镜之间两次经过第一1/4波片,从SLM右半屏幕出射光束经过第二1/4波片。
进一步的,通过旋转1/2波片使s分量和p分量能量相同。
进一步的,所述滤波小孔用于滤除边缘杂散光,提高光束质量。
进一步的,所述第一锥透镜和第二锥透镜组成透镜组,用于调制光束能量分布,使其截面能量分布为环形。
进一步的,所述SLM左右半屏加载不同的相位图,左侧加载涡旋相位,右侧加载一个起始点随半径变化且旋向相反的涡旋相位。
进一步的,s光和p光被第二1/4波片12转化为旋向相反的圆偏光,并相干叠加,形成复杂偏振态分布的光束,该光束被聚焦后形成的3D HLF。
一种新型三维中空形光场生成方法,包括如下步骤:
步骤一、激光器发出的激光准直为平行光束;
步骤二、将光束通过4f系统,在4f系统焦面处放置一小孔,进行小孔滤波,得到高质量高斯光束;
步骤三、将得到高斯光束通过一组锥透镜对,所述锥透镜对由两个方向相反的锥透镜组成,用于形成环形光束;
步骤四、使用光阑滤除光束边缘杂散光;
步骤五、将平行光束经过起偏器,转化为线偏光;同时旋转起偏器使通过起偏器的能量最大;线偏光正交分解为两个分量,p偏振光和s偏振光;
步骤六、采用0-2π涡旋相位掩膜对p分量进行相位调制,使其带有涡旋波前相位;
步骤七、采用另一起始点随半径变化且旋向相反的涡旋相位掩膜对s分量进行调制;
步骤八、将光束通过1/4波片后聚焦,得到3D HLF。
本发明的有益效果:本发明相对于传统的方法产生更高质量的3DHLF,并且可以采用单路光形成3D HLF且不产生相干缺陷。本发明提出的装置采用SLM调控光束可以同时实现像差优化,采用环形光束可以挡掉中心低频部分进一步提高光束质量。
附图说明
图1为本发明的3D HLF产生方法原理示意图。
图2为本发明提出一种新型3D HLF生成装置结构示意图。
图3a和图3b分别为传统方法产生的3D HLF与本发明提出的方法产生的3D HLF图。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1所示,本发明的基本原理如下:
入射光束被分解为两个正交分量,s分量和p分量。采用0-2π涡旋相位掩膜对p分量进行调控,采用另一涡旋相位掩膜对s分量进行调控,用于调控s光的0-2π涡旋相位掩膜在不同半径上0相位起始点不同,同时旋向与调控p分量的涡旋相位掩膜的涡旋方向相反。调控后的光束进行合束,经过同一1/4波片转化为旋向相反的圆偏光,两束光干涉,形成复杂偏振态的柱状矢量偏振光。将该光束聚焦,即可得到所需的3D HLF。
如图2所示,本发明的一种产生3D HLF的装置,沿光路依次包括:起偏器1、1/2波片2、滤波透镜3、滤波小孔4、准直透镜5、第一锥透镜6、第二锥透镜7、DMD(数字微镜器件)8、SLM(空间光调制器)9、第一1/4波片10、反射镜11和第二1/4波片12。光束进入该装置后,经起偏器1转化为线偏光,线偏光经过所述1/2波片2之后光束由滤波透镜3汇聚,在滤波透镜3的焦面上设置滤波小孔4,经过滤波小孔4后的光束被准直透镜5再次准直为平行光。准直之后的平行光依次经过第一锥透镜6和第二锥透镜7,入射到DMD 8。光束被DMD 8反射至SLM 9左半屏幕上,再被反射至所述反射镜11,被反射镜11反射后入射到SLM 9右半屏幕上,光束在SLM 9和反射镜11之间两次经过第一1/4波片10,从SLM 9右半屏幕出射光束经过第二1/4波片12。
其中,1/2波片2用来旋转偏振方向。线偏光可以被分成两个正交的分量s分量和p分量,旋转1/2波片2可以调整两个分量的能量比。理论上使两个分量能量相同。
其中,滤波小孔4用于滤除边缘杂散光,提高光束质量。
其中,第一锥透镜6和第二锥透镜7组成透镜组,用于调制光束能量分布,使其截面能量分布为环形。
其中,DMD 8用于进一步对光束能量整形,使环形光束能量分布更加均匀。
其中,SLM 9左右半屏加载不同的相位图,左侧加载涡旋相位,右侧加载一个起始点随半径变化且旋向相反的涡旋相位。由于SLM器件具有偏振选择性,这里假如只对s光响应。光束入射到SLM 9左半屏时,只有s光被涡旋相位调制。两次经过第一1/4波片10,旋向旋转90度,s光和p光互换。当光束入射到右半屏时,之前为被调制的p光变为s光,被右半屏上的相位掩膜调制。
进一步的,s光和p光被第二1/4波片12转化为旋向相反的圆偏光,并相干叠加,形成一个复杂偏振态分布的光束,该光束被聚焦后形成所需的3D HLF。
以上所述仅为本发明的较佳实施举例,并不用于限制本发明,凡在本发明精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种新型三维中空形光场生成装置,沿光路依次包括:起偏器(1)、1/2半波片(2)、滤波透镜(3)、滤波小孔(4)、准直透镜(5)、第一锥透镜(6)、第二锥透镜(7)、DMD(8)、SLM(9)、第一1/4波片(10)、反射镜(11)和第二1/4波片(12),其特征在于:光束进入该装置后,经起偏器(1)转化为线偏光,线偏光经过所述1/2波片(2)之后光束由滤波透镜(3)汇聚,在滤波透镜(3)的焦面上设置滤波小孔(4),经过滤波小孔(4)后的光束被准直透镜(5)再次准直为平行光;
准直之后的平行光依次经过第一锥透镜(6)和第二锥透镜(7),入射到DMD (8),光束被DMD(8)反射至SLM(9)左半屏幕上,再被反射至所述反射镜(11),被反射镜(11)反射后入射到SLM(9)右半屏幕上,光束在SLM(9)和反射镜(11)之间两次经过第一1/4波片(10),从SLM(9)右半屏幕出射光束经过第二1/4波片(12)。
2.根据权利要求1所述的新型三维中空形光场生成装置,其特征在于:通过旋转1/2波片(2)使s分量和p分量能量相同。
3.根据权利要求1所述的新型三维中空形光场生成装置,其特征在于:所述滤波小孔(4)用于滤除边缘杂散光,提高光束数量。
4.根据权利要求1所述的新型三维中空形光场生成装置,其特征在于:所述第一锥透镜(6)和第二锥透镜(7)组成透镜组,用于调制光束能量分布,使其截面能量分布为环形。
5.根据权利要求1所述的新型三维中空形光场生成装置,其特征在于:所述SLM(9)左右半屏加载不同的相位图,左侧加载涡旋相位,右侧加载一个起始点随半径变化且旋向相反的涡旋相位。
6.根据权利要求1所述的新型三维中空形光场生成装置,其特征在于:s光和p光被第二1/4波片12转化为旋向相反的圆偏光,并相干叠加,形成复杂偏振态分布的光束,该光束被聚焦后形成的3D HLF。
7.一种新型三维中空形光场生成方法,包括如下步骤:
步骤一、激光器发出的激光准直为平行光束;
步骤二、将光束通过4f系统,在4f系统焦面处放置一小孔,进行小孔滤波,得到高质量高斯光束;
步骤三、将得到高斯光束通过一组锥透镜对,所述锥透镜对由两个方向相反的锥透镜组成,用于形成环形光束;
步骤四、使用光阑滤除光束边缘杂散光;
步骤五、将平行光束经过起偏器,转化为线偏光;同时旋转起偏器使通过起偏器的能量最大;线偏光正交分解为两个分量,p偏振光和s偏振光;
步骤六、采用0-2π涡旋相位掩膜对p分量进行相位调制,使其带有涡旋波前相位;
步骤七、采用另一起始点随半径变化且旋向相反的涡旋相位掩膜对s分量进行调制;
步骤八、将光束通过1/4波片后聚焦,得到3D HLF。
CN202110886687.3A 2021-08-03 2021-08-03 一种新型三维中空形光场生成方法与装置 Active CN113703170B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110886687.3A CN113703170B (zh) 2021-08-03 2021-08-03 一种新型三维中空形光场生成方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110886687.3A CN113703170B (zh) 2021-08-03 2021-08-03 一种新型三维中空形光场生成方法与装置

Publications (2)

Publication Number Publication Date
CN113703170A true CN113703170A (zh) 2021-11-26
CN113703170B CN113703170B (zh) 2024-03-19

Family

ID=78651380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110886687.3A Active CN113703170B (zh) 2021-08-03 2021-08-03 一种新型三维中空形光场生成方法与装置

Country Status (1)

Country Link
CN (1) CN113703170B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113431723A (zh) * 2021-07-14 2021-09-24 吉林大学 一种基于飞秒激光点火的光丝烧蚀点火系统及方法
CN114498272A (zh) * 2021-12-16 2022-05-13 深圳大学 一种中红外矢量涡旋光发生装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161897A (ja) * 2001-11-27 2003-06-06 Ricoh Co Ltd 光路偏向素子及び画像表示装置
CN106324850A (zh) * 2016-11-02 2017-01-11 长春理工大学 一种产生矢量涡旋光束的方法和装置
CN107941763A (zh) * 2017-10-27 2018-04-20 浙江大学 一种共轴三维受激辐射损耗超分辨显微成像方法和装置
CN110907415A (zh) * 2019-11-01 2020-03-24 浙江大学 一种基于并行探测的三维亚十纳米定位方法及装置
CN112710641A (zh) * 2020-10-31 2021-04-27 浙江大学 基于电光调制技术的偏振调制荧光差分显微成像方法和装置
CN112880978A (zh) * 2021-01-15 2021-06-01 中国科学院上海光学精密机械研究所 涡旋光轨道角动量数的测量装置及其测量方法
CN113189846A (zh) * 2021-04-12 2021-07-30 之江实验室 一种基于光场调控的双路并行超分辨激光直写装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161897A (ja) * 2001-11-27 2003-06-06 Ricoh Co Ltd 光路偏向素子及び画像表示装置
CN106324850A (zh) * 2016-11-02 2017-01-11 长春理工大学 一种产生矢量涡旋光束的方法和装置
CN107941763A (zh) * 2017-10-27 2018-04-20 浙江大学 一种共轴三维受激辐射损耗超分辨显微成像方法和装置
CN110907415A (zh) * 2019-11-01 2020-03-24 浙江大学 一种基于并行探测的三维亚十纳米定位方法及装置
CN112710641A (zh) * 2020-10-31 2021-04-27 浙江大学 基于电光调制技术的偏振调制荧光差分显微成像方法和装置
CN112880978A (zh) * 2021-01-15 2021-06-01 中国科学院上海光学精密机械研究所 涡旋光轨道角动量数的测量装置及其测量方法
CN113189846A (zh) * 2021-04-12 2021-07-30 之江实验室 一种基于光场调控的双路并行超分辨激光直写装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113431723A (zh) * 2021-07-14 2021-09-24 吉林大学 一种基于飞秒激光点火的光丝烧蚀点火系统及方法
CN114498272A (zh) * 2021-12-16 2022-05-13 深圳大学 一种中红外矢量涡旋光发生装置及方法

Also Published As

Publication number Publication date
CN113703170B (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
US20220016729A1 (en) Femtosecond laser system for processing micro-hole array
CN108780296B (zh) 照明装置
CN112034628B (zh) 一种可特异性调控的高通量超衍射极限焦斑生成装置
CN112859534B (zh) 一种基于边缘光抑制阵列的并行直写装置和方法
CN111562665B (zh) 一种sted超分辨技术中的自适应光学像差校正系统及方法
CN113703170B (zh) 一种新型三维中空形光场生成方法与装置
US11487094B2 (en) Optical system for spatiotemporal shaping the wavefront of the electric field of an input light beam to create three-dimensional illumination
CN111007587A (zh) 一种全介质、宽带偏振与相位调控超表面及远场超分辨聚焦器件
CN112666804B (zh) 基于干涉点阵和dmd的边缘光抑制阵列并行直写装置
CN114460731B (zh) 一种基于dmd的多色结构光照明超分辨显微成像方法和装置
CN102566076B (zh) 多焦点光束产生装置及多焦点共焦扫描显微镜
CN111879234A (zh) 基于偏振调制空心光斑照明的三维亚十纳米定位方法和装置
CN113189846B (zh) 一种基于光场调控的双路并行超分辨激光直写装置
CN101975991B (zh) 基于振幅调制与偏振及相位相结合扩展焦深的方法和装置
CN100504513C (zh) 双位相复合超分辨光瞳滤波方法与装置
CN101246257A (zh) 径向余弦相位型轴向多焦点调控系统
CN112255871A (zh) 光源装置,包括该光源装置的放映设备和3d设备
CN112286015A (zh) 一种基于柱状矢量偏振光束调制的双光子激光打印装置
CN109683339B (zh) 一种用于实现亮核涡旋光束的相位掩模板及光路系统
CN101975992B (zh) 基于位相与偏振的焦深扩展的方法和装置
CN114019765B (zh) 一种基于边缘光抑制的共路相位调制激光直写方法与装置
CN110955054A (zh) 一种基于角向偏振光的纳米光针的产生方法
CN114019763B (zh) 一种基于万束独立可控激光点阵产生的并行直写装置
CN105242404A (zh) 一种基于切趾波带片产生局域空心光束的方法
CN112255816B (zh) 一种基于角度多样性的散斑抑制及焦深拓展装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant