CN113691131B - 一种宽输入范围三端口变换器控制方法 - Google Patents

一种宽输入范围三端口变换器控制方法 Download PDF

Info

Publication number
CN113691131B
CN113691131B CN202110701530.9A CN202110701530A CN113691131B CN 113691131 B CN113691131 B CN 113691131B CN 202110701530 A CN202110701530 A CN 202110701530A CN 113691131 B CN113691131 B CN 113691131B
Authority
CN
China
Prior art keywords
switch tube
photovoltaic cell
inductance
load
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110701530.9A
Other languages
English (en)
Other versions
CN113691131A (zh
Inventor
高圣伟
祝庆同
牛萍娟
于冠恒
王博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN202110701530.9A priority Critical patent/CN113691131B/zh
Publication of CN113691131A publication Critical patent/CN113691131A/zh
Priority to US17/654,159 priority patent/US11569739B2/en
Application granted granted Critical
Publication of CN113691131B publication Critical patent/CN113691131B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/1557Single ended primary inductor converters [SEPIC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/084Three-wire systems; Systems having more than three wires for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J1/086Three-wire systems; Systems having more than three wires for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load or loads and source or sources when the main path fails
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及一种宽输入范围三端口变换器及其控制方法。属于电力电子变换器技术领域。该变换器设有光伏电池PV、蓄电池Bat和电阻负载R三个端口,包括一个升压(Boost)电路和一个可逆升降压(Sepic‑Zeta)电路。一个升压电路用于连接光伏电池PV和负载R;一个可逆升降压电路用于连接光伏电池PV和蓄电池Bat以及蓄电池Bat和负载R。本发明具有体积小、宽输入范围、集成度高、稳定性高和变换效率高等优点。

Description

一种宽输入范围三端口变换器控制方法
技术领域
本发明涉及电力电子能量转换技术领域,具体为一种基于可逆Sepic-Zeta宽输入范围的非隔离三端口直流开关变换器及其控制方法。
技术背景
随着环境问题的突显和化石能源的短缺,以太阳能、风能为代表的新能源发电技术得到了广泛的关注。传统的光伏储能型发电系统通常需要多个两端口变换器组合进行能量的传输,存在变换器数量多、体积大、功率密度低等问题,采用三端口变换器替代原有的多个两端口变换器,可使整个系统结构变得更加简单,从而具有体积小、功率密度高等优点。三端口变换器仅需要一个组合变换器即可实现新能源的发电、能量的存储和负载的连接与控制,可以有效提高系统的效率和功率密度。
但是现有的大多非隔离三端口开关直流变换器对于光伏电池电压和蓄电池电压之间的关系有一定的限定,例如:[1]王辉,陈耀,曾庆典,李圣乾,邾玢鑫.一种多工况高增益多端口DC/DC变换器[J].中国电机工程学报,2019,39(07):2155-2166中所介绍的三端口变换器只能用于光伏电池电压V pv小于蓄电池电压V B的应用场景,[2] Suresh, K. , etal. "Cost-efficient nonisolated three-port DC-DC converter for EV/HEV
applications with energy storage." European transactions onelectrical power engineering 29.10(2019):e12088.1-e12088.20.中所介绍的三端口变换器只能用于光伏电池电压V pv大于蓄电池电压V B的应用场景,应用范围窄,因为光伏电池电压和蓄电池电压之间的关系限定使用范围小,稳定性差且变换效率低,长时间使用会影响变换器的使用。
发明内容
本发明的目的是针对现有技术的不足,提供一种宽输入范围三端口变换器及其控制方法,具有体积小、宽输入范围、集成度高、稳定性高和变换效率高等优点等优点。
本发明的技术方案是:
一种宽输入范围三端口变换器及其控制方法,该变换器设有光伏电池PV、蓄电池Bat、电阻负载R三个端口、一个升压电路Boost和一个可逆升降压电路Sepic-Zeta。一个升压电路Boost用于连接光伏电池PV和负载;一个可逆升降压电路用于连接光伏电池PV和蓄电池Bat以及蓄电池Bat和负载R。具体电路组成是:在升压电路Boost中光伏电池(PV)的正极连接于电容C 1的一端和二极管VD1的阳极,二极管VD2的阳极和电感L 1的一端相连。开关管S4的漏极和二极管VD4的阳极与电感L 1的另一端相连接;二极管VD4的阴极连于输出滤波电容C 4的一端和负载R的一端;在升降压(Sepic-Zeta)电路中,蓄电池Bat的正极连接于电容C 2的一端和电感L 2的一端,开关管S2的漏极和电容C 3的一端与电感L 2的另一端相连,电容C 3 的另一端引出三条支路,一条支路接开关管S1的源极,一条支路接开关管S3的漏极,最后一条支路接电感L 3的一端,开关管S1和二极管串联电路与二极管VD1的阴极和电感L 1的一端相连,开关管S3和VD3的串联电路接于电感L 2的另一端和二极管VD4的阳极。二极管VD4的阴极连于输出滤波电容C 4的一端和负载R的一端;负载R的另一端连于输出电容C 4的另一端、开关管S4的源极、电感L 3的另一端、开关管S2的源极、电容C 2的另一端、蓄电池Bat的负极、电容C 1的另一端和光伏电池PV的负极。
本发明还提供了一种基于可逆Sepic-Zeta宽输入范围的非隔离三端口直流开关变换器及其控制方法,包括以下四种工作模式,具体如下:
(1)光伏电池PV对负载R供电和对蓄电池Bat充电工作模式:
开关管S2和开关管S3不工作,当开关管S1和开关管S4导通,一方面光伏电池PV经过电容C 3、电感L 2为蓄电池Bat充电,另一方面光伏电池PV为电感L 2和电感L 3充电。当开关管S1关断、开关管S4继续导通时,一方面光伏电池PV继续为电感L 1充电,另一方面电感L 3为电容C 3充电、电感L 2通过开关管S2的体二极管续流为负载供电。当开关管S4和开关管S1均关断时,一方面光伏电池PV和电感L 1为负载供电,另一方面电感L 3继续为电容C 3充电、电感L 2通过开关管S2的体二极管续流继续为负载供电。
(2)光伏电池PV和蓄电池Bat共同对负载R供电工作模式:
当光伏电池电压V pv大于蓄电池电压V B时,开关管S1不工作,开关管S2和开关管S3互补导通,当开关管S2导通、开关管S3和开关管S4关断时,一方面光伏电池PV和电感L 1为负载R供电,另一方
面蓄电池Bat为电感L 2充电,电容C 3对电感L 3充电,当开关管S2继续导通、开关管S3继续关断、开关管S4导通时,一方面光伏电池PV为电感L 1充电,另一方面蓄电池Bat继续为电感L 2充电,电容C 3继续为电感L 2充电,当开关管S3导通、开关管S2和开关管S4关断时,一方面光伏电池PV和电感L 1为负载R供电,另一方面蓄电池Bat和电感经过电容C 3为负载供电、电感L 3也为负载R供电。
当光伏电池电压V pv小于蓄电池电压V B且满足开关管S2的占空比小于开关管S4的占空比时,开关管S1不工作,当开关管S4导通、开关管S2和开关管S3关断时,光伏电池PV为电感L 1充电,当开关管S4继续导通、开关管S3继续关断和开关管S2导通时,一方面光伏电池PV继续为电感L 1充电,另一方面蓄电池Bat为电感L 2充电,电容C 3为电感L 3充电,当开关管S2和S4关断、S3开通时,光伏电池PV和电感L 1、蓄电池Bat和电感L 2、电感L 3同时为负载R供电。
(3)蓄电池Bat单独对负载R供电工作模式:
开关管S1和开关管S4不工作,开关管S2和开关管S3互补导通,光伏电池PV输入功率为零,当开关管S2导通、开关管S3关断时,蓄电池Bat对电感L 2充电,电容C 3对电感L 3充电,当开关管S2关断、开关管S3导通,蓄电池Bat和电感L 2L 3中的能量通过开关管S3为负载R供电。
(4)光伏电池PV单独对负载R电供工作模式:
开关管S1、开关管S2和开关管S3不工作,当开关管S4导通时,光伏电池PV对电感L 1充电,当开关管S4关断时,光伏电池PV和
电感L 1同时为负载R供电。
与现有技术相比,本发明的有益效果是:
本发明具有较宽的输入电压范围,光伏电池PV和蓄电池Bat之间由可逆升降压电路Sepic-Zeta相连,既能满足光伏电池电压V pv大于蓄电池电压V B情况下进行工作,又能满足光伏电池电压V pv小于蓄电池电压V B情况下进行工作。本发明还具有体积小、集成度高、稳定性高和变换效率高等优点。
附图说明
图1为本发明非隔离三端口直流开关变换器的拓扑结构图;
图2为本发明光伏电池PV对负载R供电和对蓄电池Bat充电工作过程等效电路图;
图3为本发明光伏电池PV和蓄电池Bat共同对负载R供电工作过程等效电路图;
图4为本发明蓄电池Bat单独对负载R供电工作过程等效电路图;
图5为本发明光伏电池PV单独对负载R供电工作过程等效电路图;
图6为本发明光伏电池PV对负载R供电和对蓄电池Bat充电工作波形图;
图7和图8为本发明光伏电池PV和蓄电池Bat共同对负载R供电工作波形图;
图9为本发明蓄电池Bat单独对负载R供电工作波形图;
图10为本发明光伏电池PV单独对负载R供电工作波形图;
具体实施方式
下面结合附图,对本发明的技术方案进行具体说明。
本发明提出的宽输入范围三端口变换器,如图1所示;该变换器设有光伏电池PV、蓄电池Bat和电阻负载R三个端口,包括一个升压电路Boost和一个可逆升降压电路Sepic-Zeta一个升压电路Boost用于连接光伏电池PV和负载;一个可逆升降压电路用于连接光伏电池PV和蓄电池Bat以及蓄电池Bat和负载R。具体电路组成是:在升压电路Boost中光伏电池(PV)的正极连接于电容C1的一端和二极管VD1的阳极,二极管VD2的阳极和电感L1的一端相连。开关管S4的漏极和二极管VD4的阳极与电感L1的另一端相连接;二极管VD4的阴极连于输出滤波电容C4的一端和负载R的一端;在升降压(Sepic-Zeta)电路中,蓄电池Bat的正极连接于电容C2的一端和电感L2的一端,开关管S2的漏极和电容C3的一端与电感L2的另一端相连,电容C3的另一端引出三条支路,一条支路接开关管S1的源极,一条支路接开关管S3的漏极,最后一条支路接电感L3的一端,开关管S1和二极管串联电路与二极管VD1的阴极和电感L1的一端相连,开关管S3和VD3的串联电路接于电感L2的另一端和二极管VD4的阳极。二极管VD4的阴极连于输出滤波电容C4的一端和负载R的一端;负载R的另一端连于输出电容C4的另一端、开关管S4的源极、电感L3的另一端、开关管S2的源极、电容C2的另一端、蓄电池Bat的负极、电容C1的另一端和光伏电池PV的负极。
本发明还提供了一种一种宽输入范围三端口变换器控制方法,包括以下四种工作模式,具体如下:
(1)光伏电池PV对负载供电和对蓄电池Bat充电工作模式:
开关管S2和开关管S3不工作,当开关管S1和开关管S4导通,一方面光伏电池PV经过电容C3、电感L2为蓄电池Bat充电,另一方面光伏电池PV为电感L2和电感L3充电。当开关管S1关断、开关管
S4继续导通时,一方面光伏电池PV继续为电感L1充电,另一方面电感L3为电容C3充电、电感L2通过开关管S2的体二极管续流为负载供电。当开关管S4和开关管S1均关断时,一方面光伏电池PV和电感L1为负载供电,另一方面电感L3继续为电容C3充电、电感L2通过开关管S2的体二极管续流继续为负载供电。
(2)光伏电池PV和蓄电池Bat共同对负载R供电工作模式:
当光伏电池电压Vpv大于蓄电池电压VB时,开关管S1不工作,开关管S2和开关管S3互补导通,当开关管S2导通、开关管S3和开关管S4关断时,一方面光伏电池PV和电感L1为负载R供电,另一方面蓄电池Bat为电感L2充电,电容C3对电感L3充电,当开关管S2继续导通、开关管S3继续关断、开关管S4导通时,一方面光伏电池PV为电感L1充电,另一方面蓄电池Bat继续为电感L2充电,电容C3继续为电感L2充电,当开关管S3导通、开关管S2和开关管S4关断时,一方面光伏电池PV和电感L1为负载R供电,另一方面蓄电池Bat和电感经过电容C3为负载供电、电感L3也为负载R供电。
当光伏电池电压Vpv小于蓄电池电压VB且满足开关管S2的占空比小于开关管S4的占空比时,开关管S1不工作,当开关管S4导通、开关管S2和开关管S3关断时,光伏电池PV为电感L1充电,当开关管S4继续导通、开关管S3继续关断和开关管S2导通时,一方面光伏电池PV继续为电感L1充电,另一方面蓄电池Bat为电感L2充电,电容C3为电感L3充电,当开关管S2和S4关断、S3开通时,光伏电池PV和电感L1、蓄电池Bat和电感L2、电感L3同时为负载R供电。
(3)蓄电池Bat单独对负载R供电工作模式:
开关管S1和开关管S4不工作,开关管S2和开关管S3互补导通,光伏电池PV输入功率为零,当开关管S2导通、开关管S3关断时,蓄电池Bat对电感L2充电,电容C3对电感L3充电,当开关管S2关断、开关管S3导通,蓄电池Bat和电感L2、L3中的能量通过开关管S3为负载R供电。
(4)光伏电池PV单独对负载R电供工作模式:
开关管S1、开关管S2和开关管S3不工作,当开关管S4导通时,光伏电池PV对电感L1充电,当开关管S4关断时,光伏电池PV和电感L1同时为负载R供电。
本发明变换器即适用于光伏电池电压Vpv大于蓄电池电压VB情况下进行工作,又能满足光伏电池电压Vpv小于蓄电池电压VB情况下进行工作。提高了系统的稳定性和效率,使其可适用于高功率密度场合。
图2为本发明变换器在光伏电池PV对负载R供电和对蓄电池Bat充电工作过程等效电路图,此时开关管S2和开关管S3保持关断,光伏电池同时给负载和蓄电池供电,两个开关管S1和S4占空比作为两个独立的控制变量控制功率传递,开关管S1和S4的占空比分别为D1和D4,图中光伏电池电压为Vpv,蓄电池电压为VB,负载电压为V0,根据电感伏秒平衡特性得光伏电池Vpv和负载电压V0以及光伏电池电压Vpv和蓄电池电压VB关系为:
此模式下工作波形如图6所示。当开关管S1和开关管S4均导通时,电感iL1电流均线性上升,、电感iL2和电感iL3电流反向线性上升,当开关管S1关断,开关管S4继续导通时,电感L1电流继续线性上升,电感L2通过开关管S2的体二极管续流给电池充电,电感L2电流反向线性下降,电感L3通过开关管S2的体二极管续流给电容C3充电,电感L3电流反向线性下降。
图3为本发明变换器在光伏电池PV和蓄电池Bat共同对负载供电工作过程等效电路图,此时开关管S1保持关断。光伏电池PV和蓄电池Bat同时给负载R供电,通过控制开关管S2、开关管S3和开关管S4的占空比完成两个输入源输入功率的分配控制,开关管S2、开关管S3和开关管S4的占空比分别为D2、D3和D4,图中光伏电池电压为Vpv,蓄电池电压为VB,负载电压为V0,根据电感伏秒平衡特性得蓄电池电压VB和负载电压关系为:
此模式下,当光伏电池电压Vpv大于蓄电池电压VB时:工作波形如图7所示。当开关管S2和开关管S4导通,开关管S3关断时,电感L1被光伏电池PV充电,电感L2被蓄电池Bat充电,电感L3被电容C3充电,电感L1、电感L2和电感L3电流均线性上升,当开关管S2和开关管S4均关断,S3导通时,电感L1、电感L2和电感L3电流均线性下降,当开关管S4和S3关断,开关管S2导通时,电感L1电流继续下降,电感L2和电感L3电流线性上升。
当光伏电池电压Vpv小于蓄电池电压VB且满足开关管S2的占空比小于开关管S4的占空比时:工作波形如图8所示。当开关管S2和开关管S3关断,开关管S4导通时,光伏电池对电感L1充电,电感L1电流线性上升,电感L2和电感L3电流为零,当开关管S2和开关管S4同时导通,开关管S3继续关断时,电感L1、电感L2和电感L3电流均线性上升,当开关管S2和开关管S4均关断,开关管S3开通时,电感L1、电感L2和电感L3电流均线性下降。
图4为本发明蓄电池Bat单独对负载R供电工作过程等效电路图。此时开关管S1和开关管S4保持关断,蓄电池Bat单独对负载R供电,通过控制开关管S2和开关管S3的占空比完成蓄电池输入功率的分配控制,开关管S2和开关管S3的占空比分别为D2和D3,图中蓄电池电压为VB,负载电压为V0,根据电感伏秒平衡特性得蓄电池电压和负载电压关系如公式(3)所示。
此模式下工作波形如图9所示。当开关管S2导通,开关管S3关断时,蓄电池Bat对电感L2充电,电容C3对电感L3充电。电感L2和电感L2电流均线性上升,当开关管S2关断,开关管S3导通,蓄电池、电感L2和电感L3共同对负载供电,电感L2和电感L3电流线性下降。
图5为本发明光伏电池PV单独对负载R供电工作过程等效电路图。此时开关管S1、开关管S2和开关管S3保持关断,光伏电池PV单独对负载R供电,通过控制开关管S4的占空比完成光伏电池输入功率的分配控制,开关管S4的占空比为D4,图中光伏电池电压为Vpv,负载电压为V0,根据电感伏秒平衡特性得光伏电池电压和负载电压关系如公式(1)所示。
此模式下工作波形如图10所示。当开关管S4导通时,光伏电池PV对电感L1充电。电感L1电流线性上升,当开关管S4关断时,光伏电池PV和电感L1同时对负载R供电,电感L1电流线性下降。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本发明提到的各个部件为现有领域常见技术,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (2)

1.一种宽输入范围三端口变换器控制方法,其特征在于,宽输入范围三端口变换器由光伏电池PV、蓄电池Bat、电阻负载R、升压电路Boost、可逆升降压电路Sepic-Zeta组成,所述升压电路Boost用于连接光伏电池PV和电阻负载R;所述可逆升降压电路用于连接光伏电池PV和蓄电池Bat以及蓄电池Bat和电阻负载R,具体电路组成是:在升压电路Boost中光伏电池(PV)的正极连接于电容C 1的一端和二极管VD1的阳极,二极管VD2的阳极和电感L 1的一端相连,开关管S4的漏极和二极管VD4的阳极与电感L 1的另一端相连接;二极管VD4的阴极连于输出滤波电容C 4的一端和负载R的一端;在可逆升降压电路Sepic-Zeta中,蓄电池Bat的正极连接于电容C 2的一端和电感L 2的一端,开关管S2的漏极和电容C 3的一端与电感L 2的另一端相连,电容C 3的另一端引出三条支路,一条支路接开关管S1的源极,一条支路接开关管S3的漏极,最后一条支路接电感L 3的一端,开关管S1和二极管VD2串联电路与二极管VD1的阴极和电感L 1的一端相连,开关管S3和VD3的串联电路接于电感L 1的另一端和二极管VD4的阳极;负载R的另一端连于输出滤波电容C 4的另一端、开关管S4的源极、电感L 3的另一端、开关管S2的源极、电容C 2的另一端、蓄电池Bat的负极、电容C 1的另一端和光伏电池PV的负极;
其具体使用方法包括以下四种工作模式;
(1)光伏电池PV对负载R供电和对蓄电池Bat充电工作模式:
开关管S2和开关管S3不工作,当开关管S1和开关管S4导通,一方面光伏电池PV经过电容C 3、电感L 2为蓄电池Bat充电,另一方面光伏电池PV为电感L 2和电感L 3充电,当开关管S1关断、开关管S4继续导通时,一方面光伏电池PV继续为电感L 1充电,另一方面电感L 3为电容C 3充电、电感L 2通过开关管S2的体二极管续流为负载供电,当开关管S4和开关管S1均关断时,一方面光伏电池PV和电感L 1为负载R供电,另一方面电感L 3继续为电容C 3充电、电感L 2通过开关管S2的体二极管续流继续为负载R供电;
(2)光伏电池PV和蓄电池Bat共同对电阻负载R供电工作模式:
当光伏电池电压V pv大于蓄电池电压V B时,开关管S1不工作,开关管S2和开关管S3互补导通,当开关管S2导通、开关管S3和开关管S4关断时,一方面光伏电池PV和电感L 1为负载R供电,另一方面蓄电池Bat为电感L 2充电,电容C 3对电感L 3充电,当开关管S2继续导通、开关管S3继续关断、开关管S4导通时,一方面光伏电池PV为电感L 1充电,另一方面蓄电池Bat继续为电感L 2充电,电容C 3继续为电感L 2充电,当开关管S3导通、开关管S2和开关管S4关断时,一方面光伏电池PV和电感L 1为负载供电,另一方面蓄电池Bat和电感L 2经过电容C 3为负载R供电、电感L 3也为负载R供电;
当光伏电池电压V pv小于蓄电池电压V B且满足开关管S2的占空比小于开关管S4的占空比时,开关管S1不工作,当开关管S4导通、开关管S2和开关管S3关断时,光伏电池PV为感L 1充电,当开关管S4继续导通、开关管S3继续关断和开关管S2导通时,一方面光伏电池PV继续为电感L 1充电,另一方面蓄电池Bat为电感L 2充电,电容C 3为电感L 3充电,当开关管S2和S4关断、S3开通时,光伏电池PV和电感L 1、蓄电池Bat和电感L 2、电感L 3同时为负载供电;
(3)蓄电池Bat单独对电阻负载R供电工作模式:
开关管S1和开关管S4不工作,开关管S2和开关管S3互补导通,光伏电池PV输入功率为零,当开关管S2导通、开关管S3关断时,蓄电池Bat对电感L 2充电,电容C 3对电感L 3充电,当开关管S2关断、开关管S3导通,蓄电池Bat和电感L 2L 3中的能量通过开关管S3为负载R供电;
(4)光伏电池PV单独对负载R电供工作模式:
开关管S1、开关管S2和开关管S3不工作,当开关管S4导通时,光伏电池PV对电感L 1充电,当开关管S4关断时,光伏电池PV和电感L 1同时为电阻负载R供电。
2.按照权利要求1所述的一种宽输入范围三端口变换器控制方法,其特征在于所述电阻负载R设有三个端口。
CN202110701530.9A 2021-06-23 2021-06-23 一种宽输入范围三端口变换器控制方法 Active CN113691131B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110701530.9A CN113691131B (zh) 2021-06-23 2021-06-23 一种宽输入范围三端口变换器控制方法
US17/654,159 US11569739B2 (en) 2021-06-23 2022-03-09 Three-port converter with wide input range and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110701530.9A CN113691131B (zh) 2021-06-23 2021-06-23 一种宽输入范围三端口变换器控制方法

Publications (2)

Publication Number Publication Date
CN113691131A CN113691131A (zh) 2021-11-23
CN113691131B true CN113691131B (zh) 2024-03-26

Family

ID=78576532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110701530.9A Active CN113691131B (zh) 2021-06-23 2021-06-23 一种宽输入范围三端口变换器控制方法

Country Status (2)

Country Link
US (1) US11569739B2 (zh)
CN (1) CN113691131B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013163776A1 (zh) * 2012-05-02 2013-11-07 上海康威特吉能源技术有限公司 一种宽输入电压范围的双输入升降压变换器
CN106026646A (zh) * 2016-07-23 2016-10-12 河北工业大学 一种非隔离三端口dc-dc变换器及其使用方法
CN110138217A (zh) * 2019-06-19 2019-08-16 河北科技大学 一种三端口dc-dc变换器及其控制方法
CN215934729U (zh) * 2021-06-23 2022-03-01 天津工业大学 一种新型宽输入范围三端口变换器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7102251B2 (en) * 2003-08-22 2006-09-05 Distributed Power, Inc. Bi-directional multi-port inverter with high frequency link transformer
JP5719714B2 (ja) * 2011-07-22 2015-05-20 京セラ株式会社 起動制御方法、系統連系装置、及び制御装置
JP6158562B2 (ja) * 2013-04-01 2017-07-05 京セラ株式会社 電力変換装置、制御システム、及び制御方法
US9761913B2 (en) * 2015-08-26 2017-09-12 Solarcity Corporation High efficiency high voltage battery pack for onsite power generation systems
US10183583B2 (en) * 2016-08-03 2019-01-22 Solarcity Corporation Energy generation and storage system with electric vehicle charging capability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013163776A1 (zh) * 2012-05-02 2013-11-07 上海康威特吉能源技术有限公司 一种宽输入电压范围的双输入升降压变换器
CN106026646A (zh) * 2016-07-23 2016-10-12 河北工业大学 一种非隔离三端口dc-dc变换器及其使用方法
CN110138217A (zh) * 2019-06-19 2019-08-16 河北科技大学 一种三端口dc-dc变换器及其控制方法
CN215934729U (zh) * 2021-06-23 2022-03-01 天津工业大学 一种新型宽输入范围三端口变换器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
光伏发电双管Buck-Boost电路两模式控制方法的仿真与实验研究;申玮霓;王玉生;张利;白连平;;电气技术;20160715(第07期);全文 *
大功率LED路灯电源系统中PFC模块的设计与实现;金飞跃;付贤松;牛萍娟;李静仪;;天津工业大学学报;20120625(第03期);全文 *
新型光伏三端口逆变器;高志强;纪延超;谭光慧;王建赜;;电工技术学报;20111231(第S1期);全文 *

Also Published As

Publication number Publication date
CN113691131A (zh) 2021-11-23
US11569739B2 (en) 2023-01-31
US20220416659A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
CN110912245B (zh) 一种三端口集成式光伏储能变换器
CN110212842B (zh) 一种用于光伏储能系统的三端口集成式变换器及控制方法
CN111371315B (zh) 一种零输入电流纹波高增益dc-dc变换器
CN113098271B (zh) 基于开关电容的高增益三端口dc-dc变换器
CN107453603B (zh) 一种双输入Sepic变换器
CN110138217B (zh) 一种三端口dc-dc变换器及其控制方法
CN113965081B (zh) 一种基于Cuk的多工况高增益三端口DC-DC变换器
CN112803768B (zh) 一种三端口高增益直流变换器
CN112968603B (zh) 一种宽变比无变压器buck-boost变换器
CN113179015A (zh) 一种基于z升压结构的高增益dc-dc变换器
CN215934729U (zh) 一种新型宽输入范围三端口变换器
CN209767386U (zh) 具有双极性输出的四端口变换器
CN110086340B (zh) 一种耦合电感双向大变比dc-dc变换器
CN209200934U (zh) 一种融合耦合电感技术的直流三电平升压变换器
CN216625586U (zh) 一种宽范围输入非隔离三端口dc-dc变换器
CN108736707B (zh) 一种具有开关电感结构的boost变换器
CN113691131B (zh) 一种宽输入范围三端口变换器控制方法
CN112865536B (zh) 一种高电压增益非隔离三端口变换器
CN114499183A (zh) 一种宽范围输入非隔离三端口dc-dc变换器
CN111010031B (zh) 一种改进型高增益Boost-Sepic变换器
CN109905025B (zh) 一种高增益dc-dc开关变换器
CN109921638B (zh) 一种双开关高升压比直流变换器
CN114285279A (zh) 一种高增益升压变换器
CN215498733U (zh) 一种改进三倍压电路及开关电容耦合电感dc-dc变换器
CN113890359B (zh) 一种三端口高可靠性的cuk DC-DC变换器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant