CN113690374B - 一种基于可控离子再分布的钙钛矿薄膜同质结微纳pn结加工方法 - Google Patents

一种基于可控离子再分布的钙钛矿薄膜同质结微纳pn结加工方法 Download PDF

Info

Publication number
CN113690374B
CN113690374B CN202110951853.3A CN202110951853A CN113690374B CN 113690374 B CN113690374 B CN 113690374B CN 202110951853 A CN202110951853 A CN 202110951853A CN 113690374 B CN113690374 B CN 113690374B
Authority
CN
China
Prior art keywords
perovskite
micro
film
nano
homojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110951853.3A
Other languages
English (en)
Other versions
CN113690374A (zh
Inventor
陈小青
程健功
张逍博
严辉
张永哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110951853.3A priority Critical patent/CN113690374B/zh
Publication of CN113690374A publication Critical patent/CN113690374A/zh
Application granted granted Critical
Publication of CN113690374B publication Critical patent/CN113690374B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种基于可控离子再分布的钙钛矿薄膜同质结微纳PN结加工方法,涉及光电器件的微纳加工领域。其步骤是:1)制备均匀的钙钛矿薄膜并放置两个电极;2)通过对钙钛矿薄膜的高电压偏置,形成薄膜局部内可移动离子(如碘离子、MA离子等)的特定浓度分布;3)通过第1步中的电极向薄膜施加电压,驱动第2步中游离离子空间重排,改变钙钛矿薄膜在不同位置的成分和费米能级,使其符合微纳PN结的要求;4)通过对薄膜进行特定处理抑制薄膜局部内可移动离子的迁移,从而实现在低电压下稳定工作的钙钛矿薄膜同质结微纳PN结。

Description

一种基于可控离子再分布的钙钛矿薄膜同质结微纳PN结加工 方法
技术领域:
本发明涉及光电器件的微纳加工领域,具体来说是一种基于可控本征缺陷再分布的钙钛矿同质结PN结全干法微纳加工技术
背景技术:
随着我国工业化、信息化的快速发展,对各类光电器件,特别是微纳光电器件的需求日益增长。传统的微纳光电器件的基础材料是以硅为代表的单质原子晶体。然而这类单质原子晶体存在一些难以克服的问题,例如硅本身属于间接带隙材料,非晶硅迁移率较低,硅的带隙不可调等等。这些问题限制了其在光电器件中的应用。基于上述问题,许多新型半导体材料逐渐开始在微纳光电领域崭露头角。近来,以金属卤化物钙钛矿为代表的钙钛矿半导体被广泛的应用于光伏、发光及光电探测等多种PN结中。其得到广泛应用的原因是其本身优异的物理化学性质,包括禁带宽度可调(1.2-2.3eV)、较长的载流子寿命(>2μs)和扩散长度(>1μm)、优异的光学吸收系数(105cm-1)以及成本低廉、合成方式简单等。但是由于钙钛矿本身可溶解,导致无法与经典的基于光刻胶(其典型溶剂是γ-丁内酯,可溶解钙钛矿)的微纳加工工艺兼容,限制了其在微纳PN结的方面的应用。目前的钙钛矿微纳PN结,通常是在较大尺寸的钙钛矿上附加其它可进行微纳加工的材料而成的。这样形成的微纳PN结工艺较为复杂,导致器件性能难以控制。此外,钙钛矿和上述附加材料接触处所形成的异质结界面处的界面缺陷也会限制器件性能。
发明内容:
针对目前技术中存在的问题,本发明的目的便是绕过光刻胶工艺,通过调控钙钛矿自身内可移动离子的空间分布实现钙钛矿薄膜同质结微纳光电器件,其显著优点是没有使用附加材料形成的异质结,也没有在钙钛矿薄膜上使用光刻胶。
本发明一种基于可控离子再分布的钙钛矿薄膜同质结微纳PN结加工方法,其特征在于,包括以下步骤:
(1)制备均匀的钙钛矿薄膜并在钙钛矿薄膜中制备两个平行的嵌入电极,两个电极平行镶嵌到钙钛矿薄膜中;
(2)通过高偏置电压,调控钙钛矿薄膜局部内可移动离子(如碘离子、MA离子等)的浓度;通过步骤(1)中的电极向钙钛矿薄膜施加偏置电压,驱动两电极之间钙钛矿薄膜中游离离子空间重排,从而改变钙钛矿薄膜在不同位置的成分和费米能级,使其符合同质结微纳PN结的要求;
(3)通过在步骤(2)处理后的钙钛矿薄膜上依次旋涂PCBM与PMMA进行钝化从而抑制可移动离子即游离离子的回迁,旋涂所需的溶液是经过室温24小时搅拌处理的PCBM的氯苯溶液(0.5%质量比)和经室温1小时搅拌处理的PCBM的氯苯溶液(0.5%质量比),钝化后可以实现低电压区间(-10伏至+10伏)稳定工作的钙钛矿同质结微纳PN结。
本发明步骤(2)施加偏置电压和处理的时间,可根据需要进行调整,最终使得两电极之间钙钛矿薄膜中游离离子迁移从而空间重排,即阴离子向阳极迁移,阳离子向阴极迁移从而达到符合同质结微纳PN结的要求。
所述的偏置电压为直流电压。
附图说明:
图1为在衬底上制备电极的方法示意图
图2为在衬底上及电极上制备均匀钙钛矿薄膜的方法示意图
图3为通过高偏置电压促使钙钛矿中游离离子空间重排的方法示意图
图4为通过旋涂PCBM和PMMA抑制游离离子迁移的方法示意图
图5对应的伏安特性
图6为施加偏压后伏安特性及其沟道内发光强度分布。
具体实施方式:
为了方便理解,下面结合附图,介绍一个具体案例:制备基于甲胺铅碘钙钛矿薄膜的同质结微纳二极管器件,但本发明并不限于以下实施例。
实施例1
(1)如图1所示,在硅/二氧化硅衬底上制备两个电极,电极参考距离为20微米。方法是在衬底上旋涂光刻胶(反胶),通过掩膜版紫外曝光曝光1.2s泛曝光22s,然后显影,之后利用电子束蒸镀方法蒸镀金电极,蒸发速率为2A/s,电流值为12A,最后通过lift off工艺洗掉光刻胶在衬底上形成了沟道宽20um的两个电极,如图1所示。
(2)如图2所示,在步骤(1)的衬底基础上制备均匀的甲胺铅碘钙钛矿薄膜,旋涂的方法是:首先配制甲胺铅碘前驱体溶液(甲胺铅碘的二甲基甲酰胺溶液,40重量比);再将其旋涂于硅/二氧化硅衬底上,旋速为4000rpm,持续30秒;最后将旋涂好的薄膜置于100摄氏度热板上退火15分钟。
(3)如图3所示,在两个电极之间施加-40伏电压;施加电压时间持续400秒,使得带正电的甲胺阳离子和带负电的碘离子等游离本征缺陷分别向两侧聚集。通过游离离子的空间重排,改变钙钛矿薄膜在不同位置的成分和费米能级,在加正电压的电极一侧形成P型钙钛矿,在加负电压的电极一侧形成N型钙钛矿,从而满足同质结微纳二极管的要求;
(4)如图4所示,在上一步外加偏置电压之后的1分钟之内,通过在钙钛矿表面分别旋涂PMMA与PCBM,旋涂速度为3000rpm,持续时间30秒。每次旋涂后,立即将制备好的样品置于热板上退火(100度10分钟),抑制本征缺陷的移动,从而实现稳定工作的钙钛矿同质结微纳PN结。钝化完成后器件可以在低电压下(-10V至+10V)进行稳定工作。
器件在初始状态(未施加偏压)时测量其伏安特性为线性关系,如图5中①所示。在器件电极上施加-40伏的偏置电压且保持400秒的时间,随着所施加偏压时间的增加,钙钛矿薄膜内的阳离子(一般为MA+离子,碘空位)向负极移动越多,阴离子(一般为碘离子)向正极移动的越多,一段时间后钙钛矿薄膜内形成横向同质结二极管,正向电流导通,反向电流截止,出现整流特性,如图5中②所示。未进行钝化的器件在撤去偏压后10分钟左右失去二极管特性,不再有整流特性,与初始状态类似。而通过PCBM和PMMA进行钝化过的器件,在撤去偏压10分钟后依然可以表现出整流特性,仍为横向同质结二极管,如图5中③所示。该钙钛矿横向同质结微纳二极管器件在-10伏至+10伏电压内可正常工作。
此外还对施加偏压后形成同质结二极管的器件(即有整流特性)进行PL(光致发光)测试,测得电极间沟道处的荧光强度分布,如图6所示。图6中①为该器件伏安特性曲线,表明该器件有整流特性,即器件为同质结二极管。图6中②为该同质结二极管对应的沟道内光致发光强度分布图。通过PL测试,②中可以观察到在电极间不同沟道处的发光强度不同,沟道两侧发光强度较低,沟道中间发光强度较高。上述现象原因是沟道两侧的阴离子和阳离子定向移动后,在沟道两侧出现大量缺陷形成非辐射复合中心(一般为碘空位和碘间隙离子),导致两侧发光强度低,而沟道中间处会发生迁移的碘离子与碘空位复合,所以缺陷相对较少,发光强度较高。

Claims (4)

1.一种基于可控离子再分布的钙钛矿薄膜同质结微纳PN结加工方法,其特征在于,包括以下步骤:
(1)制备均匀的钙钛矿薄膜并在钙钛矿薄膜中制备两个平行的嵌入电极,两个电极平行镶嵌到钙钛矿薄膜中;
(2)通过高偏置电压,调控钙钛矿薄膜局部内可移动离子的浓度;通过步骤(1)中的电极向钙钛矿薄膜施加偏置电压,驱动两电极之间钙钛矿薄膜中游离离子空间重排,从而改变钙钛矿薄膜在不同位置的成分和费米能级,使其符合同质结微纳PN结的要求;
(3)通过在步骤(2)处理后的钙钛矿薄膜上依次旋涂PCBM与PMMA进行钝化从而抑制可移动离子即游离离子的回迁,旋涂所需的溶液是PCBM的氯苯溶液和PMMA的氯苯溶液,钝化后可以实现低电压区间稳定工作的钙钛矿同质结微纳PN结;
步骤(2)施加偏置电压和处理的时间可根据需要进行调整,最终使得两电极之间钙钛矿薄膜中游离离子迁移从而空间重排,即阴离子向阳极迁移,阳离子向阴极迁移从而达到符合同质结微纳PN结的要求,
低电压区间指的是-10伏至+10伏。
2.按照权利要求1所述的一种基于可控离子再分布的钙钛矿薄膜同质结微纳PN结加工方法,其特征在于,所述的偏置电压为直流电压。
3.按照权利要求1所述的一种基于可控离子再分布的钙钛矿薄膜同质结微纳PN结加工方法,其特征在于,PCBM的氯苯溶液的质量百分比浓度为0.5%,PMMA的氯苯溶液的质量百分比浓度为0.5%。
4.按照权利要求1-3任一项所述的方法制备得到的钙钛矿薄膜同质结微纳PN结。
CN202110951853.3A 2021-08-18 2021-08-18 一种基于可控离子再分布的钙钛矿薄膜同质结微纳pn结加工方法 Active CN113690374B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110951853.3A CN113690374B (zh) 2021-08-18 2021-08-18 一种基于可控离子再分布的钙钛矿薄膜同质结微纳pn结加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110951853.3A CN113690374B (zh) 2021-08-18 2021-08-18 一种基于可控离子再分布的钙钛矿薄膜同质结微纳pn结加工方法

Publications (2)

Publication Number Publication Date
CN113690374A CN113690374A (zh) 2021-11-23
CN113690374B true CN113690374B (zh) 2023-12-05

Family

ID=78580555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110951853.3A Active CN113690374B (zh) 2021-08-18 2021-08-18 一种基于可控离子再分布的钙钛矿薄膜同质结微纳pn结加工方法

Country Status (1)

Country Link
CN (1) CN113690374B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713131A (zh) * 2018-12-30 2019-05-03 华北电力大学 一种基于n-i-p结构的有机无机杂化钙钛矿同质结太阳电池
KR20190109016A (ko) * 2018-03-16 2019-09-25 서울대학교산학협력단 자기조립 고분자-페로브스카이트 발광층, 이의 제조방법 및 이를 포함하는 발광소자
CN111244282A (zh) * 2020-01-16 2020-06-05 合肥工业大学 基于甲胺铅溴单晶的同质结光电二极管和三极管及其制备方法
CN111430480A (zh) * 2020-04-17 2020-07-17 南方科技大学 一种同质结钙钛矿光电探测器及其制备方法和用途
CN112397650A (zh) * 2020-11-16 2021-02-23 中国科学院半导体研究所 钙钛矿太阳电池pn结及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3357101A4 (en) * 2015-10-02 2019-06-12 Alliance for Sustainable Energy, LLC HETEROJUNCTION PEROVSKITE PHOTOVOLTAIC DEVICES AND METHODS OF MAKING THE SAME
US11572635B2 (en) * 2017-11-20 2023-02-07 The Regents Of The University Of California Controlled homo-epitaxial growth of hybrid perovskites

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190109016A (ko) * 2018-03-16 2019-09-25 서울대학교산학협력단 자기조립 고분자-페로브스카이트 발광층, 이의 제조방법 및 이를 포함하는 발광소자
CN109713131A (zh) * 2018-12-30 2019-05-03 华北电力大学 一种基于n-i-p结构的有机无机杂化钙钛矿同质结太阳电池
CN111244282A (zh) * 2020-01-16 2020-06-05 合肥工业大学 基于甲胺铅溴单晶的同质结光电二极管和三极管及其制备方法
CN111430480A (zh) * 2020-04-17 2020-07-17 南方科技大学 一种同质结钙钛矿光电探测器及其制备方法和用途
CN112397650A (zh) * 2020-11-16 2021-02-23 中国科学院半导体研究所 钙钛矿太阳电池pn结及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Direct Observation and Quantitative Analysis of Mobile Frenkel Defects in Metal Halide Perovskites Using Scanning Kelvin Probe Microscopy;Susanne T. Birkhold, et al.;J. Phys. Chem. C;第122卷;pp 12633−12639 & Supporting Materials *

Also Published As

Publication number Publication date
CN113690374A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
Reine et al. The impact of characterization techniques on HgCdTe infrared detector technology
Arias et al. Molecular‐beam epitaxy growth and in situ arsenic doping of p‐on‐n HgCdTe heterojunctions
Narasinha et al. Optimized aluminum back surface field techniques for silicon solar cells
Haydl et al. Ytterbium‐doped InP light‐emitting diode at 1.0 μm
US3703671A (en) Electroluminescent device
CN110164997B (zh) 一种基于高空穴迁移率GaSb纳米线的高性能红外探测器及其制备方法
CN113690374B (zh) 一种基于可控离子再分布的钙钛矿薄膜同质结微纳pn结加工方法
McNally Ion implantation in InAs and InSb
Vavilov Physics and applications of wide bandgap semiconductors
JP3589380B2 (ja) 半導体薄膜の製造方法および薄膜太陽電池の製造方法
US4806497A (en) Method for producing large-area power semiconductor components
Duan et al. ZnO homojunction ultraviolet photodetector based on p-type dual-doped film and n-type nanorods
Sturm et al. Minority‐carrier properties of thin epitaxial silicon films fabricated by limited reaction processing
Finkman et al. Surface recombination velocity of anodic sulfide and ZnS coated p‐HgCdTe
Wang et al. Effects of 1 MeV Electron Irradiation on β-Ga2O3 Photodetectors
Ma et al. Fabrication of novel pyramid-textured and nanostructured Cu2O/Si heterojunctions
KR950001170B1 (ko) 스위칭 반도체장치의 제조방법
Chen et al. Evaluation of low dark current InSb photovoltaic detectors
Merilainen et al. Deep centers in gold‐doped HgCdTe
DE19503093C2 (de) Optoelektronischer Diamantsensor für Magnetfelder
Irvine et al. Demonstration of gallium-defect annealing at 280 K in irradiated GaAs and Al x Ga 1− x As
CN115985995B (zh) 一种二维钙钛矿掺杂过渡金属硫族化合物同质结光电探测器及其制备方法
Chen et al. Study on optimizing the performance of infrared detectors using material chip technology
US20230314636A1 (en) Radiation detectors having perovskite films
Mamasadikovna et al. Research of ahv-effect in films and crystals with the effect of the double luxurification

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant