CN113689464A - 一种基于孪生网络的自适应多层响应融合的目标跟踪方法 - Google Patents

一种基于孪生网络的自适应多层响应融合的目标跟踪方法 Download PDF

Info

Publication number
CN113689464A
CN113689464A CN202110800081.3A CN202110800081A CN113689464A CN 113689464 A CN113689464 A CN 113689464A CN 202110800081 A CN202110800081 A CN 202110800081A CN 113689464 A CN113689464 A CN 113689464A
Authority
CN
China
Prior art keywords
target
neural network
twin neural
branch
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110800081.3A
Other languages
English (en)
Inventor
王鑫
毛昭勇
沈钧戈
王亦晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202110800081.3A priority Critical patent/CN113689464A/zh
Publication of CN113689464A publication Critical patent/CN113689464A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)

Abstract

本发明提供了一种基于孪生网络的自适应多层响应融合的目标跟踪方法,构建一个具有残差通道注意力裁剪模块的深度孪生神经网络,将目标图像和搜索图像输入到深度孪生神经网络对应的目标模板分支和搜索区域分支,目标图像和搜索图像经过深度孪生神经网络分别生成对应的特征图,在搜索区域分支对应的特征上做卷积操作,得到得分图,对得分图做融合相加操作,最终得到融合得分图,通过调节深度孪生神经网络的超参数,得到优化后的深度孪生神经网络,通过深度孪生神经网络给出检测结果,以实现目标自动跟踪。本发明能够很好地自适应不同的目标对象,能够跟踪视频序列中用户任意指定的目标,进一步提高了目标跟踪的可靠性。

Description

一种基于孪生网络的自适应多层响应融合的目标跟踪方法
技术领域
本发明涉及深度学习、数字图像处理以及计算机视觉的交叉领域,涉及到一种基于全卷积孪生网络的目标跟踪方法。
背景技术
随着社会的发展,人们越来越追求更加智能的生活。视频监控已被应用于人们生活当中很多领域,包括刑侦罪犯监控、交通车辆监控、小区安防监控等,然而目前对于这些监控视频的目标跟踪工作,很多都是人为进行。由于人工作业的不确定因素,可能导致重要信息遗漏,因而提出一种能够有效对监控视频中的目标进行自动跟踪的方法很有必要。
视频目标跟踪是指通过电子设备获取视频数据之后,选取视频中的一个或多个物体作为目标,给出目标的初始状态的位置和尺度信息,然后在后续的视频帧序列中利用目标跟踪算法完成对目标的状态信息的预测,从而跟踪目标运动的过程。视频目标跟踪是高阶视频任务的基础,在视频分析、视频理解、视频交互中有着重要的作用,因此在智能视频监控、智能交通、人机交互、自动驾驶以及导弹制导等工业、军事、民用领域中有着广泛的应用前景。
尽管基于视频的目标跟踪技术有着广泛的应用需求,使人们能够从大量的任务中解放出来,并为人们提供分析和决策的重要依据。但是在现实的场景之中存在着包括光照变化、物体旋转、姿态变化、尺度缩放、目标遮挡、成像模糊以及背景中可能存在高度相似的物体等诸多干扰因素使得基于视频的目标跟踪成为一个较为困难的问题,现有目标跟踪技术如连续卷积跟踪算子、高效卷积算子这些算法都采用的是深度特征和相关滤波的结合,来提高目标跟踪算法的鲁棒性和抗干扰能力,但是没有利用深度学习端到端的学习能力以及强大的拟合能力和自适应能力。
发明内容
为了克服现有技术的不足,本发明提供一种基于孪生网络的自适应多层响应融合的目标跟踪方法。因此,本发明设计一种能满足实际应用需求的视频目标跟踪方法及,以实现监控视频中目标的鲁棒跟踪。针对现如今传统的目标跟踪方法存在不足的问题,提出一种基于孪生网络的自适应多层响应融合的目标跟踪方法。为解决背景相似干扰问题,本发明提出新的多尺度信息融合表征以达到对目标的正确跟踪;为解决由于运动目标发生形变或外观模型变化,本发明提出自适应注意力模块以应对跟踪对象的形变问题,以提高目标跟踪准确性,提高在复杂背景下的目标跟踪的鲁棒性和泛化能力。
本发明解决其技术问题所采用的技术方案的主要步骤如下:
步骤1:构建一个具有残差通道注意力裁剪模块的深度孪生神经网络,使用该深度孪生神经网络进行特征提取;孪生神经网络由两支平行的网络组成,分别为目标模板分支和搜索区域分支,目标模板分支用于提取目标的特征图,搜索区域分支用于提取搜索区域不同特征空间的特征;
步骤2:将目标图像和搜索图像输入到深度孪生神经网络对应的目标模板分支和搜索区域分支,目标图像和搜索图像经过深度孪生神经网络分别生成对应的特征图;
步骤3:获取来自目标模板分支和搜索区域分支的不同特征空间的三个特征,即低层特征、中层特征和高层特征,将目标模板分支和搜索区域分支的三个特征作为卷积核,在搜索区域分支对应的特征上做卷积操作,得到3个得分图,即为搜索区域中搜索图像各个位置与目标模板分支中目标图像的相似度;
步骤4:对得到的3个得分图做融合相加操作,最终得到计算自多层特征的更为可靠的融合得分图;融合得分图中响应最大的位置即为在这一帧中目标的位置,之后进行裁剪操作,对输出的特征图进行裁剪,裁剪操作去除由零填充操作影响的特征图边界上最外面的特征;
步骤5:通过调节深度孪生神经网络的超参数,以提高网络的学习性能和效果,得到优化后的深度孪生神经网络;
步骤6:通过步骤5的训练操作后,将待跟踪的搜索图像经过步骤1至步骤4之后,通过深度孪生神经网络给出检测结果,以实现目标自动跟踪。
所述步骤1中,深度孪生神经网络主干网络中包含残差通道注意力裁剪模块,残差通道注意力裁剪模块由3个卷积层和1个通道注意力模块的堆叠,且带有一个卷积层的短跳连接组成残差结构,其中,短跳连接上的是1x1的卷积;3个卷积层依次是1x1卷积、3x3卷积和1x1卷积,通道注意力模块在3x3卷积层之后,其中3x3的卷积层包括了一个大小为1、填充值为0的填充,通过裁剪操作去除了由零填充操作影响的特征图边界上最外面的特征;残差通道注意力裁剪模块为一个自适应结构,自适应结构通过一个最大池化层,减小输出特征的尺寸,保证信息的完备性。该自适应结构能够在减少噪声影响的同时,增强跟踪器的判别能力和自适应能力。
所述步骤5中,超参数包括学习率、批次大小、卷积核尺寸和激活函数。
本发明的有益效果在于本发明提供了一种基于孪生网络的自适应多层响应融合的目标跟踪方法,该方法通过特征自适应模块充分利用不同目标对象的信息,能够很好地自适应不同的目标对象,能够跟踪视频序列中用户任意指定的目标。除此之外,本发明利用多层响应融合的策略,进一步提高了目标跟踪的可靠性。本发明可以在公共安全检测系统中使用,利用提供的自适应目标跟踪方法不断跟踪可疑车辆、可疑行人等可疑目标,并在不断跟踪的过程中采用目标行为识别技术分析可以目标行为,使得监控系统更加智能,为社会公共安全提供了很大的保障,减少由于意外事件导致的经济损失。
附图说明
图1为本发明跟踪过程示意图;
图2为本发明残差通道注意力裁剪模块;
图3为本发明通道注意力结构;
图4为本发明多层响应融合定位系统结构。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
针对复杂背景下基于视频的目标跟踪存在的问题,基于孪生网络的自适应多层响应融合的目标跟踪方法。
本发明实施例提供一种多层种响应融合的目标自适应跟踪方法,利用交叉相关的思想,使用卷积操作来代替滑动窗口检测,并提出一种特征自适应模块来实现视频中不同目标的自适应跟踪。通过融合多种响应,最终得到一个更为鲁棒的响应图对目标进行准确定位。
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面结合附图进行详细描述。
本发明在目标跟踪自适应系统中提出了一种自适应结构,该自适应结构将残差思想和通道注意力结合到一起,即残差通道注意力裁剪模块,是整个网络的关键组成部分,能够给网络带来很大的优化以及有效的表征。残差通道注意力裁剪模块的具体组成如图2所示,其首先是由3个卷积层和一个通道注意力模块的堆叠以及带有一个卷积层的短跳连接组成一个残差结构,在这个短跳连接上用的是1x1的卷积。3个卷积层分别是1x1卷积,3x3卷积和1x1卷积,其中1x1的卷积负责通道维度的缩小和恢复,使得3x3卷积层作为一个瓶颈层有着很小的输入和输出维度,减少计算量。这个3x3的卷积层包括了一个大小为1的填充值为0的填充,来保证在相加之前输出尺寸的兼容。但是在传统的孪生网络的跟踪框架中,当目标移动到图像的边缘时,这个零填充操作会引入位置偏差,导致目标跟踪器的性能没有得到提高反而有所下降。因此在相加之后加入了一个裁剪操作,这个裁剪操作去除了由零填充操作影响的特征图边界上最外面的特征。这个简单的操作能够去除零填充操作引入的位置偏差。该自适应结构的最后是一个最大池化层,来减小输出特征的尺寸,保证信息的完备性。该自适应结构能够在减少噪声影响的同时,增强跟踪器的判别能力和自适应能力。
其中自适应结构中的通道注意力如图3所示,其是由全局平均池化、权重下采样层、权重上采样层以及sigmoid函数组成。
其中输入是一个H×W×C的特征X=[x1,…,xn,…,xc],其含有c个特征通道,大小为H×W。先进行一个空间的全局平均池化(GAP)得到一个1×1×C的通道描述。接着,再经过一个下采样层(WD)和一个上采样层(WU)以及Sigmoid函数(F)得到每一个通道的权重系数,将权重系数和原来的特征相乘得到缩放后的新特征,整个过程实际上就是对不同通道的特征重新进行了加权分配。通过对特征通道之间的相互依赖性建模来自适应地重新缩放每个通道的特征,让网络专注于更有用的信道,增强辨别学习能力和自适应能力。其中,权重下采样层和权重上采样层都是通过1x1的卷积来实现的,权重下采样层使用C/r个1x1卷积将通道数减少到原来的1/r,其使用的激活函数为Relu,权重上采样层将通道数升至为原来的C,这里的r是通道数的缩放因子。
将目标图像和搜索图像输入到所述深度孪生神经网络,目标图像和搜索图像改过该具有残差通道注意力裁剪模块的深度孪生神经网络分别生成对应的特征图。
在多种融合响应定位模块中,利用目标模板分支的低层特征、中层特征、高层特征作为卷积核,对搜索分支上对应的低层特征、中层特征、高层特征分别做对应的卷积操作,得到3个预测的得分图。对得到的3个得分图做相加操作,最终得到计算自多层特征的更为可靠的得分图。在融合后的得分图中响应最大的位置即为在这一帧中目标的位置。
其中,卷积操作的公式为:
Figure BDA0003155246140000051
b表示在得分图中每个位置的取值;
Figure BDA0003155246140000052
作为卷积核,在
Figure BDA0003155246140000053
上进行卷积。
对得到的3个得分图做融合相加操作,最终得到计算自多层特征的更为可靠的得分图。得分图中响应最大的位置即为在这一帧中目标的位置。
通过调节深度孪生神经网络的超参数,以提高网络的学习性能和效果。主要的超参数有学习率、批次大小、卷积核尺寸以及激活函数等。
网络的参数通过optimizer最小化逻辑斯蒂损失函数logistic loss更新得到。其初始化的参数值遵循高斯分布,并根据改进的Xavier方法进行调整,其中卷积核和全连接的权重使用Xavier进行统一,其余参数都初始化为固定值0或者1。在训练过程中一共进行了50个epoch,在2个GPU上训练,每个GPU负责8images,因此每一次迭代的梯度由大小为16的最小批量进行计算和估计。训练时使用随机梯度下降法(SGD)进行优化,学习率在每一轮训练中中以几何退火的方式从0.01到0.00001进行自动调整,权重衰减系数设置为0.0005。
训练过后,将待跟踪的视频输入至网络,通过优化好的深度孪生神经网络给出检测结果,以实现目标自动跟踪。
综述,该自适应目标跟踪方法的流程如图1所示,目标模板图像使用的是视频序列第一帧的目标区域;搜索图像为在后续帧中的目标搜索区域;目标模板分支和搜索区域分支分别经过共享权重的卷积神经网络,通过卷积神经网络的特征映射操作,将原始图像映射到特定的特征空间。获取来自目标模板分支和搜索区域分支的不同特征空间的特征,即低层特征,中层特征,高层特征,将模板分支的这三个特征作为卷积核,在搜索区域分支对应的特征上做卷积操作,得到3个得分图,即为搜索区域中各个位置与目标模板的相似度值。融合3个得分图,其响应值最大的位置即为在这一帧中目标的位置。对下一帧进行跟踪时使用上一帧目标位置为中心的搜索图像来计算响应得分图。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种基于孪生网络的自适应多层响应融合的目标跟踪方法,其特征在于包括下述步骤:
步骤1:构建一个具有残差通道注意力裁剪模块的深度孪生神经网络,使用该深度孪生神经网络进行特征提取;孪生神经网络由两支平行的网络组成,分别为目标模板分支和搜索区域分支,目标模板分支用于提取目标的特征图,搜索区域分支用于提取搜索区域不同特征空间的特征;
步骤2:将目标图像和搜索图像输入到深度孪生神经网络对应的目标模板分支和搜索区域分支,目标图像和搜索图像经过深度孪生神经网络分别生成对应的特征图;
步骤3:获取来自目标模板分支和搜索区域分支的不同特征空间的三个特征,即低层特征、中层特征和高层特征,将目标模板分支和搜索区域分支的三个特征作为卷积核,在搜索区域分支对应的特征上做卷积操作,得到3个得分图,即为搜索区域中搜索图像各个位置与目标模板分支中目标图像的相似度;
步骤4:对得到的3个得分图做融合相加操作,最终得到计算自多层特征的更为可靠的融合得分图;融合得分图中响应最大的位置即为在这一帧中目标的位置,之后进行裁剪操作,对输出的特征图进行裁剪,裁剪操作去除由零填充操作影响的特征图边界上最外面的特征;
步骤5:通过调节深度孪生神经网络的超参数,以提高网络的学习性能和效果,得到优化后的深度孪生神经网络;
步骤6:通过步骤5的训练操作后,将待跟踪的搜索图像经过步骤1至步骤4之后,通过深度孪生神经网络给出检测结果,以实现目标自动跟踪。
2.根据权利要求1所述的基于孪生网络的自适应多层响应融合的目标跟踪方法,其特征在于:
所述步骤1中,深度孪生神经网络主干网络中包含残差通道注意力裁剪模块,残差通道注意力裁剪模块由3个卷积层和1个通道注意力模块的堆叠,且带有一个卷积层的短跳连接组成残差结构,其中,短跳连接上的是1x1的卷积;3个卷积层依次是1x1卷积、3x3卷积和1x1卷积,通道注意力模块在3x3卷积层之后,其中3x3的卷积层包括了一个大小为1、填充值为0的填充,通过裁剪操作去除了由零填充操作影响的特征图边界上最外面的特征;残差通道注意力裁剪模块为一个自适应结构,自适应结构通过一个最大池化层,减小输出特征的尺寸,保证信息的完备性。
3.根据权利要求1所述的基于孪生网络的自适应多层响应融合的目标跟踪方法,其特征在于:
所述步骤5中,超参数包括学习率、批次大小、卷积核尺寸和激活函数。
CN202110800081.3A 2021-07-09 2021-07-09 一种基于孪生网络的自适应多层响应融合的目标跟踪方法 Pending CN113689464A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110800081.3A CN113689464A (zh) 2021-07-09 2021-07-09 一种基于孪生网络的自适应多层响应融合的目标跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110800081.3A CN113689464A (zh) 2021-07-09 2021-07-09 一种基于孪生网络的自适应多层响应融合的目标跟踪方法

Publications (1)

Publication Number Publication Date
CN113689464A true CN113689464A (zh) 2021-11-23

Family

ID=78577094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110800081.3A Pending CN113689464A (zh) 2021-07-09 2021-07-09 一种基于孪生网络的自适应多层响应融合的目标跟踪方法

Country Status (1)

Country Link
CN (1) CN113689464A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114241003A (zh) * 2021-12-14 2022-03-25 成都阿普奇科技股份有限公司 一种全天候轻量化高实时性海面船只检测与跟踪方法
CN115375737A (zh) * 2022-10-25 2022-11-22 南昌工程学院 基于自适应时间与序列化时空特征的目标跟踪方法与系统
CN116563569A (zh) * 2023-04-17 2023-08-08 昆明理工大学 一种基于混合孪生网络的异源图像关键点检测方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109493364A (zh) * 2018-09-26 2019-03-19 重庆邮电大学 一种结合残差注意力和上下文信息的目标跟踪算法
CN109685831A (zh) * 2018-12-20 2019-04-26 山东大学 基于残差分层注意力和相关性滤波器的目标跟踪方法及系统
CN111179314A (zh) * 2019-12-30 2020-05-19 北京工业大学 一种基于残差密集孪生网络的目标跟踪方法
CN111192292A (zh) * 2019-12-27 2020-05-22 深圳大学 基于注意力机制与孪生网络的目标跟踪方法及相关设备
CN112348847A (zh) * 2020-10-26 2021-02-09 南京邮电大学 一种目标尺度自适应跟踪方法
CN112446900A (zh) * 2019-09-03 2021-03-05 中国科学院长春光学精密机械与物理研究所 孪生神经网络目标跟踪方法及系统
US20210133650A1 (en) * 2019-11-05 2021-05-06 Strong Force Vcn Portfolio 2019, Llc Control tower and enterprise management platform with unified set of robotic process automation systems for coordinated automation among value chain applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109493364A (zh) * 2018-09-26 2019-03-19 重庆邮电大学 一种结合残差注意力和上下文信息的目标跟踪算法
CN109685831A (zh) * 2018-12-20 2019-04-26 山东大学 基于残差分层注意力和相关性滤波器的目标跟踪方法及系统
CN112446900A (zh) * 2019-09-03 2021-03-05 中国科学院长春光学精密机械与物理研究所 孪生神经网络目标跟踪方法及系统
US20210133650A1 (en) * 2019-11-05 2021-05-06 Strong Force Vcn Portfolio 2019, Llc Control tower and enterprise management platform with unified set of robotic process automation systems for coordinated automation among value chain applications
CN111192292A (zh) * 2019-12-27 2020-05-22 深圳大学 基于注意力机制与孪生网络的目标跟踪方法及相关设备
CN111179314A (zh) * 2019-12-30 2020-05-19 北京工业大学 一种基于残差密集孪生网络的目标跟踪方法
CN112348847A (zh) * 2020-10-26 2021-02-09 南京邮电大学 一种目标尺度自适应跟踪方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宋鹏: "整体特征通道识别的自适应孪生网络跟踪算法", 《浙江大学学报(工学版)》, vol. 55, no. 5, 31 May 2021 (2021-05-31), pages 966 - 975 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114241003A (zh) * 2021-12-14 2022-03-25 成都阿普奇科技股份有限公司 一种全天候轻量化高实时性海面船只检测与跟踪方法
CN114241003B (zh) * 2021-12-14 2022-08-19 成都阿普奇科技股份有限公司 一种全天候轻量化高实时性海面船只检测与跟踪方法
CN115375737A (zh) * 2022-10-25 2022-11-22 南昌工程学院 基于自适应时间与序列化时空特征的目标跟踪方法与系统
CN116563569A (zh) * 2023-04-17 2023-08-08 昆明理工大学 一种基于混合孪生网络的异源图像关键点检测方法及系统
CN116563569B (zh) * 2023-04-17 2023-11-17 昆明理工大学 一种基于混合孪生网络的异源图像关键点检测方法及系统

Similar Documents

Publication Publication Date Title
CN113689464A (zh) 一种基于孪生网络的自适应多层响应融合的目标跟踪方法
Foedisch et al. Adaptive real-time road detection using neural networks
CN109522938A (zh) 一种基于深度学习的图像中目标的识别方法
CN111723829A (zh) 一种基于注意力掩模融合的全卷积目标检测方法
CN112434599B (zh) 一种基于噪声通道的随机遮挡恢复的行人重识别方法
CN113362368B (zh) 一种基于多层次时空图神经网络的人群轨迹预测方法
CN112884802A (zh) 一种基于生成的对抗攻击方法
Manssor et al. Real-time human detection in thermal infrared imaging at night using enhanced Tiny-yolov3 network
Dewangan et al. Towards the design of vision-based intelligent vehicle system: methodologies and challenges
Kadim et al. Deep-learning based single object tracker for night surveillance.
CN112686242A (zh) 一种基于多层聚焦注意力网络的细粒度图像分类方法
EP3352112A1 (en) Architecture adapted for recognising a category of an element from at least one image of said element
CN114332163A (zh) 一种基于语义分割的高空抛物检测方法及系统
Kumar Visual object tracking using deep learning
CN114495050A (zh) 一种面向自动驾驶前向视觉检测的多任务集成检测方法
CN109272036A (zh) 一种基于深度残差网络的随机蕨目标跟踪方法
CN109493370A (zh) 一种基于空间偏移学习的目标跟踪方法
CN117423157A (zh) 一种结合迁移学习、区域入侵的矿井下异常视频动作理解方法
CN116563343A (zh) 一种基于孪生网络结构和锚框自适应思想的rgbt目标跟踪方法
Fan et al. Discriminative siamese complementary tracker with flexible update
Muhamad et al. A comparative study using improved LSTM/GRU for human action recognition
CN116453033A (zh) 一种视频监控场景下高精度低算量的人群密度估计方法
CN113221626B (zh) 一种基于Non-local高分辨率网络的人体姿态估计方法
CN117011335B (zh) 一种基于自适应双解码器的多目标跟踪方法及系统
CN114897929B (zh) 基于视觉降噪的机器人运动方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination