CN113689402A - 基于深度学习的股骨髓腔形态识别方法、装置及存储介质 - Google Patents

基于深度学习的股骨髓腔形态识别方法、装置及存储介质 Download PDF

Info

Publication number
CN113689402A
CN113689402A CN202110974202.6A CN202110974202A CN113689402A CN 113689402 A CN113689402 A CN 113689402A CN 202110974202 A CN202110974202 A CN 202110974202A CN 113689402 A CN113689402 A CN 113689402A
Authority
CN
China
Prior art keywords
image
dimensional medical
femur
medical image
pixel point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110974202.6A
Other languages
English (en)
Other versions
CN113689402B (zh
Inventor
张逸凌
刘星宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhang Yiling
Longwood Valley Medtech Co Ltd
Original Assignee
Longwood Valley Medtech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longwood Valley Medtech Co Ltd filed Critical Longwood Valley Medtech Co Ltd
Priority to CN202110974202.6A priority Critical patent/CN113689402B/zh
Publication of CN113689402A publication Critical patent/CN113689402A/zh
Application granted granted Critical
Publication of CN113689402B publication Critical patent/CN113689402B/zh
Priority to PCT/CN2022/110972 priority patent/WO2023024882A1/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/08Projecting images onto non-planar surfaces, e.g. geodetic screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Image Analysis (AREA)

Abstract

本发明提供一种基于深度学习的股骨髓腔形态识别方法、装置及存储介质,包括:获取髋关节的二维医学图像;基于预先训练好的图像分割网络对髋关节的二维医学图像进行图像分割处理,基于图像分割结果得到股骨区域的二维医学图像;对股骨区域的二维医学图像进行处理,得到股骨的三维医学图像;在患者的冠状面方向上,将股骨的三维医学图像通过正投影变换得到股骨的正投影图像;对股骨的正投影图像进行透视处理,得到股骨的透视图像;将股骨的透视图像输入VGG分类器网络,以获得VGG分类网络输出的股骨的髓腔形态的种类。本发明提供的股骨髓腔形态识别方法,能够基于髋关节的二维医学图像使用深度学习技术对股骨的髓腔形态的种类进行精准识别。

Description

基于深度学习的股骨髓腔形态识别方法、装置及存储介质
技术领域
本发明涉及股骨髓腔形态识别技术领域,尤其涉及一种基于深度学习的股骨髓腔形态识别方法、装置及存储介质。
背景技术
人工髋关节置换是指用生物相容性良好的材料制成的类似人体骨关节的假体,置换被疾病或损伤所破坏的关节或关节平面,从而缓解关节疼痛、矫正畸形假体、改善关节的活动功能。股骨髓腔形态特征对人工髋关节假体设计有重要指导作用,人工髋关节假体植入后的稳定性与假体和髓腔的匹配程度有直接关系。
若股骨髓腔形态特征的分析方法不合理,则会导致髋关节假体和人体匹配程度不理想,严重的可能会出现人工髋关节置换手术失败;而且,由于股骨髓腔形态特征有很大的个体差异,正确地描述股骨髓腔形态显得十分关键。
相关技术通常在描述股骨髓腔形态学特征参数时,只计算股骨各关键部位的长度(如冠状径或者矢状径),然而单纯的只计算股骨关键位置处的冠状径或者矢状径并不能全面准确地反映股骨髓腔的形态。因此,如何寻找出合理的股骨髓腔形态识别方法对选择合适的髋关节假体及手术实施方案有重要指导作用。
发明内容
本发明实施例提供一种基于深度学习的股骨髓腔形态识别方法、装置及存储介质,用以解决相关技术中只计算股骨关键位置处的冠状径或者矢状径,并不能全面准确地反映股骨的髓腔形态的种类的问题。
本发明实施例的第一方面,提供一种基于深度学习的股骨髓腔形态识别方法,包括:
获取髋关节的二维医学图像;
基于预先训练好的图像分割网络模型对所述髋关节的二维医学图像进行图像分割处理,基于图像分割结果得到股骨区域的二维医学图像;
对所述股骨区域的二维医学图像进行处理,得到股骨的三维医学图像;
在患者的冠状面方向上,将所述股骨的三维医学图像通过正投影变换得到股骨的正投影图像;
对所述股骨的正投影图像进行透视处理,得到所述股骨的透视图像;
将所述股骨的透视图像输入VGG分类器网络,以获得所述VGG分类器网络输出的股骨的髓腔形态的种类。
可选地,在第一方面的一种可能实现方式中,对所述股骨区域的二维医学图像进行处理,得到股骨的三维医学图像,包括:
对所述股骨区域的二维医学图像进行三维重建,得到所述股骨区域的三维医学图像;
基于所述股骨区域的三维医学图像,获得所述股骨区域的像素点点集中包含的若干个像素点的坐标;
基于所述若干个像素点的坐标,分别确定X轴坐标值最大的像素点、X轴坐标值最小的像素点、Y轴坐标值最大的像素点、Y轴坐标值最小的像素点、Z轴坐标值最大的像素点和Z轴坐标值最小的像素点;
根据所述X轴坐标值最大的像素点、X轴坐标值最小的像素点、Y轴坐标值最大的像素点、Y轴坐标值最小的像素点、Z轴坐标值最大的像素点和Z轴坐标值最小的像素点,确定所述股骨的三维医学图像。
可选地,在第一方面的一种可能实现方式中,所述图像分割网络模型的预先训练过程包括:
获取髋关节的二维医学图像数据集,其中,所述二维医学图像数据集中包含有多个二维医学图像;
标注出各个所述二维医学图像中的股骨区域;
将经过标注后的各个二维医学图像按照预设比例划分为训练数据集、验证数据集和测试数据集;
基于所述训练数据集、验证数据集、测试数据集并结合神经网络算法和深度学习训练出图像分割网络模型。
可选地,在第一方面的一种可能实现方式中,基于所述训练数据集、验证数据集、测试数据集并结合神经网络算法和深度学习训练出图像分割网络模型,包括:
通过第一图像分割网络模型对所述训练数据集进行粗分割处理:对所述训练数据集中的二维医学图像执行多次下采样,以通过卷积层和池化层的处理识别各二维医学图像的深层特征;对进行下采样后的二维医学图像执行多次上采样,以通过上采样层和卷积层的处理反向存储所述深层特征至所述二维医学图像中;利用Adam分类优化器进行图像粗分类处理,获得图像粗分割结果;其中,所述各卷积层后均设置有激活函数;
通过第二图像分割模型对所述图像粗分割结果进行精分割处理:从所述深层特征中筛选预设置信度的特征点数据,对所述特征点数据进行双线性插值计算,基于计算后的特征点数据识别所述深层特征的所属类别,获得最终的图像分割结果;
基于所述最终的图像分割结果以及所述训练数据集、验证数据集和测试数据集计算损失函数;
基于所述损失函数调整所述图像分割网络模型的参数,直至所述图像分割网络模型训练成功。
可选地,在第一方面的一种可能实现方式中,所述将所述股骨的透视图像输入VGG分类器网络,以获得所述VGG分类器网络输出的股骨的髓腔形态的种类,包括:
所述VGG分类器网络输出的股骨的髓腔形态的种类包括:正常型、香槟型、烟囱型。
可选地,在第一方面的一种可能实现方式中,所述VGG分类器网络包含16个隐藏层,包括:13个卷积层和3个全连接层。
本发明实施例的第二方面,提供一种基于深度学习的股骨髓腔形态识别装置,包括:
获取模块,用于获取髋关节的二维医学图像;
分割模块,用于基于预先训练好的图像分割网络模型对所述髋关节的二维医学图像进行图像分割处理,基于图像分割结果得到股骨区域的二维医学图像;
图像处理模块,用于对所述股骨区域的二维医学图像进行处理,得到股骨的三维医学图像;在患者的冠状面方向上,将所述股骨的三维医学图像通过正投影变换得到股骨的正投影图像;对所述股骨的正投影图像进行透视处理,得到所述股骨的透视图像;
分类模块,用于将所述股骨的透视图像输入VGG分类器网络,以获得所述VGG分类器网络输出的股骨的髓腔形态的种类。
可选地,在第二方面的一种可能实现方式中,所述图像处理模块,还用于执行以下步骤,包括:
对所述股骨区域的二维医学图像进行三维重建,得到所述股骨区域的三维医学图像;
基于所述股骨区域的三维医学图像,获得所述股骨区域的像素点点集中包含的若干个像素点的坐标;
基于所述若干个像素点的坐标,分别确定X轴坐标值最大的像素点、X轴坐标值最小的像素点、Y轴坐标值最大的像素点、Y轴坐标值最小的像素点、Z轴坐标值最大的像素点和Z轴坐标值最小的像素点;
根据所述X轴坐标值最大的像素点、X轴坐标值最小的像素点、Y轴坐标值最大的像素点、Y轴坐标值最小的像素点、Z轴坐标值最大的像素点和Z轴坐标值最小的像素点,确定所述股骨的三维医学图像。
本发明实施例的第三方面,提供一种可读存储介质,所述可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时用于实现本发明第一方面及第一方面各种可能设计的所述方法。
本发明实施例的第四方面,提供一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现如本发明第一方面及第一方面各种可能设计的所述方法的步骤。
本发明提供的一种基于深度学习的股骨髓腔形态识别方法、装置及存储介质,能够基于髋关节的二维医学图像使用深度学习技术对股骨的髓腔形态的种类进行精确识别和分类。深度学习技术与传统方法不同的是其能够在人体内部生成特征。深度学习技术由多层神经网络组成,这些神经网络在大量数据上进行训练,给出真实情况描述,然后用于预测测试数据集上的分段,从而识别股骨的髓腔形态。识别髓腔形态的结果较为精准,且速度较快,灵活、高效等特点,为股骨髓腔形态特征的分析提供了新方法,进而为科学地设计髋关节假体提供了数据支持。
附图说明
图1为本申请实施例提供的基于深度学习的股骨髓腔形态识别方法的第一种实施方式的流程图;
图2为本申请实施例提供的图像分割网络模型结构图;
图3为本申请实施例提供的VGG分类器网络的结构示意图;
图4为本申请实施例提供的股骨髓腔形态分类图;
图5为本申请实施例提供的基于深度学习的股骨髓腔形态识别装置的第一种实施方式的结构图;
图6为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
应当理解,在本发明的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
应当理解,在本发明中,“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本发明中,“多个”是指两个或两个以上。“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“包含A、B和C”、“包含A、B、C”是指A、B、C三者都包含,“包含A、B或C”是指包含A、B、C三者之一,“包含A、B和/或C”是指包含A、B、C三者中任1个或任2个或3个。
应当理解,在本发明中,“与A对应的B”、“与A相对应的B”、“A与B相对应”或者“B与A相对应”,表示B与A相关联,根据A可以确定B。根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其他信息确定B。A与B的匹配,是A与B的相似度大于或等于预设的阈值。
取决于语境,如在此所使用的“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
本发明提供一种基于深度学习的股骨髓腔形态识别方法,如图1所示其流程图,包括:
步骤S110、获取髋关节的二维医学图像。
在本步骤中,需要获取髋关节的CT二维医学图像数据集,CT二维医学图像数据集中包括若干个患者髋关节的CT二维医学图像,并采用手动标注、自动标注中至少之一的方式对该CT二维医学图像进行股骨区域的标注,并且将标注后的CT二维医学图像按照预设比例划分为训练集、验证集和测视集。例如,可以按照6:2:2的比例划分。
将CT二维医学图像的DICOM数据转换成JPG格式的图片,将标注后的CT二维医学图像转换成png格式的图片,保存后作为图像分割网络模型的输入。
步骤S120、基于预先训练好的图像分割网络模型对所述髋关节的二维医学图像进行图像分割处理,基于图像分割结果得到股骨区域的二维医学图像。
在步骤S120中,通过预先训练好的图像分割网络模型:pointrend神经网络、unet卷积神经网络进行分割处理,即:先利用unet卷积神经网络作为主干网络,对上述标注过股骨区域的CT二维医学图像进行粗分割;然后对粗分割的结果使用pointrend神经网络进行精确分割。
步骤S130、对所述股骨区域的二维医学图像进行处理,得到股骨的三维医学图像;在患者的冠状面方向上,将所述股骨的三维医学图像通过正投影变换得到股骨的正投影图像;对所述股骨的正投影图像进行透视处理,得到所述股骨的透视图像。
步骤S140、将所述股骨的透视图像输入VGG分类器网络,以获得所述VGG分类器网络输出的股骨的髓腔形态的种类。
在步骤S140中,所使用的VGG分类器网络为VGG16,使用的全部都是3x3的小卷积核和2x2的池化核,可以通过不断加深网络来提升性能。其中包含16个隐藏层,包括:13个卷积层和3个全连接层(FC-4096、FC-4096、FC-1000);卷积层为为5个卷积段,分别为:con3-64*2、con3-128*2、con3-256*3、con3-512*3、con3-512*3;同时每个卷积段的结尾都会连接一个最大的池化层maxpool,用于缩小图片的尺寸。
在步骤S140中,具体VGG分类器网络训练过程为:首先输入256*256*3的图片,经过64个3*3的卷积核做两次卷积+Relu,卷积后的尺寸变为256*256*64;通过max pooling,池化单元尺寸为2*2,池化后的尺寸变为128*128*64;经过128个3*3单侧卷积核做两次卷积+relu,尺寸变为128*128*128;通过2*2的max pooling池化,尺寸变为64*64*128;经过256个3*3的卷积核做三次卷积+relu,尺寸变为64*64*256;通过2*2的max pooling池化,尺寸变为32*32*256;经过512个3*3的卷积核做三次卷积+relu,尺寸变为32*32*512;通过2*2的max pooling池化,尺寸变为16*16*512;通过512个3*3的卷积核做三次卷积+relu,尺寸变为16*16*512;通过2*2的max pooling池化,尺寸变为8*8*512;与两层1*1*4096,一层1*1*1000进行全连接(前两组全连接,每组都是fc-relu-dropout,最后一个全连接仅有fc),最后通过softmax分类器输出预测结果。
在一个实施例中,对所述股骨区域的二维医学图像进行处理,得到股骨的三维医学图像,包括:对所述股骨区域的二维医学图像进行三维重建,得到所述股骨区域的三维医学图像;基于所述股骨区域的三维医学图像,获得所述股骨区域的像素点点集中包含的若干个像素点的坐标;基于所述若干个像素点的坐标,分别确定X轴坐标值最大的像素点、X轴坐标值最小的像素点、Y轴坐标值最大的像素点、Y轴坐标值最小的像素点、Z轴坐标值最大的像素点和Z轴坐标值最小的像素点;根据所述X轴坐标值最大的像素点、X轴坐标值最小的像素点、Y轴坐标值最大的像素点、Y轴坐标值最小的像素点、Z轴坐标值最大的像素点和Z轴坐标值最小的像素点,确定所述股骨的三维医学图像。
在对股骨区域图像进行提取,得到股骨图像的过程中,首先需要定义股骨的分割区域为V,其中V包含了所有股骨区域的像素点点集;其次在所有像素点的X坐标中分别找到Xmin、Xmax,在所有像素点的Y坐标中分别找到Ymin、Ymax,在所有像素点的Z坐标中分别找到Zmin、Zmax,则通过Xmin、Xmax、Ymin、Ymax,、Zmin、Zmax就可以确定股骨的三维空间范围。
在一个实施例中,图像分割网络模型的预先训练过程包括:
获取髋关节的二维医学图像数据集,其中,所述二维医学图像数据集中包含有多个二维医学图像;
标注出各个所述二维医学图像中的股骨区域;
将经过标注后的各个二维医学图像按照预设比例划分为训练数据集、验证数据集和测试数据集;
基于所述训练数据集、验证数据集、测试数据集并结合神经网络算法和深度学习训练出图像分割网络模型。
在本步骤中,会先获取多个患者髋关节的CT医学图像,以手动或者自动标注的方式对其进行标注股骨区域,然后按照6:2:2的比例将多张标注过股骨区域的CT图像划分为训练集、验证集、测试集,以作为图像分割网络模型的输入。
在一些实施例中,基于所述训练数据集、验证数据集、测试数据集并结合神经网络算法和深度学习训练出图像分割网络模型,包括:
通过第一图像分割网络模型对所述训练数据集进行粗分割处理:对所述训练数据集中的二维医学图像执行多次下采样,以通过卷积层和池化层的处理识别各二维医学图像的深层特征;对进行下采样后的二维医学图像执行多次上采样,以通过上采样层和卷积层的处理反向存储所述深层特征至所述二维医学图像中;利用Adam分类优化器进行图像粗分类处理,获得图像粗分割结果;其中,所述各卷积层后均设置有激活函数;
通过第二图像分割模型对所述图像粗分割结果进行精分割处理:从所述深层特征中筛选预设置信度的特征点数据,对所述特征点数据进行双线性插值计算,基于计算后的特征点数据识别所述深层特征的所属类别,获得最终的图像分割结果;
基于所述最终的图像分割结果以及所述训练数据集、验证数据集和测试数据集计算损失函数;
基于所述损失函数调整所述图像分割网络模型的参数,直至所述图像分割网络模型训练成功。
在上述基于预先训练好的图像分割网络模型对所述髋关节的二维医学图像进行图像分割处理,以得到股骨区域的二维医学图像的步骤中,主要包括:利用第一图像处理子模型unet进行粗分割和使用第二图像处理子模型pointrend进行精确分割,具体网络结构如图2所示,具体过程如下:
“利用第一图像处理子模型unet进行粗分割”具体是指:利用unet网络作为主干网络,对输入的二维图像进行粗分割,第一阶段使用4次下采样学习图像的深层特征,然后进行4次上采样以将特征图重新存储到图像中,其中每个下采样层中包括2个卷积层和1个池化层,卷积核大小为3*3,池化层中的卷积核大小为2*2,每个卷积层中的卷积核的个数为128,256,512;每个上采样层中包括1个上采样层和2个卷积层,其中卷积层的卷积核大小为3*2,上采样层中的卷积核大小为2*2,每个上采样层中的卷积核个数为512,256,128。最后一次上采样结束后设有一个的dropout层,droupout率设置为0.7。所有的卷积层后面都设有激活函数为relu函数。最终获得股骨的粗分割预测结果,它们的结果均为0-1之间的预测概率值。
在上述粗分割网络模型训练的过程中,数据标签的背景像素值设置为0,股骨为1,训练的batch_size为6,学习率设置为1e-4,分类优化器使用Adam分类优化器,使用的损失函数为DICE loss,将训练集原图和股骨/胫骨/腓骨/髌骨分别送入网络进行训练,根据训练过程中损失函数的变化,调整训练批次的大小,最终得到各个部分的粗分割结果。
“使用第二图像处理子模型pointrend进行精确分割”具体是指:使用pointrend精确分割结果,首先像素选择的目标是挑选出一系列潜在的特征点来为接下来的判断做准备,在此我们挑选的依据是粗略分割的结果中分类置信度接近0.5的点(二分类任务中一个点的置信度会趋近于0或者1,置信度在0.5附近则代表网络对这个点的分类很不确定),通常这类点都是接近物体边缘的点。第二步我们对上步挑选出的点进行特征提取,而粗略分割网络就自带特征提取器(feature extractor),我们只需要将所选点在特征提取器中相应位置的特征选取出来即可。这些点的特征通过双线性插值Bilinear计算,使用一个小型的分类器去判断这个点属于哪个类别。这其实是等价于用一个1*1的卷积来预测,但是对于置信度接近于1或者0的点并不计算。这样我们就可以对所有不确定的像素点逐个进行分类,从而提高分割的精准度。
在上述精确分割网络模型训练过程中,进入pointrend模块后,先会使用双线性插值上采样前一步分割预测结果,然后在这个更密集的特征图中选择N个最不确定的点,比如概率接近0.5的点。然后计算这N个点的特征表示并且预测它们的labels,这个过程一直被重复,直到上采样到需要的大小。对于每个选定点的逐点特征表示,使用简单的多层感知器进行逐点预测,因为MLP预测的是各点的分割label,所以可以使用Unet粗分割任务中的loss来训练。训练后输出就是股骨区域。
如图3所示的VGG分类器网络的结构示意图,如图4所示的股骨髓腔形态分类图,在一个实施例中,所述将所述股骨的透视图像输入VGG分类器网络,以获得所述VGG分类器网络输出的股骨的髓腔形态的种类,股骨的髓腔形态的种类包括:正常型、香槟型、烟囱型。
最终,本发明提供的一种基于深度学习的股骨髓腔形态识别方法、装置及存储介质,能够基于髋关节的二维医学图像使用深度学习技术对股骨的髓腔形态的种类进行精确识别和分类。深度学习技术与传统方法不同的是其能够在人体内部生成特征。深度学习技术由多层神经网络组成,这些神经网络在大量数据上进行训练,给出真实情况描述,然后用于预测测试数据集上的分段,从而识别股骨的髓腔形态。识别髓腔形态的结果也较为精准,且速度较快,灵活、高效等特点,为股骨髓腔形态特征的分析提供了新方法,进而为科学地设计髋关节假体提供了数据支持。
本发明的实施例还提供一种基于深度学习的股骨髓腔形态识别装置,如图5所示,包括:
获取模块51,用于获取髋关节的二维医学图像;
分割模块52,用于基于预先训练好的图像分割网络模型对所述髋关节的二维医学图像进行图像分割处理,基于图像分割结果得到股骨区域的二维医学图像;
图像处理模块53,用于对所述股骨区域的二维医学图像进行处理,得到股骨的三维医学图像;在患者的冠状面方向上,将所述股骨的三维医学图像通过正投影变换得到股骨的正投影图像;对所述股骨的正投影图像进行透视处理,得到所述股骨的透视图像;
分类模块54,用于将所述股骨的透视图像输入VGG分类器网络,以获得所述VGG分类器网络输出的股骨的髓腔形态的种类。
在一个实施例中,所述图像处理模块53,还用于执行以下步骤,包括:
对所述股骨区域的二维医学图像进行三维重建,得到所述股骨区域的三维医学图像;
基于所述股骨区域的三维医学图像,获得所述股骨区域的像素点点集中包含的若干个像素点的坐标;
基于所述若干个像素点的坐标,分别确定X轴坐标值最大的像素点、X轴坐标值最小的像素点、Y轴坐标值最大的像素点、Y轴坐标值最小的像素点、Z轴坐标值最大的像素点和Z轴坐标值最小的像素点;
根据所述X轴坐标值最大的像素点、X轴坐标值最小的像素点、Y轴坐标值最大的像素点、Y轴坐标值最小的像素点、Z轴坐标值最大的像素点和Z轴坐标值最小的像素点,确定所述股骨的三维医学图像。
在一些实施例中,本发明还提供了一种可读存储介质,所述可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时用于实现上述的基于深度学习的股骨髓腔形态识别方法,该方法包括:
获取髋关节的二维医学图像;
基于预先训练好的图像分割网络模型对所述髋关节的二维医学图像进行图像分割处理,基于图像分割结果得到股骨区域的二维医学图像;
对所述股骨区域的二维医学图像进行处理,得到股骨的三维医学图像;
在患者的冠状面方向上,将所述股骨的三维医学图像通过正投影变换得到股骨的正投影图像;
对所述股骨的正投影图像进行透视处理,得到所述股骨的透视图像;
将所述股骨的透视图像输入VGG分类器网络,以获得所述VGG分类器网络输出的股骨的髓腔形态的种类。
其中,可读存储介质可以是计算机存储介质,也可以是通信介质。通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。计算机存储介质可以是通用或专用计算机能够存取的任何可用介质。例如,可读存储介质耦合至处理器,从而使处理器能够从该可读存储介质读取信息,且可向该可读存储介质写入信息。当然,可读存储介质也可以是处理器的组成部分。处理器和可读存储介质可以位于专用集成电路(ApplicationSpecific Integrated Circuits,ASIC)中。另外,该ASIC可以位于用户设备中。当然,处理器和可读存储介质也可以作为分立组件存在于通信设备中。可读存储介质可以是只读存储器(ROM)、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本发明还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得设备实施上述的各种实施方式提供的方法。
本发明实施例还提供一种电子设备,如图6所示,该电子设备可以包括:处理器(processor)610、通信接口(Communications Interface)620、存储器(memory)630和通信总线640,其中,处理器610,通信接口620,存储器630通过通信总线640完成相互间的通信。处理器610可以调用存储器630中的逻辑指令,以执行上述的基于深度学习的股骨髓腔形态识别方法,该方法包括:
获取髋关节的二维医学图像;
基于预先训练好的图像分割网络模型对所述髋关节的二维医学图像进行图像分割处理,基于图像分割结果得到股骨区域的二维医学图像;
对所述股骨区域的二维医学图像进行处理,得到股骨的三维医学图像;
在患者的冠状面方向上,将所述股骨的三维医学图像通过正投影变换得到股骨的正投影图像;
对所述股骨的正投影图像进行透视处理,得到所述股骨的透视图像;
将所述股骨的透视图像输入VGG分类器网络,以获得所述VGG分类器网络输出的股骨的髓腔形态的种类。
在上述终端或者服务器的实施例中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,DSP)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种基于深度学习的股骨髓腔形态识别方法,其特征在于,包括:
获取髋关节的二维医学图像;
基于预先训练好的图像分割网络模型对所述髋关节的二维医学图像进行图像分割处理,基于图像分割结果得到股骨区域的二维医学图像;
对所述股骨区域的二维医学图像进行处理,得到股骨的三维医学图像;
在患者的冠状面方向上,将所述股骨的三维医学图像通过正投影变换得到股骨的正投影图像;
对所述股骨的正投影图像进行透视处理,得到所述股骨的透视图像;
将所述股骨的透视图像输入VGG分类器网络,以获得所述VGG分类器网络输出的股骨的髓腔形态的种类。
2.根据权利要求1所述的基于深度学习的股骨髓腔形态识别方法,其特征在于,对所述股骨区域的二维医学图像进行处理,得到股骨的三维医学图像,包括:
对所述股骨区域的二维医学图像进行三维重建,得到所述股骨区域的三维医学图像;
基于所述股骨区域的三维医学图像,获得所述股骨区域的像素点点集中包含的若干个像素点的坐标;
基于所述若干个像素点的坐标,分别确定X轴坐标值最大的像素点、X轴坐标值最小的像素点、Y轴坐标值最大的像素点、Y轴坐标值最小的像素点、Z轴坐标值最大的像素点和Z轴坐标值最小的像素点;
根据所述X轴坐标值最大的像素点、X轴坐标值最小的像素点、Y轴坐标值最大的像素点、Y轴坐标值最小的像素点、Z轴坐标值最大的像素点和Z轴坐标值最小的像素点,确定所述股骨的三维医学图像。
3.根据权利要求1所述的基于深度学习的股骨髓腔形态识别方法,其特征在于,所述图像分割网络模型的预先训练过程包括:
获取髋关节的二维医学图像数据集,其中,所述二维医学图像数据集中包含有多个二维医学图像;
标注出各个所述二维医学图像中的股骨区域;
将经过标注后的各个二维医学图像按照预设比例划分为训练数据集、验证数据集和测试数据集;
基于所述训练数据集、验证数据集、测试数据集并结合神经网络算法和深度学习训练出图像分割网络模型。
4.根据权利要求3所述的基于深度学习的股骨髓腔形态识别方法,其特征在于,基于所述训练数据集、验证数据集、测试数据集并结合神经网络算法和深度学习训练出图像分割网络模型,包括:
通过第一图像分割网络模型对所述训练数据集进行粗分割处理:对所述训练数据集中的二维医学图像执行多次下采样,以通过卷积层和池化层的处理识别各二维医学图像的深层特征;对进行下采样后的二维医学图像执行多次上采样,以通过上采样层和卷积层的处理反向存储所述深层特征至所述二维医学图像中;利用Adam分类优化器进行图像粗分类处理,获得图像粗分割结果;其中,所述各卷积层后均设置有激活函数;
通过第二图像分割模型对所述图像粗分割结果进行精分割处理:从所述深层特征中筛选预设置信度的特征点数据,对所述特征点数据进行双线性插值计算,基于计算后的特征点数据识别所述深层特征的所属类别,获得最终的图像分割结果;
基于所述最终的图像分割结果以及所述训练数据集、验证数据集和测试数据集计算损失函数;
基于所述损失函数调整所述图像分割网络模型的参数,直至所述图像分割网络模型训练成功。
5.根据权利要求1所述的基于深度学习的股骨髓腔形态识别方法,其特征在于,所述将所述股骨的透视图像输入VGG分类器网络,以获得所述VGG分类器网络输出的股骨的髓腔形态的种类,包括:
所述VGG分类器网络输出的股骨的髓腔形态的种类包括:正常型、香槟型、烟囱型。
6.根据权利要求5所述的基于深度学习的股骨髓腔形态识别方法,其特征在于,所述VGG分类器网络包含16个隐藏层,包括:13个卷积层和3个全连接层。
7.一种基于深度学习的股骨髓腔形态识别装置,其特征在于,包括:
获取模块,用于获取髋关节的二维医学图像;
分割模块,用于基于预先训练好的图像分割网络模型对所述髋关节的二维医学图像进行图像分割处理,基于图像分割结果得到股骨区域的二维医学图像;
图像处理模块,用于对所述股骨区域的二维医学图像进行处理,得到股骨的三维医学图像;在患者的冠状面方向上,将所述股骨的三维医学图像通过正投影变换得到股骨的正投影图像;对所述股骨的正投影图像进行透视处理,得到所述股骨的透视图像;
分类模块,用于将所述股骨的透视图像输入VGG分类器网络,以获得所述VGG分类器网络输出的股骨的髓腔形态的种类。
8.根据权利要求7所述的基于深度学习的股骨髓腔形态识别装置,其特征在于,所述图像处理模块,还用于执行以下步骤,包括:
对所述股骨区域的二维医学图像进行三维重建,得到所述股骨区域的三维医学图像;
基于所述股骨区域的三维医学图像,获得所述股骨区域的像素点点集中包含的若干个像素点的坐标;
基于所述若干个像素点的坐标,分别确定X轴坐标值最大的像素点、X轴坐标值最小的像素点、Y轴坐标值最大的像素点、Y轴坐标值最小的像素点、Z轴坐标值最大的像素点和Z轴坐标值最小的像素点;
根据所述X轴坐标值最大的像素点、X轴坐标值最小的像素点、Y轴坐标值最大的像素点、Y轴坐标值最小的像素点、Z轴坐标值最大的像素点和Z轴坐标值最小的像素点,确定所述股骨的三维医学图像。
9.一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至6任一项所述的基于深度学习的股骨髓腔形态识别方法的步骤。
10.一种可读存储介质,其特征在于,所述可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时用于实现权利要求1至6任一项所述的基于深度学习的股骨髓腔形态识别方法的步骤。
CN202110974202.6A 2021-08-24 2021-08-24 基于深度学习的股骨髓腔形态识别方法、装置及存储介质 Active CN113689402B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110974202.6A CN113689402B (zh) 2021-08-24 2021-08-24 基于深度学习的股骨髓腔形态识别方法、装置及存储介质
PCT/CN2022/110972 WO2023024882A1 (zh) 2021-08-24 2022-08-08 基于深度学习的股骨髓腔形态识别方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110974202.6A CN113689402B (zh) 2021-08-24 2021-08-24 基于深度学习的股骨髓腔形态识别方法、装置及存储介质

Publications (2)

Publication Number Publication Date
CN113689402A true CN113689402A (zh) 2021-11-23
CN113689402B CN113689402B (zh) 2022-04-12

Family

ID=78581775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110974202.6A Active CN113689402B (zh) 2021-08-24 2021-08-24 基于深度学习的股骨髓腔形态识别方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN113689402B (zh)
WO (1) WO2023024882A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113870261A (zh) * 2021-12-01 2021-12-31 杭州柳叶刀机器人有限公司 用神经网络识别力线的方法与系统、存储介质及电子设备
CN114419618A (zh) * 2022-01-27 2022-04-29 北京长木谷医疗科技有限公司 基于深度学习的全髋关节置换术前规划系统
CN114494183A (zh) * 2022-01-25 2022-05-13 哈尔滨医科大学附属第一医院 一种基于人工智能的髋臼半径自动测量方法及系统
CN115131301A (zh) * 2022-06-15 2022-09-30 北京长木谷医疗科技有限公司 基于深度学习的智能识别骨关节炎的方法及系统
CN115131300A (zh) * 2022-06-15 2022-09-30 北京长木谷医疗科技有限公司 一种基于深度学习的骨性关节炎智能三维诊断方法及系统
WO2023024882A1 (zh) * 2021-08-24 2023-03-02 北京长木谷医疗科技有限公司 基于深度学习的股骨髓腔形态识别方法、装置及存储介质
CN116630427A (zh) * 2023-07-24 2023-08-22 杭州键嘉医疗科技股份有限公司 一种ct图像中髋骨和股骨自动定位的方法及装置
CN117437459A (zh) * 2023-10-08 2024-01-23 昆山市第一人民医院 基于决策网络实现用户膝关节髌骨软化状态分析方法
CN117689683A (zh) * 2024-02-01 2024-03-12 江苏一影医疗设备有限公司 一种双腿膝关节运动状态图像处理方法、设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116934708A (zh) * 2023-07-20 2023-10-24 北京长木谷医疗科技股份有限公司 胫骨平台内外侧低点计算方法、装置、设备及存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060126922A1 (en) * 2003-01-13 2006-06-15 Jens Von Berg Method of segmenting a three-dimensional structure
CN104657984A (zh) * 2015-01-28 2015-05-27 复旦大学 三维超声乳腺全容积图像感兴趣区域的自动提取方法
CN105869149A (zh) * 2016-03-24 2016-08-17 大连理工大学 基于主向量分析的断骨截面分割及断骨模型配准方法
CN107958223A (zh) * 2017-12-13 2018-04-24 北京小米移动软件有限公司 人脸识别方法及装置、移动设备、计算机可读存储介质
US20190175125A1 (en) * 2017-12-13 2019-06-13 Carestream Health, Inc. Bone segmentation and display for 3d extremity imaging
CN110009666A (zh) * 2018-01-05 2019-07-12 北京柏惠维康科技有限公司 一种机器人空间配准中建立匹配模型的方法及装置
US20190239926A1 (en) * 2007-12-18 2019-08-08 Howmedica Osteonics Corporation System and method for image segmentation, bone model generation and modification, and surgical planning
CN111179350A (zh) * 2020-02-13 2020-05-19 张逸凌 基于深度学习的髋关节图像处理方法及计算设备
CN111583240A (zh) * 2020-05-09 2020-08-25 北京天智航医疗科技股份有限公司 一种股骨端前后轴线的确定方法、装置和计算机设备
CN111714145A (zh) * 2020-05-27 2020-09-29 浙江飞图影像科技有限公司 基于弱监督分割的股骨颈骨折检测方法及系统
CN113076987A (zh) * 2021-03-29 2021-07-06 北京长木谷医疗科技有限公司 骨赘识别方法、装置、电子设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3470006B1 (en) * 2017-10-10 2020-06-10 Holo Surgical Inc. Automated segmentation of three dimensional bony structure images
CN111402230B (zh) * 2020-03-16 2023-04-07 徐州医科大学 基于Monte Carlo方法的股骨髓腔形态特征分析方法
CN112634283A (zh) * 2020-12-22 2021-04-09 华中科技大学 使用小样本图像训练的髋关节分割模型建立方法及其应用
CN113689402B (zh) * 2021-08-24 2022-04-12 北京长木谷医疗科技有限公司 基于深度学习的股骨髓腔形态识别方法、装置及存储介质

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060126922A1 (en) * 2003-01-13 2006-06-15 Jens Von Berg Method of segmenting a three-dimensional structure
US20190239926A1 (en) * 2007-12-18 2019-08-08 Howmedica Osteonics Corporation System and method for image segmentation, bone model generation and modification, and surgical planning
CN104657984A (zh) * 2015-01-28 2015-05-27 复旦大学 三维超声乳腺全容积图像感兴趣区域的自动提取方法
CN105869149A (zh) * 2016-03-24 2016-08-17 大连理工大学 基于主向量分析的断骨截面分割及断骨模型配准方法
CN107958223A (zh) * 2017-12-13 2018-04-24 北京小米移动软件有限公司 人脸识别方法及装置、移动设备、计算机可读存储介质
US20190175125A1 (en) * 2017-12-13 2019-06-13 Carestream Health, Inc. Bone segmentation and display for 3d extremity imaging
CN110009666A (zh) * 2018-01-05 2019-07-12 北京柏惠维康科技有限公司 一种机器人空间配准中建立匹配模型的方法及装置
CN111179350A (zh) * 2020-02-13 2020-05-19 张逸凌 基于深度学习的髋关节图像处理方法及计算设备
CN111583240A (zh) * 2020-05-09 2020-08-25 北京天智航医疗科技股份有限公司 一种股骨端前后轴线的确定方法、装置和计算机设备
CN111714145A (zh) * 2020-05-27 2020-09-29 浙江飞图影像科技有限公司 基于弱监督分割的股骨颈骨折检测方法及系统
CN113076987A (zh) * 2021-03-29 2021-07-06 北京长木谷医疗科技有限公司 骨赘识别方法、装置、电子设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MICHAEL D. HARRIS 等: "Three-dimensional Quantification of Femoral Head Shape in Controls and Patients with Cam-type Femoroacetabular Impingement", 《ANNALS OF BIOMEDICAL ENGINEERING》 *
徐征宇 等: "全髋关节置换术术前模板测量与规划研究进展", 《中华关节外科杂志》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023024882A1 (zh) * 2021-08-24 2023-03-02 北京长木谷医疗科技有限公司 基于深度学习的股骨髓腔形态识别方法、装置及存储介质
CN113870261A (zh) * 2021-12-01 2021-12-31 杭州柳叶刀机器人有限公司 用神经网络识别力线的方法与系统、存储介质及电子设备
CN114494183A (zh) * 2022-01-25 2022-05-13 哈尔滨医科大学附属第一医院 一种基于人工智能的髋臼半径自动测量方法及系统
CN114494183B (zh) * 2022-01-25 2024-04-02 哈尔滨医科大学附属第一医院 一种基于人工智能的髋臼半径自动测量方法及系统
CN114419618B (zh) * 2022-01-27 2024-02-02 北京长木谷医疗科技股份有限公司 基于深度学习的全髋关节置换术前规划系统
CN114419618A (zh) * 2022-01-27 2022-04-29 北京长木谷医疗科技有限公司 基于深度学习的全髋关节置换术前规划系统
WO2023142956A1 (zh) * 2022-01-27 2023-08-03 北京长木谷医疗科技有限公司 基于深度学习的全髋关节置换术前规划系统
CN115131301A (zh) * 2022-06-15 2022-09-30 北京长木谷医疗科技有限公司 基于深度学习的智能识别骨关节炎的方法及系统
CN115131300A (zh) * 2022-06-15 2022-09-30 北京长木谷医疗科技有限公司 一种基于深度学习的骨性关节炎智能三维诊断方法及系统
WO2023241031A1 (zh) * 2022-06-15 2023-12-21 北京长木谷医疗科技有限公司 基于深度学习的骨性关节炎智能三维诊断方法及系统
CN116630427B (zh) * 2023-07-24 2023-10-31 杭州键嘉医疗科技股份有限公司 一种ct图像中髋骨和股骨自动定位的方法及装置
CN116630427A (zh) * 2023-07-24 2023-08-22 杭州键嘉医疗科技股份有限公司 一种ct图像中髋骨和股骨自动定位的方法及装置
CN117437459A (zh) * 2023-10-08 2024-01-23 昆山市第一人民医院 基于决策网络实现用户膝关节髌骨软化状态分析方法
CN117437459B (zh) * 2023-10-08 2024-03-22 昆山市第一人民医院 基于决策网络实现用户膝关节髌骨软化状态分析方法
CN117689683A (zh) * 2024-02-01 2024-03-12 江苏一影医疗设备有限公司 一种双腿膝关节运动状态图像处理方法、设备及存储介质
CN117689683B (zh) * 2024-02-01 2024-05-03 江苏一影医疗设备有限公司 一种双腿膝关节运动状态图像处理方法、设备及存储介质

Also Published As

Publication number Publication date
CN113689402B (zh) 2022-04-12
WO2023024882A1 (zh) 2023-03-02

Similar Documents

Publication Publication Date Title
CN113689402B (zh) 基于深度学习的股骨髓腔形态识别方法、装置及存储介质
CN110399929B (zh) 眼底图像分类方法、装置以及计算机可读存储介质
CN110337669B (zh) 一种用于多标签分割医学图像中的解剖结构的管线方法
CN112184617B (zh) 一种基于深度学习的脊椎mri影像关键点检测方法
CN113506334A (zh) 基于深度学习的多模态医学图像融合方法及系统
CN113076987B (zh) 骨赘识别方法、装置、电子设备及存储介质
CN112233777A (zh) 基于深度学习的胆结石自动识别及分割系统、计算机设备、存储介质
CN111583385B (zh) 一种可变形数字人解剖学模型的个性化变形方法及系统
WO2024001140A1 (zh) 一种椎体亚区域分割方法、装置及存储介质
WO2022247173A1 (zh) 图像识别及模型训练的方法、关节位置识别的方法
CN110570394A (zh) 医学图像分割方法、装置、设备及存储介质
Thangam et al. Skeletal Bone Age Assessment-Research Directions.
CN111127400A (zh) 一种乳腺病变检测方法和装置
CN113158970B (zh) 一种基于快慢双流图卷积神经网络的动作识别方法与系统
CN113077418A (zh) 基于卷积神经网络的ct影像骨骼分割方法及装置
Learned-Miller et al. Detecting acromegaly: screening for disease with a morphable model
CN109886320B (zh) 一种人体股骨x光片智能识读方法及系统
CN111325282A (zh) 适应多机型的乳腺x射线影像识别方法和装置
CN115761226A (zh) 一种口腔影像分割识别方法、装置、电子设备和存储介质
CN114419061A (zh) 一种肺部动静脉血管分割方法及系统
CN112614092A (zh) 脊柱检测方法和装置
CN113327221A (zh) 融合roi区域的图像合成方法、装置、电子设备及介质
CN112699898A (zh) 一种基于多层特征融合的图像方向识别方法
Palenichka et al. Multi-scale model-based skeletonization of object shapes using self-organizing maps
Na et al. Development of a 3D breast shape generation and deformation system for breast implant fabrication

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 100176 2201, 22 / F, building 1, yard 2, Ronghua South Road, Beijing Economic and Technological Development Zone, Daxing District, Beijing

Patentee after: Beijing Changmugu Medical Technology Co.,Ltd.

Patentee after: Zhang Yiling

Address before: 100176 2201, 22 / F, building 1, yard 2, Ronghua South Road, Beijing Economic and Technological Development Zone, Daxing District, Beijing

Patentee before: BEIJING CHANGMUGU MEDICAL TECHNOLOGY Co.,Ltd.

Patentee before: Zhang Yiling