CN113686791B - 用于检测g类神经毒剂及其模拟物的水溶性方酸菁-乙醇胺加合物材料及应用 - Google Patents

用于检测g类神经毒剂及其模拟物的水溶性方酸菁-乙醇胺加合物材料及应用 Download PDF

Info

Publication number
CN113686791B
CN113686791B CN202110921029.3A CN202110921029A CN113686791B CN 113686791 B CN113686791 B CN 113686791B CN 202110921029 A CN202110921029 A CN 202110921029A CN 113686791 B CN113686791 B CN 113686791B
Authority
CN
China
Prior art keywords
water
ethanolamine
soluble
squaraine
soluble squaraine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110921029.3A
Other languages
English (en)
Other versions
CN113686791A (zh
Inventor
刘太宏
赵佳音
刘科
丁立平
房喻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN202110921029.3A priority Critical patent/CN113686791B/zh
Publication of CN113686791A publication Critical patent/CN113686791A/zh
Application granted granted Critical
Publication of CN113686791B publication Critical patent/CN113686791B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种用于检测G类神经毒剂及其模拟物的水溶性方酸菁‑乙醇胺加合物材料及应用,该材料是向蓝色的水溶性方酸菁衍生物水溶液中加入过量乙醇胺,使水溶性方酸菁衍生物与乙醇胺反应获得的无色溶液。该材料制备工艺可应用于G类神经毒剂及其模拟物的灵敏可视化传感识别,随着G类神经毒剂及其模拟物的不断加入,其荧光发射、最大吸收强度均呈现明显增强,溶液颜色逐渐由无色变化为蓝色,体系RGB值变化与分析物加入量具有较好关联性,有助于实现对特征分析物的半定量分析。传感过程独特的Turn‑on型传感响应模式实现了对G类神经毒剂及其模拟物的快速、选择性灵敏传感,有望发展成为一种综合性能优异的神经毒剂传感新材料。

Description

用于检测G类神经毒剂及其模拟物的水溶性方酸菁-乙醇胺加 合物材料及应用
技术领域
本发明属于小分子光学传感技术领域,具体涉及一种用于检测G类神经毒剂及其模拟物的水溶性方酸菁-乙醇胺加合物材料。
背景技术
化学战剂(Chemical Warfare Agents,CWAs)作为一类大规模、高杀伤力的化学武器,已被多次使用在局部战争和恐怖活动中。CWAs因具有毒性强、作用快、杀伤范围广、毒效持久、防护和救治困难等特点,对人员生命健康和环境安全都产生了巨大威胁,针对性地开展灵敏、快速、识别研究,尤其是对CWAs的原位和区分识别研究日益得到重视。按照CWAs对人体的毒害作用方式不同,CWAs可分为神经性毒剂、糜烂性毒剂、血液性毒剂、窒息性毒剂、失能性毒剂和刺激剂。其中神经性毒剂属于有机磷或有机磷酸酯类化合物,包含G类和V类,G类神经毒剂主要包括沙林(GB)、梭曼(GD)和塔崩(GA),V类神经毒剂主要是指维埃克斯(VX)。在众多神经性毒剂中,沙林是恐怖袭击中最危险、最常用的一种,为了采取及时的应对措施来减少损失,发展一种能够在极低浓度下迅速发现有毒化学物质的方法有着至关重要的意义。因此,开发便携式、并且能够现场实时对化学毒物进行灵敏和选择性检测的方法仍然是一项严峻的挑战。
现行的神经毒剂检测方法有光声学、质谱分析、毛细管电泳、电传感器、生物传感器、离子迁移谱、核磁共振光谱等技术等,然而这些技术都有着一定的局限性,如设备昂贵、响应速度慢、缺乏选择性和便携性、使用方式复杂等,从而限制了它们的实际应用。与前者提及的方法相比,光谱技术具有灵敏度高、响应速度快、可采集参数丰富等优点,在传感检测方面显示出了极大的优越性。但目前已报道的探针和指示剂大多只能在有机介质中使用,而且区分识别能力不理想,大大限制了光谱技术的实际应用。因此开发具有来能良好水溶性、响应速度快、信号输出方式简单便捷的光学传感技术仍具有较大的战略意义。
发明内容
本发明目的是针对上述现有技术中探针水溶性不佳、识别速度慢、设备不便携等问题,提供一类具有独特Turn-on型传感响应模式,对G类神经毒剂及其模拟物快速、选择性灵敏传感的新型水溶性方酸菁-乙醇胺加合物材料。
针对上述目的,本发明提供的水溶性方酸菁-乙醇胺加合物材料是向蓝色的水溶性方酸菁衍生物水溶液中加入过量乙醇胺,获得的有效成分的结构式如SQOH-ETA或SQPY-ETA所示的无色溶液:
结构式中n为1~5的整数。
上述水溶性方酸菁衍生物的结构式如SQOH和SQPY所示,其分别参照文献“OrganicLetters,2005,7(19),页码4257-4260”和“Sensors&Actuators:B.Chemical,2019,292,页码88-93”提供的方法制备而成。
结构式中n为1~5的整数。
上述水溶性方酸菁衍生物与乙醇胺的摩尔比为1:250~1:400。
上述水溶性方酸菁衍生物水溶液中水溶性方酸菁衍生物的浓度为5.0×10-3mol/L~1.0×10-2mol/L。
本发明水溶性方酸菁-乙醇胺加合物材料可用于检测G类神经毒剂和/或其模拟物,所述G类神经毒剂为沙林、梭曼中至少一种,其模拟物为氯磷酸二乙酯(DCP)、氰基磷酸二乙酯(DCNP)至少一种。具体检测方法是:将水溶性方酸菁-乙醇胺加合物材料中加入未知检测溶液,若未知检测溶液中含有G类神经毒剂和/或其模拟物,溶液颜色会从无色快速变为蓝色,同时吸光度也有一定程度的增强,可与G类神经毒剂和/或其模拟物标准颜色变化和变化曲线进行对比,对未知溶液中G类神经毒剂和/或其模拟物的含量进行定性和半定量检测。
与现有技术相比,本发明具有以下有益的技术效果:
1、本发明通过水溶性方酸菁衍生物与乙醇胺相互作用、打破了方酸菁衍生物的共轭结构,溶液颜色由蓝色变为无色,紫外可见吸收和荧光发射均有明显变化,制备得到一类新型水溶性酸菁-乙醇胺加合物材料。向该类水溶性酸菁-乙醇胺加合物材料中加入分析对象,随着G类神经毒剂及其模拟物的不断加入,其荧光发射、紫外可见吸收以及溶液颜色均得到恢复或增强,参比预先建立的标准颜色变化和变化曲线,可实现对G类神经毒剂及其模拟物的选择性灵敏传感。这种Turn-on型快速传感模式使得其在G类神经毒剂及其模拟物的区分和灵敏检测方面拥有巨大的发展潜力。
2、本发明水溶性方酸菁-乙醇胺加合物材料在传感检测方面显示出了极大的优越性,不同于目前已报道的方法中大多只能在有机介质中使用,这一特性大大拓宽了该方法的实际应用范围。
3、本发明除了测试G类神经毒剂的模拟物氯磷酸二乙酯和氰基磷酸二乙酯,并拓展了真实G类神经毒剂如沙林和梭曼的现场快速检测,效果良好。
4、本发明提供了一种新颖的用于CWAs光谱检测的材料设计思路,有望在设计合成综合性能优良的新型G类神经毒剂及其模拟物的区分和灵敏检测中发挥重要作用。
附图说明
图1是实施例1制备的有效成分为SQOH-ETA的水溶性方酸菁-乙醇胺加合物材料对不同浓度DCP的紫外可见响应图。
图2是实施例1制备的有效成分为SQOH-ETA的水溶性方酸菁-乙醇胺加合物材料对不同浓度DCNP的紫外可见响应图。
图3是实施例1制备的有效成分为SQOH-ETA的水溶性方酸菁-乙醇胺加合物材料对不同浓度DCP的荧光光谱图。
图4是实施例1制备的有效成分为SQOH-ETA的水溶性方酸菁-乙醇胺加合物材料对不同浓度DCNP的荧光光谱图。
图5是实施例2制备的有效成分为SQPY-ETA的水溶性方酸菁-乙醇胺加合物材料对不同浓度DCP的紫外可见响应图。
图6是实施例2制备的有效成分为SQPY-ETA的水溶性方酸菁-乙醇胺加合物材料对不同浓度DCNP的紫外可见响应图。
图7是实施例2制备的有效成分为SQPY-ETA的水溶性方酸菁-乙醇胺加合物材料对不同浓度DCP的荧光光谱。
图8是实施例2制备的有效成分为SQPY-ETA的水溶性方酸菁-乙醇胺加合物材料对不同浓度DCNP的荧光光谱。
图9是实施例1制备的有效成分为SQOH-ETA的水溶性方酸菁-乙醇胺加合物材料对不同G类神经毒剂模拟物传感选择性。
图10是实施例1和实施例2制备的水溶性方酸菁-乙醇胺加合物材料对DCP传感过程的pH效应。
图11是实施例1和实施例2制备的水溶性方酸菁-乙醇胺加合物材料对DCP和DCNP传感响应强度与浓度关系曲线。
图12是实施例1制备的有效成分为SQOH-ETA的水溶性方酸菁-乙醇胺加合物材料颜色变化对不同沙林浓度的响应情况。
图13是实施例1制备的有效成分为SQOH-ETA的水溶性方酸菁-乙醇胺加合物材料颜色变化对不同梭曼浓度的响应情况。
具体实施方式
下面结合附图和实施例对本发明做进一步的详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
将水溶性方酸菁衍生物SQOH(n=3)用去离子水配制成浓度为8.0×10-3mol/L的蓝色溶液。然后向3mL蓝色溶液中加入0.48μL乙醇胺,其中水溶性方酸菁衍生物SQOH与乙醇胺的摩尔比为1:333,振荡3~5分钟,得到无色溶液,即有效成分为SQOH-ETA的水溶性方酸菁-乙醇胺加合物材料。
实施例2
将水溶性方酸菁衍生物SQPY(n=3)用去离子水配制成浓度为8.0×10-3mol/L的蓝色溶液。然后向3mL蓝色溶液中加入0.48μL乙醇胺,其中水溶性方酸菁衍生物SQPY与乙醇胺的摩尔比为1:333,振荡3~5分钟,得到无色溶液,即有效成分为SQPY-ETA的水溶性方酸菁-乙醇胺加合物材料。
实施例3
实施例1和2制备的水溶性方酸菁-乙醇胺加合物材料在检测G类神经毒剂及其模拟物中的应用
向有效成分为SQOH-ETA的水溶性方酸菁-乙醇胺加合物材料中分别加入不同浓度的DCP和DCNP,进行紫外和荧光检测。由图1可见,随着溶液中DCP的浓度从2.0×10-4mol/L增大到1.6×10-3mol/L,其在640nm处的最大吸收波长逐渐增强,同时在约300nm处的吸收强度逐渐降低。由图2可见,随着溶液中DCNP的浓度从2.0×10-4mol/L增大到2.4×10-3mol/L,其在640nm处的最大吸收波长逐渐增强,同时在约300nm处的吸收强度逐渐降低。由图3可见,随着溶液中DCP的浓度从4.0×10-5mol/L增大到1.12×10-3mol/L,其在668nm处的最大荧光发射波长逐渐增强。由图4可见,随着溶液中DCNP的浓度从6.4×10-4mol/L增大到5.6×10- 3mol/L,其在668nm处的最大荧光发射波长逐渐增强。
向有效成分为SQPY-ETA的水溶性方酸菁-乙醇胺加合物材料中分别加入不同浓度的DCP和DCNP,进行紫外和荧光检测。由图5可见,随着溶液中DCP的浓度从1.0×10-4mol/L增大到1.2×10-3mol/L,其在602nm处的最大吸收波长逐渐增强,同时在约385nm处的吸收强度逐渐降低。由图6可见,随着溶液中DCNP的浓度从2.0×10-4mol/L增大到2.6×10-3mol/L,其在602nm处的最大吸收波长逐渐增强,同时在约385nm处的吸收强度逐渐降低。由图7可见,随着溶液中DCP的浓度从8.0×10-5mol/L增大到2.24×10-3mol/L,其在680nm处的最大荧光发射波长逐渐增强。由图8可见,随着溶液中DCNP的浓度从1.6×10-4mol/L增大到1.12×10-2mol/L,其在680nm处的最大荧光发射波长逐渐增强。
向有效成分为SQPY-ETA的水溶性方酸菁-乙醇胺加合物材料中分别加入1.12×10-3mol/L的不同分析对象。从图9中可以看出,DCP和DCNP的增强效率分别为88%和74%,而三乙基氧膦(TEP)、磷酸三丁酯(TBP)、甲基膦酸二甲酯(DMMP)、甲基二乙氧基膦(DEMP)的增强效率分别为12%、20%、13%和12%,表现出该体系对G类神经毒剂模拟物良好的传感选择性。
将有效成分为SQPY-ETA和SQPY-ETA的水溶性方酸菁-乙醇胺加合物材料用盐酸和氨水分别调节至不同pH,然后加入1.2×10-3mol/LDCP,通过测定吸收光谱变化,并与中性条件下对比考察检测溶液pH范围对G类神经毒剂模拟物DCP传感效果的影响。由图10可见,实施例1和2制备的水溶性方酸菁-乙醇胺加合物材料对G类神经毒剂模拟物DCP传感过程的最佳pH范围在3~12之间。
向有效成分为SQPY-ETA和SQPY-ETA的水溶性方酸菁-乙醇胺加合物材料中分别加入不同浓度的DCP和DCNP,进行紫外和荧光检测,考察检测物浓度与归一化最大发射波长吸收强度和归一化最大荧光发射波长强度之间的关系。由图11可见,实施例1和2制备的水溶性方酸菁-乙醇胺加合物材料对不同G类神经毒剂模拟物传感响应强度与浓度关系具有较好的线性区间。
向实施例1制备的有效成分为SQOH-ETA的水溶性方酸菁-乙醇胺加合物材料中分别加入0、2、4、6、8、10、12、14、16、18、20mM的沙林,溶液的颜色逐渐由无色变为蓝色颜色(见图12)。向实施例1制备的有效成分为SQOH-ETA的水溶性方酸菁-乙醇胺加合物材料中分别加入0、4、8、12、16、20、24、28、32、36、40mM的梭曼,溶液的颜色逐渐由无色变为蓝色颜色(见图13),说明本发明材料可用于肉眼可视化检测G类神经毒剂。

Claims (5)

1.一种用于检测G类神经毒剂及其模拟物的水溶性方酸菁-乙醇胺加合物材料,其特征在于:该材料是向蓝色的水溶性方酸菁衍生物水溶液中加入过量乙醇胺,获得的有效成分的结构式如SQOH-ETA或SQPY-ETA所示的无色溶液:
结构式中n为1~5的整数。
2.根据权利要求1所述的水溶性方酸菁-乙醇胺加合物材料,其特征在于:所述水溶性方酸菁衍生物与乙醇胺的摩尔比为1:250~1:400。
3.根据权利要求1所述的水溶性方酸菁-乙醇胺加合物材料,其特征在于:所述水溶性方酸菁衍生物水溶液中水溶性方酸菁衍生物的浓度为5.0×10-3mol/L~1.0×10-2mol/L。
4.权利要求1所述的水溶性方酸菁-乙醇胺加合物材料在检测G类神经毒剂和/或其模拟物中的应用。
5.根据权利要求4所述的水溶性方酸菁-乙醇胺加合物材料在检测G类神经毒剂和/或其模拟物中的应用,其特征在于:所述G类神经毒剂为沙林、梭曼中至少一种,其模拟物为氯磷酸二乙酯、氰基磷酸二乙酯至少一种。
CN202110921029.3A 2021-08-11 2021-08-11 用于检测g类神经毒剂及其模拟物的水溶性方酸菁-乙醇胺加合物材料及应用 Active CN113686791B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110921029.3A CN113686791B (zh) 2021-08-11 2021-08-11 用于检测g类神经毒剂及其模拟物的水溶性方酸菁-乙醇胺加合物材料及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110921029.3A CN113686791B (zh) 2021-08-11 2021-08-11 用于检测g类神经毒剂及其模拟物的水溶性方酸菁-乙醇胺加合物材料及应用

Publications (2)

Publication Number Publication Date
CN113686791A CN113686791A (zh) 2021-11-23
CN113686791B true CN113686791B (zh) 2024-06-04

Family

ID=78579573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110921029.3A Active CN113686791B (zh) 2021-08-11 2021-08-11 用于检测g类神经毒剂及其模拟物的水溶性方酸菁-乙醇胺加合物材料及应用

Country Status (1)

Country Link
CN (1) CN113686791B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120057689A (ko) * 2010-08-11 2012-06-07 고려대학교 산학협력단 디에틸 클로로포스페이트(dcp)에 대해 선택성을 갖는 신경가스 검출용 화합물 및 이를 이용한 화학센서
CN102786459A (zh) * 2012-08-16 2012-11-21 常州大学 一种比色识别铜离子的方酸菁类化学传感器及其制备方法
CN103409132A (zh) * 2013-07-05 2013-11-27 北京化工大学 含有水溶性吲哚菁衍生物的pH指示剂及其应用
CN105623648A (zh) * 2016-02-02 2016-06-01 常州大学 一种基于苯并吲哚与苯胺衍生物非对称方酸菁比色探针、制备方法及应用
CN106380423A (zh) * 2016-08-25 2017-02-08 中国科学院上海微系统与信息技术研究所 一类可检测有机磷酸酯类神经毒剂模拟物的化合物及其应用
KR20180106005A (ko) * 2017-03-17 2018-10-01 울산대학교 산학협력단 가시광 감응형 신경 제제 검출용 색센서 및 이를 이용한 신경 제제 검출방법
CN109879776A (zh) * 2019-03-25 2019-06-14 陕西师范大学 一种水溶性方酸菁衍生物及其合成方法和检测醛类化合物的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029050A1 (en) * 2013-08-30 2015-03-05 Council Of Scientific & Industrial Research A squaraine based fluorescent probe and a process for the preparation thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120057689A (ko) * 2010-08-11 2012-06-07 고려대학교 산학협력단 디에틸 클로로포스페이트(dcp)에 대해 선택성을 갖는 신경가스 검출용 화합물 및 이를 이용한 화학센서
CN102786459A (zh) * 2012-08-16 2012-11-21 常州大学 一种比色识别铜离子的方酸菁类化学传感器及其制备方法
CN103409132A (zh) * 2013-07-05 2013-11-27 北京化工大学 含有水溶性吲哚菁衍生物的pH指示剂及其应用
CN105623648A (zh) * 2016-02-02 2016-06-01 常州大学 一种基于苯并吲哚与苯胺衍生物非对称方酸菁比色探针、制备方法及应用
CN106380423A (zh) * 2016-08-25 2017-02-08 中国科学院上海微系统与信息技术研究所 一类可检测有机磷酸酯类神经毒剂模拟物的化合物及其应用
KR20180106005A (ko) * 2017-03-17 2018-10-01 울산대학교 산학협력단 가시광 감응형 신경 제제 검출용 색센서 및 이를 이용한 신경 제제 검출방법
CN109879776A (zh) * 2019-03-25 2019-06-14 陕西师范大学 一种水溶性方酸菁衍生物及其合成方法和检测醛类化合物的应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Aggregation State Reactivity Activation of Intramolecular Charge Transfer Type Fluorescent Probe and Application in Trace Vapor Detection of Sarin Mimics;Wei Xu et al.;ACS Sens.;20160727;第1卷;全文 *
Chromogenic and fluorogenic detection and discrimination of nerve agents Tabun and Vx;Vinod Kumar et al.;Chem. C ommun.;20151231;全文 *
Chromogenic and fluorogenic detection of a nerve agent simulant with a rhodamine-deoxylactam based sensor;Xuanjun Wu et al.;Chem. Commun.;20111231;第47卷;全文 *
Selective and sensitive chromogenic and fl uorogenic detection of sulfur mustard in organic, aqueous and gaseous medium;Vinod Kumar et al.;RSC Adv.;20151231;第5卷;全文 *
Squaraine-hydrazine adducts for fast and colorimetric detection of aldehydes in aqueous media;Taihong Liu et al.;Sensors & Actuators: B. Chemical;20190429;第292卷;全文 *
Squaraines as fluoro-chromogenic probes for thiol-containing compounds and their application to the detection of biorelevant thiols;Jose V. Ros-Lis et al.;J. AM. CHEM. SOC.;20041231;全文 *

Also Published As

Publication number Publication date
CN113686791A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
Szmacinski et al. Lifetime-based sensing
Bargossi et al. Recent developments in transition metal ion detection by luminescent chemosensors
Jin et al. Two novel fluorescein-based fluorescent probes for hypochlorite and its real applications in tap water and biological imaging
US20150377858A1 (en) Method and device for carbonyl detection and quantitation
Lu et al. Flow-injection chemiluminescent determination of nitrite in water based on the formation of peroxynitrite from the reaction of nitrite and hydrogen peroxide
Yan et al. Carbon dots for ratiometric fluorescence detection of morin
CN104777156A (zh) 一种基于碳点荧光关-开模式检测肌醇六磷酸的方法
Li et al. Colorimetric and fluorometric dual-modal probes for cyanide detection based on the doubly activated Michael acceptor and their bioimaging applications
Pan et al. A new aggregation-induced emission-based fluorescent probe for effective detection of Hg2+ and its multiple applications
Fang et al. Coumarinocoumarin-based fluorescent probe for the sensitive and selective detection of hydrazine in living cells and zebra fish
Tu et al. Near-infrared fluorescent turn-on detection of paraquat using an assembly of squaraine and surfactants
Chen et al. A new rhodamine probe with large stokes shift for Hg2+ detection and its application in real sample analysis
Xu et al. A colorimetric and fluorometric NBD-based chemosensor for highly selective recognition of palladium (II) cations
Saqib et al. High-efficiency cathodic electrochemiluminescence of the tris (2, 2′-bipyridine) ruthenium (ii)/n-hydroxy compound system and its use for sensitive “turn-on” detection of mercury (ii) and methyl blue
Gao et al. Rapid and accurate detection of phosphate in complex biological fluids based on highly improved antenna sensitization of lanthanide luminescence
Xiong et al. Recyclable fluorescent chemodosimeters based on 8-hydroxyquinoline derivatives for highly sensitive and selective detection of mercury (II) in aqueous media and test strips
Qin et al. A novel protein-based supramolecular recognition approach for ratiometric fluorescence detection of fipronil
Moll et al. Complexation of curium (III) by adenosine 5′-triphosphate (ATP): A time-resolved laser-induced fluorescence spectroscopy (TRLFS) study
Azab et al. Binding of chlorfenvinphos and malathion with DNA and their detection using new sensitive luminescent Tb (III) complex probe
Ozdemir Two Colorimetric and Fluorescent Dual‐Channel Chemosensors for the Selective Detection of pH in Aqueous Solutions
CN113686791B (zh) 用于检测g类神经毒剂及其模拟物的水溶性方酸菁-乙醇胺加合物材料及应用
CN107974248B (zh) 一种叶酸修饰碳量子点的制备方法及检测痕量六价铬离子的方法
Wang et al. A sensitive fluorimetric method for determination of trace amounts of nitrite based on luminescence energy transfer
Deng et al. A highly selective and sensitive peptide-based probe for the colorimetric and fluorescent detection of Fe3+, Al3+ and Cr3+ and its application in living cells imaging
CN109520946A (zh) 基于纳米金模拟过氧化物酶的亚铈离子测定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant