CN113669371B - 圆锥滚子轴承内圈滚道表面微流互通微结构及加工方法 - Google Patents

圆锥滚子轴承内圈滚道表面微流互通微结构及加工方法 Download PDF

Info

Publication number
CN113669371B
CN113669371B CN202110880885.9A CN202110880885A CN113669371B CN 113669371 B CN113669371 B CN 113669371B CN 202110880885 A CN202110880885 A CN 202110880885A CN 113669371 B CN113669371 B CN 113669371B
Authority
CN
China
Prior art keywords
inner ring
raceway
tapered roller
roller bearing
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110880885.9A
Other languages
English (en)
Other versions
CN113669371A (zh
Inventor
萧金瑞
梁忠伟
刘晓初
安大伟
何森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN202110880885.9A priority Critical patent/CN113669371B/zh
Publication of CN113669371A publication Critical patent/CN113669371A/zh
Application granted granted Critical
Publication of CN113669371B publication Critical patent/CN113669371B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/003Making specific metal objects by operations not covered by a single other subclass or a group in this subclass bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/664Retaining the liquid in or near the bearing
    • F16C33/6651Retaining the liquid in or near the bearing in recesses or cavities provided in retainers, races or rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/02Mechanical treatment, e.g. finishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/02Mechanical treatment, e.g. finishing
    • F16C2223/04Mechanical treatment, e.g. finishing by sizing, by shaping to final size by small plastic deformation, e.g. by calibrating or coining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/02Mechanical treatment, e.g. finishing
    • F16C2223/08Mechanical treatment, e.g. finishing shot-peening, blasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2235/00Cleaning

Abstract

本发明公开了一种圆锥滚子轴承内圈滚道表面微流互通微结构及加工方法,其中,所述微结构包括设置在圆锥滚子轴承内圈滚道表面的微沟槽,所述微沟槽沿滚道的圆周方向离散分布,且相互连通;所述微沟槽宽度为5‑25μm,深度为3‑8μm;位于滚道表面的微沟槽的面积之和为该滚道总面积的15‑35%;通过所述微结构可增强摩擦副油膜承载能力、降低摩擦副温度、减少三体磨损以及防滑增滚,从而增强圆锥滚子轴承内圈滚道的抗滑擦烧伤性能。所述加工方法通过脉冲式冲研强化加工出微沟槽,采用超精加工去除微结构的微凸起尖峰及毛刺,再通过超声波清洗以去除粘附杂质;使得本发明的加工方法具有操作简单,加工成本低且效率高的优点。

Description

圆锥滚子轴承内圈滚道表面微流互通微结构及加工方法
技术领域
本发明涉及一种轴承及加工方法,具体涉及一种圆锥滚子轴承内圈滚道表面微流互通微结构及加工方法。
背景技术
在油润滑条件下,表面微结构可大幅改善摩擦副润滑性能,降低部件的摩擦磨损速度,提高机械部件的服役寿命,已被广泛应用于高性能轴承设计及制造领域。
由于圆锥滚子轴承受载时滚子与滚道的接触线与其母线不完全重合,导致载荷及接触应力分布不均匀,易发生滚子微观偏斜,进而产生附加弯矩和时变扭矩,滚子发生自转和公转运动,易在滚道表面产生滑擦,形成油膜空穴,迫使油膜破裂或润滑失效,摩擦力矩、振动加速度以及摩擦副温升不可控,导致滚道表面滑擦烧伤,进而造成轴承内圈承载能力、精度保持性、抗疲劳耐久性和运行可靠性等性能大幅下降等问题。
现有技术提出在摩擦副表面设计并制造微结构纹理,在改善其润滑性能的同时,实现防滑动增滚动的目的。例如,申请公布号为CN112797075A和申请公布号为CN112797074A的发明专利申请分别公开了“一种内外圈滚道表面带有微织构的滚子轴承及其加工方法”和“一种内外圈滚道表面带有微织构的球轴承及其加工方法”,上述两份发明专利申请是通过在轴承内圈滚道表面设置规则阵列分布的表面微结构,将滚子接触线增加至两条,可增加滚子的纯滚动,防止其在滚道内打滑而造成轴承整体性能下降。但该技术对表面微结构的形状和排布方位精度要求高,加工难度大,无法应用于母线与轴线不平行的圆锥滚子轴承内圈滚道。而申请公布号为CN112762095A的发明专利申请公开了“一种水润滑径向轴承”,通过激光在轴瓦内表面设置阵列分布的沟槽,提高水润滑动压承载力,降低磨损速率。申请公布号为CN112975144A的发明专利申请公开了“一种轴瓦内表面织构的加工装置及方法”,可实现轴瓦规则阵列表面织构的高效率加工。然而,上述已公开的相关技术中的微结构均在轴瓦表面规则阵列分布,对各微结构的形状、位置以及加工设备的运行精度要求高,操作复杂且加工效率低,并且难以解决圆锥滚子轴承运行过程中因滚子微观偏斜而造成的滚道表面滑擦烧伤问题。
发明内容
本发明的目的在于克服现有技术的不足,提供一种圆锥滚子轴承内圈滚道表面微流互通微结构,所述微结构不仅可以改善圆锥滚子轴承内圈的润滑性能,而且还可实现防滑增滚,避免因滚子滑擦而造成的滚道表面滑擦烧伤。
本发明的另一目的在于提供一种圆锥滚子轴承内圈滚道表面微流互通微结构的加工方法,所述加工方法的加工难度低,可实现高效、可靠、低成本的加工。
本发明解决上述技术问题的技术方案是:
一种圆锥滚子轴承内圈滚道表面微流互通微结构,包括设置在所述圆锥滚子轴承内圈滚道表面的微沟槽,所述微沟槽沿滚道的圆周方向离散分布,且相互连通;所述微沟槽宽度为5-25μm,平均深度为3-8μm;位于滚道表面的微沟槽的面积之和为该滚道总面积的15-35%。
优选的,所述微结构的平均表面硬度高于63HRC,且微凸起部分的最高点与微沟槽的最低点之间的垂直距离小于10μm。
一种圆锥滚子轴承内圈滚道表面微流互通微结构的加工方法,包括以下步骤:
S1、采用超声波清洗机对待加工的圆锥滚子轴承的内圈进行清洗,去除表面油迹并烘干;
S2、采用冲研强化加工系统对圆锥滚子轴承内圈滚道表面进行脉冲式冲研强化加工;
S3、采用轴承滚道超精机床对冲研强化后的圆锥滚子轴承内圈滚道表面进行超精加工,超精去除厚度约为4μm;
S4、采用超声波清洗机对超精加工后的圆锥滚子轴承的套圈进行清洗,去除表面粘附杂质。
优选的,在步骤S2中,使用装有强化研磨料的冲研强化加工系统对圆锥滚子轴承的套圈滚道表面进行脉冲式冲研强化加工,其中,所述强化研磨料由钢珠、研磨粉、强化液中的其中两种物料组成。
优选的,在步骤S3中,对冲研强化后的圆锥滚子轴承内圈滚道表面进行超精加工时,超精去除厚度为3-5μm。
优选的,强化研磨料以1-3Hz的频率冲击轴承滚道表面,包括以下步骤:
SS1、调整强化研磨料喷头的出口轴线与轴承内圈冲击点切线的平面夹角大小为53-57°,并调整强化研磨料喷头出口中心与轴承内圈冲击点的距离为8-10cm;
SS2、启动冲研强化加工系统,使圆锥滚子轴承内圈以0.05-0.08m/s的最大线速度自转;
SS3、使用由直径为2.5-3mm、表面硬度高于60HRC的钢珠和强化液按100:1的质量比配制而成的强化研磨料以80-150m/s的速度对圆锥滚子轴承内圈滚道表面进行冲研强化加工,直至滚道表面被全覆盖加工;
SS4、使用由直径为0.5-1mm、表面硬度高于60HRC的钢珠和强化液按50:1的质量比配制而成的强化研磨料以80-150m/s的速度对圆锥滚子轴承内圈滚道表面进行冲研强化加工,直至滚道表面被全覆盖加工;
SS5、使用由粒径为500目的棕刚玉研磨粉和强化液按5:1的质量比配制而成的强化研磨料以80-150m/s的速度对圆锥滚子轴承内圈滚道表面进行冲研强化加工,直至滚道表面被全覆盖加工;
SS6、采用超声波清洗机对加工后的圆锥滚子轴承内圈进行清洗,去除表面粘附杂质。
优选的,所述强化液由以下质量百分比的原料组成:聚氧乙烯烷基醚5%,烷基硫酸酯钠3%、磷酸三丁酯1%、脂肪酸胺1%,其余为水。
本发明与现有技术相比具有以下的有益效果:
1、本发明的圆锥滚子轴承内圈滚道表面微流互通微结构中的微沟槽具有分布随机和微流互通的特点,在油润滑条件下可产生动压效应及流体散热效应,在增强其油膜承载能力的同时,还可降低摩擦副温度。与规则的微结构相比,本发明提供的非规则微结构可收集多方向运动的微磨屑颗粒,更有效地减少三体磨损的发生。
2、本发明的圆锥滚子轴承内圈滚道表面微流互通微结构的尺寸小、形状不规格且分布随机,这能为圆锥滚子的滚动提供更大摩擦力,从而减少滑擦运动,增加纯滚动,降低圆锥滚子轴承内圈滚道表面滑擦烧伤的可能性。
3、本发明的圆锥滚子轴承滚道表面微流互通微结构的加工方法通过多种强化研磨料随机碰撞,产生研磨微切削和塑性变形加工,无需精确控制强化研磨料喷嘴移动轨迹,操作简单,加工成本低且效率高。
附图说明
图1为本发明的圆锥滚子轴承滚道表面微流互通微结构的局部放大示意图。
图2为本发明的圆锥滚子轴承滚道表面微流互通微结构的加工方法的流程图。
图3为本发明的圆锥滚子轴承滚道表面微流互通微结构的加工方法中的冲研强化加工流程图。
图4为圆锥滚子轴承内圈滚道冲研强化加工的示意图。
图5为圆锥滚子轴承内圈滚道冲研强化加工的路线图。
图6为加工所得微流互通微结构的SEM放大图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
参见图1-图5,1为圆锥滚子轴承内圈,2为圆锥滚子轴承内圈1中滚道表面微结构2中A处的局部放大图,3为微结构2中A处的局部放大图中的凸起部分,4为微结构2的微沟槽,5为强化研磨料喷头,6为强化研磨料,7为冲研强化加工路线,8为圆锥滚子轴承内圈1的展开图,d为微结构2的微沟槽4的宽度,L为强化研磨料喷头5出口中心与轴承内圈冲击点的距离,α为强化研磨料喷头5出口轴线与轴承内圈冲击点切线的夹角,V1为强化研磨料6的冲击速度,V2为圆锥滚子轴承内圈1自转的最大线速度。
参见图1-图5,本发明的圆锥滚子轴承内圈滚道表面微流互通微结构包括设置在所述圆锥滚子轴承内圈滚道表面的不规则的微沟槽4,所述微沟槽4沿滚道的圆周方向离散分布,且相互连通;所述微沟槽4宽度d为5-25μm,平均深度为3-8μm;位于滚道表面的微沟槽4的面积之和为该滚道总面积的15-35%;所述微结构2的平均表面硬度高于63HRC,且微凸起部分3的最高点与微沟槽4的最低点之间的垂直距离小于10μm。
参见图2-图4,本发明的圆锥滚子轴承内圈滚道表面微流互通微结构的加工方法,包括以下步骤:
S1、采用超声波清洗机对待加工圆锥滚子轴承内圈1进行清洗,去除表面油迹并烘干;
S2、采用冲研强化加工系统对圆锥滚子轴承内圈滚道表面进行脉冲式冲研强化加工;
S3、采用轴承滚道超精机床对冲研强化后的轴承内圈滚道表面进行超精加工,超精去除厚度约为4μm;
S4、采用超声波清洗机对超精加工后的圆锥滚子轴承内圈1进行清洗,去除表面粘附杂质。
步骤S2中,使用装有强化研磨料6的冲研强化加工系统对圆锥滚子轴承内圈滚道表面进行脉冲式冲研强化加工,其中,由钢珠、研磨粉、强化液中的两物料组成的强化研磨料6以1Hz的频率被喷射至加工区域,包括以下步骤:
SS1、调整强化研磨料喷头5的出口轴线与轴承内圈冲击点切线的夹角α大小为55°,并调整强化研磨料喷头5出口中心与轴承内圈冲击点的距离L为10cm;
SS2、启动冲研强化加工系统,使圆锥滚子轴承内圈以最大线速度V2为0.05m/s自转;
SS3、使用由直径为2.5mm、表面硬度高于60HRC的钢珠和强化液按100:1的质量比配制而成的强化研磨料6以冲击速度V1=100m/s,按加工路线7对轴承内圈滚道表面进行冲研强化加工,直至滚道表面被全覆盖加工;
SS4、使用由直径为0.5mm、表面硬度高于60HRC的钢珠和强化液按50:1的质量比配制而成的强化研磨料6以冲击速度V1=100m/s,按加工路线7对轴承内圈滚道表面进行冲研强化加工,直至滚道表面被全覆盖加工;
SS5、使用由粒径为500目的棕刚玉研磨粉和强化液按5:1的质量比配制而成的强化研磨料6以冲击速度V1=100m/s,按加工路线7对轴承内圈滚道表面进行冲研强化加工,直至滚道表面被全覆盖加工;
SS6、采用超声波清洗机对加工后的圆锥滚子轴承内圈1进行清洗,去除表面粘附杂质。
其中,所述强化液由以下质量百分比的原料组成:聚氧乙烯烷基醚5%,烷基硫酸酯钠3%、磷酸三丁酯1%、脂肪酸胺1%,其余为水。
参见图6,本实施例加工所得的圆锥滚子轴承内圈1滚道表面微结构,经检测,所述微结构2的平均表面硬度为63.7HRC,微沟槽4宽度为5-14μm,深度为3-6μm,占轴承内圈滚道总面积的16.3%,微凸起部分3的最高点与微沟槽4最低点之间的垂直距离为7.7μm。
为进一步验证本发明的圆锥滚子轴承内圈滚道表面微流互通微结构的加工方法的实施效果,通过以下实施案例进行详细的对比。
案例1,强化液成分配比对微结构及其摩擦学性能的影响
采用冲研强化技术对圆锥滚子轴承内圈滚道表面进行加工。
(1)强化研磨料的配制
①强化液分别按以下3种方案配制:
方案1:按质量百分比将聚氧乙烯烷基醚4%,烷基硫酸酯钠2%、磷酸三丁酯0.5%和脂肪酸胺0.5%加入到93%的水中搅拌均匀,得到强化液;
方案2:按质量百分比将聚氧乙烯烷基醚5%,烷基硫酸酯钠3%、磷酸三丁酯1%和脂肪酸胺1%加入到90%的水中搅拌均匀,得到强化液;
方案3:按质量百分比将聚氧乙烯烷基醚6%,烷基硫酸酯钠4%、磷酸三丁酯1.5%和脂肪酸胺1.5%加入到87%的水中搅拌均匀,得到强化液;
②分别选用直径为2.5mm和0.5mm且表面硬度高于60HRC的两种钢珠;
③先将棕刚玉研磨粉过550目筛,收集筛上面的棕刚玉研磨粉,再过500目筛,收集筛下面的棕刚玉研磨粉;
④按直径为2.5mm的钢珠:强化液=100:1的质量比将步骤①得到的强化液加入步骤②得到的钢珠中,并搅拌均匀,得到冲研强化粗加工所用的强化研磨料;
按直径为0.5mm的钢珠:强化液=50:1的质量比将步骤①得到的强化液加入步骤②得到的钢珠中并搅拌均匀,得到冲研强化粗精加工所用的强化研磨料;
按棕刚玉研磨粉:强化液=5:1的质量比将步骤①得到的强化液加入步骤②得到的棕刚玉研磨粉并搅拌均匀,得到冲研强化精加工所用的强化研磨料。
(2)冲研强化加工
将强化研磨料装入冲研强化加工系统的存储装置中,再将超声清洗后的轴承内圈装夹至所述冲研强化加工系统工作台上,将强化研磨料的喷射频率设置为1Hz,进行冲研强化加工,包括以下步骤:
SS1、调整强化研磨料喷头的出口轴线与轴承内圈冲击点切线的夹角α大小为55°,并调整强化研磨料喷头出口中心与轴承内圈冲击点的距离L为10cm;
SS2、启动冲研强化加工系统,使圆锥滚子轴承内圈以最大线速度V2=0.05m/s自转;
SS3、将粗加工所用的强化研磨料以冲击速度V1=100m/s,按加工路线7对轴承内圈滚道表面进行冲研强化加工,直至滚道表面被全覆盖加工;
SS4、将粗精加工所用的强化研磨料以冲击速度V1=100m/s,按加工路线7对轴承内圈滚道表面进行冲研强化加工,直至滚道表面被全覆盖加工;
SS5、将精加工所用的强化研磨料以冲击速度V1=100m/s,按加工路线7对轴承内圈滚道表面进行冲研强化加工,直至滚道表面被全覆盖加工;
SS6、采用超声波清洗机对加工后的圆锥滚子轴承内圈进行清洗,去除表面粘附杂质。
(3)超精加工
采用轴承滚道超精机床对冲研强化后的轴承内圈滚道表面进行超精加工,超精去除厚度约为4μm;
采用超声波清洗机对超精加工后的圆锥滚子轴承内圈进行清洗,去除表面粘附杂质。
(4)效果对比
采用超景深显微镜测量加工后圆锥滚子轴承内圈滚道表面微结构的几何参数,采用Matlab软件统计微结构中微沟槽占轴承内圈滚道总面积的比例,采用万能摩擦磨损试验机施加6000N径向载荷,并将摩擦副浸泡于68号润滑油中进行摩擦磨损试验,分别测量油膜承载力、摩擦副温升、磨损量以及摩擦系数,并将各项检测结果进行对比,结果如表1所示:
表1不同强化液成分配比加工效果及其性能比较
Figure BDA0003191977730000111
从表1可见,按聚氧乙烯烷基醚5%,烷基硫酸酯钠3%、磷酸三丁酯1%、脂肪酸胺1%以及水90%的质量百分比配制的强化液效果最好。
案例2,钢珠直径和表面硬度对微结构及其摩擦学性能的影响
(1)强化研磨料的配制
①强化液按案例1的步骤(1)中的①方案2配制;
②钢珠按以下3种方案配制
方案1,分别选用直径为1.5mm和1mm且表面硬度低于低于60HRC的两种钢珠;
方案2,分别选用直径为2.5mm和0.5mm且表面硬度高于60HRC的两种钢珠;
方案3,分别选用直径为3.5mm和1.5mm且表面硬度高于60HRC的两种钢珠;
③棕刚玉研磨粉及强化研磨料按案例1的步骤(1)中的③和④配制三种不同的强化研磨料。
(2)冲研强化加工
按案例1的步骤(2)所述的加工步骤执行。
(3)超精加工
按案例1的步骤(3)所述的加工步骤执行。
(4)加工效果对比
分别采用案例1的步骤(4)所述的仪器测量样品的各项指标,结果如表2所示:
表2不同直径和硬度的钢珠加工效果及其性能比较
Figure BDA0003191977730000121
Figure BDA0003191977730000131
从表2可见,分别选用直径为2.5mm和0.5mm且表面硬度高于60HRC的两种钢珠效果最好。
案例3,棕刚玉研磨粉粒径对微结构及其摩擦学性能的影响
(1)强化研磨料的配制
①强化液按案例1的步骤(1)中的①方案2配制;
②钢珠按案例1的步骤(1)中的②配制;
③棕刚玉研磨粉按以下三种方案配制:
方案1,先将棕刚玉研磨粉过400目筛,收集筛上面的棕刚玉研磨粉,再过300目筛,收集筛下面的棕刚玉研磨粉。
方案2,先将棕刚玉研磨粉过550目筛,收集筛上面的棕刚玉研磨粉,再过500目筛,收集筛下面的棕刚玉研磨粉。
方案3,先将棕刚玉研磨粉过550目筛,收集筛下面的棕刚玉研磨粉,再过600目筛,收集筛上面的棕刚玉研磨粉。
④强化研磨料按案例1的步骤(1)中的④配制三种不同的强化研磨料。
(2)冲研强化加工
按案例1的步骤(2)所述的加工步骤执行。
(3)超精加工
按案例1的步骤(3)所述的加工步骤执行。
(4)加工效果对比
分别采用案例1的步骤(4)所述的仪器测量样品的各项指标,结果如表3所示。
表3不同粒径的棕刚玉研磨粉加工效果及其性能比较
Figure BDA0003191977730000141
由表3可见,选用粒径为500目的棕刚玉研磨粉加工效果最好。
案例4,强化研磨料配比对微结构及其摩擦学性能的影响
(1)强化研磨料的配制
①强化液按案例1的步骤(1)中的①方案2配制;
②钢珠和棕刚玉研磨粉按案例1的步骤(1)中的②配制;
③棕刚玉研磨粉按案例1的步骤(1)中的③配制;
④按以下方案配制9种不同的强化研磨料:
方案1,直径为2.5mm且硬度高于60HRC的钢珠和强化液按50:1的质量比配制粗加工强化研磨料;直径为0.5mm且硬度高于60HRC的钢珠和强化液按50:1的质量比配制粗精加工强化研磨料;粒径为500目的棕刚玉研磨粉和强化液按5:1的质量比配制精加工强化研磨料;
方案2,直径为2.5mm且硬度高于60HRC的钢珠和强化液按100:1的质量比配制粗加工强化研磨料;粗精加工和精加工强化研磨料按方案1配制;
方案3,直径为2.5mm且硬度高于60HRC的钢珠和强化液按200:1的质量比配制粗加工强化研磨料;粗精加工和精加工强化研磨料按方案1配制;
方案4,粗加工和精加工强化研磨料按方案2配制;粗精加工强化研磨料采用直径为0.5mm且硬度高于60HRC的钢珠和强化液按25:1的质量比配制;
方案5,粗加工和精加工强化研磨料按方案2配制;粗精加工强化研磨料采用直径为0.5mm且硬度高于60HRC的钢珠和强化液按75:1的质量比配制;
方案6,粗加工和粗精加工强化研磨料按方案2配制;精加工强化研磨料采用粒径为500目的棕刚玉研磨粉和强化液按2.5:1的质量比配制精加工强化研磨料;
方案7,粗加工和粗精加工强化研磨料按方案2配制;精加工强化研磨料采用粒径为500目的棕刚玉研磨粉和强化液按7.5:1的质量比配制精加工强化研磨料;
(2)冲研强化加工
按案例1的步骤(2)所述的加工步骤执行。
(3)超精加工
按案例1的步骤(3)所述的加工步骤执行。
(4)加工效果对比
分别采用案例1的步骤(4)所述的仪器测量样品的各项指标,结果如表4所示:
表4不同强化研磨料配比加工效果及其性能比较
Figure BDA0003191977730000161
Figure BDA0003191977730000171
从表4可见,粗加工强化研磨料采用直径为2.5mm且硬度高于60HRC的钢珠和强化液按100:1的质量比配制,粗精加工强化研磨料采用直径为0.5mm且硬度高于60HRC的钢珠和强化液按50:1的质量比配制,精加工强化研磨料采用粒径为500目的棕刚玉研磨粉和强化液按5:1的质量比配制效果最好。
案例5,强化研磨料冲击频率对微结构及其摩擦学性能的影响
(1)强化研磨料的配制按案例1的步骤(1)中的②-④以及①的方案2执行。
(2)冲研强化加工
将强化研磨料装入冲研强化加工系统的存储装置中,再将超声清洗后的轴承内圈装夹至所述冲研强化加工系统的工作台上,分别将强化研磨料的喷射频率设置为0.5Hz、1.5Hz、2.5Hz、3.5Hz,进行冲研强化加工。加工步骤按案例1的步骤(2)中的SS1-SS6进行。
(3)超精加工按例1的步骤(3)执行。
(4)加工效果对比
分别采用案例1的步骤(4)所述的仪器测量样品的各项指标,结果如表5所示。
表5不同强化研磨料冲击频率加工效果及其性能比较
Figure BDA0003191977730000181
从表5可见,强化研磨料的喷射频率设置为1.5Hz和2.5Hz的加工效果最好。
案例6,强化研磨料冲击角度对微结构及其摩擦学性能的影响
(1)强化研磨料的配制按案例1的步骤(1)中的②-④以及①的方案2执行。
(2)冲研强化加工
分别调整强化研磨料喷头的出口轴线与轴承内圈冲击点切线的夹角α大小为50°、55°、60°,并调整强化研磨料喷头5出口中心与轴承内圈冲击点的距离L为10cm。其他步骤按案例1的步骤(2)执行。
(3)超精加工按例1的步骤(3)执行。
(4)加工效果对比
分别采用案例1的步骤(4)所述的仪器测量样品的各项指标,结果如表6所示:
表6不同强化研磨料冲击角度加工效果及其性能比较
Figure BDA0003191977730000191
从表6可见,强化研磨料喷头的出口轴线与轴承内圈冲击点切线的夹角α大小为55°效果最好。
案例7,强化研磨料冲距离对微结构及其摩擦学性能的影响
(1)强化研磨料的配制按案例1的步骤(1)中的②-④以及①的方案2执行。
(2)冲研强化加工
分别调整强化研磨料喷头出口中心与轴承内圈冲击点的距离为5cm、10cm、15cm。其他步骤按案例1的步骤(2)执行。
(3)超精加工按例1的步骤(3)执行。
(4)加工效果对比
分别采用案例1的步骤(4)所述的仪器测量样品的各项指标,结果如表7所示:
表7不同强化研磨料冲击距离加工效果及其性能比较
Figure BDA0003191977730000201
从表7可见,强化研磨料喷头出口中心与轴承内圈冲击点的距离为10cm效果最好。
案例8,强化研磨料冲击速度和轴承内圈自转速度对微结构及其摩擦学性能的影
(1)强化研磨料的配制按案例1的步骤(1)中的②-④以及①的方案2执行。
(2)冲研强化加工
按不同强化研磨料冲击速度和轴承内圈自转速度,分别设置以下5种方案:
方案1,强化研磨料冲击速度设置为50m/s,圆锥滚子轴承内圈最大自转线速度设置为0.05m/s;
方案2,强化研磨料冲击速度设置为100m/s,圆锥滚子轴承内圈最大自转线速度设置为0.05m/s;
方案3,强化研磨料冲击速度设置为200m/s,圆锥滚子轴承内圈最大自转线速度设置为0.05m/s;
方案4,强化研磨料冲击速度设置为100m/s,圆锥滚子轴承内圈最大自转线速度设置为0.02m/s;
方案5,强化研磨料冲击速度设置为100m/s,圆锥滚子轴承内圈最大自转线速度设置为0.10m/s;
其他步骤按案例1的步骤(2)执行。
(3)超精加工按例1的步骤(3)执行。
(4)加工效果对比
分别采用案例1的步骤(4)所述的仪器测量样品的各项指标,结果如表8所示:
表8不同强化研磨料冲击速度和轴承自转速度加工效果及其性能比较
Figure BDA0003191977730000211
Figure BDA0003191977730000221
从表8可见,强化研磨料冲击速度设置为100m/s,圆锥滚子轴承内圈最大自转线速度设置为0.05m/s效果最好。
案例9,超精去除厚度对微结构及其摩擦学性能的影响
(1)强化研磨料的配制按案例1的步骤(1)中的②-④以及①的方案2执行。
(2)冲研强化加工按案例1的步骤(2)执行。
(3)超精加工
超精去除厚度分别设置为2μm、4μm、6μm,其他步骤按案例1的步骤(3)执行。
(4)效果对比
分别采用案例1的步骤(4)所述的仪器测量样品的各项指标,结果如表9所示:
表9不同强化研磨料冲击速度和轴承自转速度加工效果及其性能比较
Figure BDA0003191977730000231
从表9可见,超精去除厚度为4μm的效果最好。
案例10,本发明的微结构与现有的微结构的摩擦学性能对比
(1)微结构加工
①在30206圆锥滚子轴承内圈滚道表面按照案例1的方案2加工非规则微结构作为对比例1;
②按照专利申请号为202110072555的发明专利申请公开的“一种内外圈滚道表面带有微织构的球轴承及加工方法”在30206圆锥滚子轴承内圈滚道表面加工规则排列的微结构作为对比例2;
③按照申请公布号为CN112797075A的发明专利申请公开的“一种内外圈滚道表面带有微织构的滚子轴承及其加工方法”在30206圆锥滚子轴承内圈滚道表面加工规则排列的微结构作为对比例3。
(2)效果对比
分别采用案例1的步骤(4)所述的仪器测量样品的各项指标,结果如表10所示:
表10不同微结构摩擦学性能比较
Figure BDA0003191977730000241
从表10可见,本发明的非规则微结构的摩擦学性能最好。
上述为本发明较佳的实施方式,但本发明的实施方式并不受上述内容的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种圆锥滚子轴承内圈滚道表面微流互通微结构,其特征在于,包括设置在圆锥滚子轴承内圈滚道表面的微沟槽,所述微沟槽沿滚道的圆周方向离散分布,且相互连通;所述微沟槽宽度为5-25μm,平均深度为3-8μm;位于滚道表面的微沟槽的面积之和为该滚道总面积的15-35%。
2.根据权利要求1所述的圆锥滚子轴承内圈滚道表面微流互通微结构,其特征在于,所述微结构的平均表面硬度高于63HRC,且微凸起的最高点与微沟槽的最低点之间的垂直距离小于10μm。
3.一种用于权利要求1或2所述的圆锥滚子轴承内圈滚道表面微流互通微结构的加工方法,其特征在于,包括以下步骤:
S1、采用超声波清洗机对待加工的圆锥滚子轴承的内圈进行清洗,去除表面油迹并烘干;
S2、采用冲研强化加工系统对圆锥滚子轴承内圈滚道表面进行脉冲式冲研强化加工;
S3、采用轴承滚道超精机床对冲研强化后的圆锥滚子轴承内圈滚道表面进行超精加工;
S4、采用超声波清洗机对超精加工后的圆锥滚子轴承的套圈进行清洗,去除表面粘附杂质。
4.根据权利要求3所述的圆锥滚子轴承内圈滚道表面微流互通微结构的加工方法,其特征在于,在步骤S2中,使用装有强化研磨料的冲研强化加工系统对圆锥滚子轴承内圈滚道表面进行脉冲式冲研强化加工,其中,所述强化研磨料由钢珠、研磨粉、强化液中的其中两种物料组成。
5.根据权利要求4所述的圆锥滚子轴承内圈滚道表面微流互通微结构的加工方法,其特征在于,强化研磨料以1-3Hz的频率冲击轴承滚道表面,包括以下步骤:
SS1、调整强化研磨料喷头的出口轴线与轴承内圈冲击点切线的平面夹角大小为53-57°,并调整强化研磨料喷头出口中心与轴承内圈冲击点的距离为8-10cm;
SS2、启动冲研强化加工系统,使圆锥滚子轴承内圈以0.05-0.08m/s的最大线速度自转;
SS3、使用由直径为2.5-3mm、表面硬度高于60HRC的钢珠和强化液按100:1的质量比配制而成的强化研磨料以80-150m/s的速度对圆锥滚子轴承内圈滚道表面进行冲研强化加工,直至滚道表面被全覆盖加工;
SS4、使用由直径为0.5-1mm、表面硬度高于60HRC的钢珠和强化液按50:1的质量比配制而成的强化研磨料以80-150m/s的速度对圆锥滚子轴承内圈滚道表面进行冲研强化加工,直至滚道表面被全覆盖加工;
SS5、使用由粒径为500目的棕刚玉研磨粉和强化液按5:1的质量比配制而成的强化研磨料以80-150m/s的速度对圆锥滚子轴承内圈滚道表面进行冲研强化加工,直至滚道表面被全覆盖加工;
SS6、采用超声波清洗机对加工后的圆锥滚子轴承内圈进行清洗,去除表面粘附杂质。
6.根据权利要求4或5所述的圆锥滚子轴承内圈滚道表面微流互通微结构的加工方法,其特征在于,所述强化液由以下质量百分比的原料组成:聚氧乙烯烷基醚5%,烷基硫酸酯钠3%、磷酸三丁酯1%、脂肪酸胺1%,其余为水。
7.根据权利要求4所述的圆锥滚子轴承内圈滚道表面微流互通微结构的加工方法,其特征在于,在步骤S3中,对冲研强化后的圆锥滚子轴承内圈滚道表面进行超精加工时,超精去除厚度为3-5μm。
CN202110880885.9A 2021-08-02 2021-08-02 圆锥滚子轴承内圈滚道表面微流互通微结构及加工方法 Active CN113669371B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110880885.9A CN113669371B (zh) 2021-08-02 2021-08-02 圆锥滚子轴承内圈滚道表面微流互通微结构及加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110880885.9A CN113669371B (zh) 2021-08-02 2021-08-02 圆锥滚子轴承内圈滚道表面微流互通微结构及加工方法

Publications (2)

Publication Number Publication Date
CN113669371A CN113669371A (zh) 2021-11-19
CN113669371B true CN113669371B (zh) 2022-12-23

Family

ID=78541110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110880885.9A Active CN113669371B (zh) 2021-08-02 2021-08-02 圆锥滚子轴承内圈滚道表面微流互通微结构及加工方法

Country Status (1)

Country Link
CN (1) CN113669371B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321816A (ja) * 1991-04-18 1992-11-11 Ntn Corp 歯車軸支持装置
CN101158371A (zh) * 2007-11-07 2008-04-09 张荣发 实现圆锥滚子轴承低摩擦的方法及其结构
WO2011105077A1 (ja) * 2010-02-23 2011-09-01 日本精工株式会社 ころ軸受およびその製造方法
CN102518679A (zh) * 2011-12-07 2012-06-27 瓦房店冶矿轴承制造有限公司 一种单列推力圆锥滚子轴承滚道磨削方法
CN104930054A (zh) * 2015-07-01 2015-09-23 中国科学院兰州化学物理研究所 一种滚子轴承
CN111425525A (zh) * 2019-01-09 2020-07-17 斯凯孚公司 具有改进性能的滚动接触轴承

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012204409B3 (de) * 2012-03-20 2013-09-19 Aktiebolaget Skf Verfahren zur Herstellung eines Wälzlagers und Wälzlager

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321816A (ja) * 1991-04-18 1992-11-11 Ntn Corp 歯車軸支持装置
CN101158371A (zh) * 2007-11-07 2008-04-09 张荣发 实现圆锥滚子轴承低摩擦的方法及其结构
WO2011105077A1 (ja) * 2010-02-23 2011-09-01 日本精工株式会社 ころ軸受およびその製造方法
CN102518679A (zh) * 2011-12-07 2012-06-27 瓦房店冶矿轴承制造有限公司 一种单列推力圆锥滚子轴承滚道磨削方法
CN104930054A (zh) * 2015-07-01 2015-09-23 中国科学院兰州化学物理研究所 一种滚子轴承
CN111425525A (zh) * 2019-01-09 2020-07-17 斯凯孚公司 具有改进性能的滚动接触轴承

Also Published As

Publication number Publication date
CN113669371A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
CN104608046B (zh) 轴承圆柱滚子圆柱面的超精加工方法
JP5920221B2 (ja) 作動装置の製造方法
KR20170089866A (ko) 더블 디스크 직선홈 원통형 부품 표면 연마 디스크
CN109746833B (zh) 圆锥滚子球基面磨削力的计算方法
Guo et al. Effects of spherical-platform texture parameters on the tribological performance of water-lubricated bearings
He et al. Investigation on wear modes and mechanisms of abrasive belts in grinding of U71Mn steel
Zhou et al. Kinematics and trajectory in processing precision balls with eccentric plate and variable-radius V-groove
JP2009202307A (ja) 転動摺動装置部材の研磨方法及び転動摺動装置部材
CN109514277B (zh) 一种微纳复合织构导轨及其制备方法
Merklein et al. Influence of tool surface on tribological conditions in conventional and dry sheet metal forming
Feng et al. Processing of high-precision ceramic balls with a spiral V-groove plate
CN113669371B (zh) 圆锥滚子轴承内圈滚道表面微流互通微结构及加工方法
Zhao et al. Tribological and dynamic performance analysis of rolling bearings with varied surface textures operating under lubricant contamination
JP2010265926A (ja) ころ軸受
Kang et al. A novel eccentric lapping machine for finishing advanced ceramic balls
CN102152193B (zh) 超硬微小半球偶件的磨削加工方法
Wang et al. Advance on surface finishing technology of precision bearing cylindrical rollers
Zhao et al. Analysis of the tribological and dynamic performance of textured bearings under contaminated conditions
Galda et al. Improvement of tribological properties of co-acting elements by oil pockets creation on sliding surfaces
Menezes et al. Role of surface texture on friction under boundary lubricated conditions
JP2010169182A (ja) ころ軸受
Vignesh et al. Frictional performance of dimpled textured surfaces on a frictional pair: an experimental study
Mohmad et al. The effect of dimple size on the tribological performances of a laser surface textured palm kernel activated carbon-epoxy composite
CN110814928B (zh) 一种高表面光洁度圆球加工方法
Feng et al. Polishing investigation on zirconia ceramics using magnetic compound fluid slurry

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant