CN113667883A - 一种高寒地区用稀土微合金化耐候桥梁钢的制造方法 - Google Patents

一种高寒地区用稀土微合金化耐候桥梁钢的制造方法 Download PDF

Info

Publication number
CN113667883A
CN113667883A CN202110849583.5A CN202110849583A CN113667883A CN 113667883 A CN113667883 A CN 113667883A CN 202110849583 A CN202110849583 A CN 202110849583A CN 113667883 A CN113667883 A CN 113667883A
Authority
CN
China
Prior art keywords
rare earth
steel
equal
temperature
weather
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110849583.5A
Other languages
English (en)
Inventor
张军
隋鑫
陆斌
张帅
柳婕
谷鑫
孙长玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baotou Iron and Steel Group Co Ltd
Original Assignee
Baotou Iron and Steel Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baotou Iron and Steel Group Co Ltd filed Critical Baotou Iron and Steel Group Co Ltd
Priority to CN202110849583.5A priority Critical patent/CN113667883A/zh
Publication of CN113667883A publication Critical patent/CN113667883A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Abstract

本发明公开了一种高寒地区用稀土微合金化耐候桥梁钢的制造方法,与现有技术相比,本方法首先是添加稀土的方式不同,通过板坯浇注的过程中加入含有稀土铈Ce的稀土丝,改善了在RH精炼过程中加入稀土合金造成稀土收得率低的弊端,稀土元素收得率大于80%;其次桥梁钢钢板的稀土含量大于60ppm,通过较高的稀土含量来提升钢板的低温冲击性能,改善耐候性能,一定程度上颠覆了长期以来认为的只有少量稀土(0~10ppm)会对钢板产生有益的改善,大量添加稀土反而会产生夹杂物影响钢板性能的这一认知。

Description

一种高寒地区用稀土微合金化耐候桥梁钢的制造方法
技术领域
本发明涉及中厚板制造技术领域,尤其涉及一种高寒地区用稀土微合金化耐候桥梁钢的制造方法。
背景技术
近年来交通运输业的发展带动了我国桥梁建设事业的极大进步,各种公路桥、铁路桥、跨海大桥等大规模建设为桥梁用钢创造了巨大的市场,社会、科技的进步也对桥梁用钢的性能提出了更高的要求,高强度、高韧性、优异的可焊接性、耐腐蚀性以及抗疲劳性能等成为了高性能桥梁用钢所应具备的特性。同时桥梁设计理念的转变以及对桥梁制造周期等方面的要求也日益提高,传统的结构钢板已不能完全满足桥梁设计及施工要求,开发强度、断裂韧性、焊接性、耐蚀性以及加工性能等方面均优于传统钢铁材料的高性能桥梁用钢十分必要。对高性能、高强度钢材的研究及推广不仅促进了钢桥结构形式的多样化、合理化,并使钢桥能够在更广范围内得以应用。
稀土元素作为包头地区的特色资源,随着近些年钢铁行业去产能和转型升级的推动,发挥稀土资源优势,提高稀土钢的市场地位必然成为重要课题,目前研究的稀土钢板(如稀土桥梁钢、稀土高强钢、稀土耐磨钢等),稀土含量都是在30ppm以下,对于高稀土含量的钢板研究甚少。
发明内容
本发明的目的是提供一种高寒地区用稀土微合金化耐候桥梁钢的制造方法,在钢液凝固过程中以喂入合金稀土丝的方式加入稀土,析出的稀土硫化物尺寸更小,相同稀土加入量时收得率大大提高,钢中析出的稀土硫化物的数量也更多,大量细小弥散的稀土硫化物能对晶界起到强烈的钉轧作用,有助于改善钢板的冲击韧性的同时提升钢板的耐腐蚀性能。避免了在炼钢过程加入稀土,由于稀土元素活泼性很强,在炼钢温度下挥发较快,成品的稀土收得率很低,且钢液中生成的稀土夹杂物尺寸较大,不利于改善钢的内部组织这一弊端。
为解决上述技术问题,本发明采用如下技术方案:
一种高寒地区用稀土微合金化耐候桥梁钢的制造方法,包括:
S1.KR脱硫及转炉炼钢:铁水预处理后铁水硫含量S≤0.010%,温度≥1280℃;铁水入转炉前将渣扒干净,转炉终点控制C-T协调出钢,P≤0.010%,S≤0.015%,出钢时间4~7min,出钢1/5时加入合金,加铝铁对钢液进行脱氧,除Al以外的合金按正常要求添加,出钢2/5量加完合金,出钢过程中视终点氧含量加入适量的改质剂和石灰;
S2.炉外精炼:LF炉精炼采用氧化物冶金技术对钢液进行造渣和脱氧操作,快速造白渣,且保证白渣时间15min以上,稳定渣碱度;LF精炼出站前尽量将合金配加至目标要求范围,保证S含量低于0.003%,喂丝吹氩5min后加入B-Fe=0.018~0.020%;
S3.RH精炼:RH尽量不调整成分,所有成分调整要在LF完成,RH到站钢液温度1590~1620℃,要求抽气≯4分钟最小真空度即可达到266Pa以下且真空处理过程中真空度波动反弹≤100Pa,真空处理过程中调节环流氩气流量,保证钢水充分的循环,软吹5~6分钟,总真空处理时间>20min,破空后钢水中[H]≤1.2ppm、[O]≤20ppm、[N]≤40ppm;
S4.连铸及稀土处理:强化大包-中包-结晶器之间保证密闭性和中包液面覆盖剂厚度,强化中包氩气吹扫,避免连铸过程中吸气,全程增N量控制在5ppm以内;液相线1520℃,中包过热度控制23~33℃,连铸拉速采用中板铸坯生产拉速执行稳态浇铸,同时在浇注过程中以喂丝的方式在结晶器喂入铈铁稀土包芯线,稀土添加量由稀土包芯线喂丝速度进行调整,生产连铸坯厚度250mm,连铸全程实行保护浇铸;
S5.加热:加热温度1220~1260℃,出炉板坯心部温度大于1180℃,确保均热段保温≥60分钟,保证钢坯烧透、均匀;
S6.轧制工艺:采用两阶段控轧,一阶段开轧温度大于1150℃,压下率60%~70%;二阶段开轧温度850~900℃,终轧温度控制在750~800℃,每道次压下率均≥12%,最后三道次累计压下率不小于≥40%;轧后水冷:冷却速率14℃/s~21℃/s,终冷温度600~680℃,下线堆垛缓冷;
S7.剪切:采用常规空冷方式冷却以后,经过分段剪切,取样后入库。
进一步的,钢的化学成分按质量百分比为:
C=0.060~0.100%,Si=0.15~0.45%,Mn=1.20~1.60%,P≤0.020%,S≤0.005%,Als=0.015~0.035%,Nb=0.020~0.040%,Ti=0.010~0.020%,Gr=0.020~0.060%,Mo=0.002~0.005%,Ni=0.015~0.035%,Cu=0.015~0.035%,Ce≥0.0060%,其余为Fe和不可避免的杂质。
进一步的,钢的成分质量百分组成为:
C=0.072%,Si=0.32%,Mn=1.46%,P=0.016%,S=0.004%,Als=0.022%,Nb=0.028%,Ti=0.011%,Gr=0.027%,Mo=0.003%,Ni=0.020%,Cu=0.020%,Ce=0.0200%,其余为Fe和不可避免的杂质。
进一步的,钢的成分质量百分组成为:
C=0.071%,Si=0.32%,Mn=1.41%,P=0.012%,S=0.003%,Als=0.023%,Nb=0.025%,Ti=0.011%,Gr=0.028%,Mo=0.004%,Ni=0.019%,Cu=0.016%,Ce=0.0370,其余为Fe和不可避免的杂质。
与现有技术相比,本发明的有益技术效果:
不同于常规操作在RH精炼过程中加入稀土合金的操作方法,本发明是在板坯浇注的过程中加入含有稀土铈Ce的稀土丝,使稀土铈Ce在铸坯中均匀扩散,成品钢板中的稀土铈Ce含量在60ppm以上,稀土元素收得率大于80%。
本发明的成份设计与普通桥梁钢、普通低稀土含量桥梁钢(20ppm以下)不同,采用低碳成份设计,通过大量的稀土氧化物来改善夹杂物的形态和净化晶界,提高晶界的强度,阻止低温状态下冲击产生的延晶界断裂,有效提高钢材的冲击韧性。且通过稀土净化钢液、夹杂物改性及合金化作用,形成致密连续、附着性好的稀土复合氧化物,较高的稀土含量通过改善锈层的氧化物种类、形成过程,促进微合金元素在内锈层中富集,可显著提高钢的耐腐蚀性。
与现有技术相比,本方法首先是添加稀土的方式不同,通过板坯浇注的过程中加入含有稀土铈Ce的稀土丝,改善了在RH精炼过程中加入稀土合金造成稀土收得率低的弊端,稀土元素收得率大于80%。其次桥梁钢钢板的稀土含量大于60ppm,通过较高的稀土含量来提升钢板的低温冲击性能,改善耐候性能,一定程度上颠覆了长期以来认为的只有少量稀土(0~10ppm)会对钢板产生有益的改善,大量添加稀土反而会产生夹杂物影响钢板性能的这一认知。
附图说明
下面结合附图说明对本发明作进一步说明。
图1为实施例1中Q345qD-RE桥梁钢典型金相组织;
图2为实施例2中Q345qD-RE桥梁钢典型金相组织;
图3为不同稀土含量Q345qD-RE桥梁钢72h盐雾腐蚀形貌典型图。
图4为不同稀土含量Q345qD-RE桥梁钢168h盐雾腐蚀形貌典型图。
具体实施方式
实施例1:
Q345qD-RE桥梁钢钢板生产工艺,钢的成分质量百分组成为:C=0.072,Si=0.32,Mn=1.46,P=0.016,S=0.004,Als=0.022,Nb=0.028,Ti=0.011,Gr=0.027,Mo=0.003,Ni=0.020,Cu=0.020,Ce=0.0200。
主要工艺步骤及参数如下:
入炉铁水必须先进行铁水预处理,处理后铁水硫含量s≤0.010%,温度≥1250℃,铁水入转炉前必须将渣扒干净,转炉冶炼过程加入铁水及废钢,铁水与废钢配比为铁水85%左右,废钢15%左右。转炉终点控制C-T协调出钢,P≤0.012%,S≤0.015%,严格挡渣出钢,出钢时间4~7min,出钢1/5时加入合金,出钢2/5量加完合金,出钢过程中视终点氧含量加入适量的改质剂和石灰,氧不少于250m,并视装入量、终点C、钢水氧化性的变化进行适当调整,然后将钢水运送到LF精炼炉进行精炼操作。
LF精炼对钢液进行造白渣和脱氧操作,确保钢中氧、硫等元素的含量控制在较低的水平,快速造白渣,且保证白渣时间15min以上,稳定渣碱度;LF精炼出站前尽量将合金配加至目标要求范围,OT≤20ppm,N≤40ppm,保证S含量低于0.003%。
RH到站钢液温度1590~1620℃,要求抽气≯4分钟最小真空度即可达到266Pa以下且真空处理过程中真空度波动反弹≤100Pa,真空处理过程中调节环流氩气流量,保证钢水充分的循环,软吹5~6分钟,总真空处理时间>20min,破空后钢水中[H]≤1.2ppm、[O]≤20ppm、[N]≤40ppm;
强化大包-中包-结晶器之间保证密闭性和中包液面覆盖剂厚度,强化中包氩气吹扫,避免连铸过程中吸气,全程增N量控制在5ppm以内;液相线1520℃,中包过热度控制23~33℃,连铸拉速采用中板铸坯生产拉速执行稳态浇铸,同时在浇注过程中以喂丝的方式在结晶器喂入铈铁稀土包芯线,稀土添加量由稀土包芯线喂丝速度进行调整,生产连铸坯厚度250mm,连铸全程实行保护浇铸;
加热制度:加热段温度不高于1260℃,均热温度1220℃~1260℃,确保均热段保温≥60分钟,保证钢坯烧透、均匀。轧制工艺:两阶段控轧,一阶段开轧温度大于1150℃,压下率60%~70%;二阶段开轧温度850~900℃,终轧温度控制在750~800℃,每道次压下率均≥12%,最后三道次累计压下率不小于≥40%;轧后水冷:冷却速率14℃/s~21℃/s,终冷温度600~680℃,下线堆垛缓冷。按上述技术方案生产的钢板性能实绩如表1、表2。
表1拉伸性能典型值
Figure BDA0003181927220000061
表2横、纵向系列温度冲击功典型值(kJ/m2)
Figure BDA0003181927220000062
按本技术方案生产的Q345qD-RE桥梁钢钢板稀土Ce含量为200ppm,-20℃低温冲击远高于标准要求的120kJ/m2。金相显微组织如图1所示,从金相显微组织可以看出,组织为均匀分布的细小的铁素体+珠光体组织,与表1、表2的机械性能是相一致的。
实施例2:
Q345qD-RE桥梁钢钢板生产工艺,钢的成分质量百分组成为:C=0.071,Si=0.32,Mn=1.41,P=0.012,S=0.003,Als=0.023,Nb=0.025,Ti=0.011,Gr=0.028,Mo=0.004,Ni=0.019,Cu=0.016,Ce=0.0370。
主要工艺步骤及参数如下:
入炉铁水必须先进行铁水预处理,处理后铁水硫含量s≤0.010%,温度≥1250℃,铁水入转炉前必须将渣扒干净,转炉冶炼过程加入铁水及废钢,铁水与废钢配比为铁水85%左右,废钢15%左右。转炉终点控制C-T协调出钢,P≤0.012%,S≤0.015%,严格挡渣出钢,出钢时间4~7min,出钢1/5时加入合金,出钢2/5量加完合金,出钢过程中视终点氧含量加入适量的改质剂和石灰,氧不少于250m,并视装入量、终点C、钢水氧化性的变化进行适当调整,然后将钢水运送到LF精炼炉进行精炼操作。
LF精炼对钢液进行造白渣和脱氧操作,确保钢中氧、硫等元素的含量控制在较低的水平,快速造白渣,且保证白渣时间15min以上,稳定渣碱度;LF精炼出站前尽量将合金配加至目标要求范围,OT≤20ppm,N≤40ppm,保证S含量低于0.003%。
RH到站钢液温度1590~1620℃,要求抽气≯4分钟最小真空度即可达到266Pa以下且真空处理过程中真空度波动反弹≤100Pa,真空处理过程中调节环流氩气流量,保证钢水充分的循环,软吹5~6分钟,总真空处理时间>20min,破空后钢水中[H]≤1.2ppm、[O]≤20ppm、[N]≤40ppm;
强化大包-中包-结晶器之间保证密闭性和中包液面覆盖剂厚度,强化中包氩气吹扫,避免连铸过程中吸气,全程增N量控制在5ppm以内;液相线1520℃,中包过热度控制23~33℃,连铸拉速采用中板铸坯生产拉速执行稳态浇铸,同时在浇注过程中以喂丝的方式在结晶器喂入铈铁稀土包芯线,稀土添加量由稀土包芯线喂丝速度进行调整,生产连铸坯厚度250mm,连铸全程实行保护浇铸;
加热制度:加热段温度不高于1260℃,均热温度1220℃~1260℃,确保均热段保温≥60分钟,保证钢坯烧透、均匀。轧制工艺:两阶段控轧,一阶段开轧温度大于1150℃,压下率60%~70%;二阶段开轧温度850~900℃,终轧温度控制在750~800℃,每道次压下率均≥12%,最后三道次累计压下率不小于≥40%;轧后水冷:冷却速率14℃/s~21℃/s,终冷温度600~680℃,下线堆垛缓冷。按上述技术方案生产的钢板性能实绩如表3、表4。
表3拉伸性能典型值
Figure BDA0003181927220000081
表4横、纵向系列温度冲击功典型值(kJ/m2)
Figure BDA0003181927220000082
按本技术方案生产的Q345qD-RE桥梁钢钢板稀土Ce含量为370ppm,-20℃低温冲击远高于标准要求的120kJ/m2。金相显微组织如图2所示,从金相显微组织可以看出,组织为均匀分布的细小的铁素体+珠光体组织,与表3、表4的机械性能是相一致的。
盐雾试验结果表明,随着稀土含量的增加,盐雾腐蚀速率下降。通过图3、图4看出,72h盐雾试验后,加入200ppm稀土试样对比未加入稀土试样,其相对腐蚀速率为76%,370ppm的相对腐蚀速率为74%。168h盐雾试验后,加入200ppm稀土试样对比未加入稀土试样,相对腐蚀速率为51%,370ppm的相对腐蚀速率为57%。周浸结果表明,随着稀土含量的增加,腐蚀速率下降。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (4)

1.一种高寒地区用稀土微合金化耐候桥梁钢的制造方法,其特征在于,包括:
S1.KR脱硫及转炉炼钢:铁水预处理后铁水硫含量S≤0.010%,温度≥1280℃;铁水入转炉前将渣扒干净,转炉终点控制C-T协调出钢,P≤0.010%,S≤0.015%,出钢时间4~7min,出钢1/5时加入合金,加铝铁对钢液进行脱氧,除Al以外的合金按正常要求添加,出钢2/5量加完合金,出钢过程中视终点氧含量加入适量的改质剂和石灰;
S2.炉外精炼:LF炉精炼采用氧化物冶金技术对钢液进行造渣和脱氧操作,快速造白渣,且保证白渣时间15min以上,稳定渣碱度;LF精炼出站前尽量将合金配加至目标要求范围,保证S含量低于0.003%,喂丝吹氩5min后加入B-Fe=0.018~0.020%;
S3.RH精炼:RH尽量不调整成分,所有成分调整要在LF完成,RH到站钢液温度1590~1620℃,要求抽气≯4分钟最小真空度即可达到266Pa以下且真空处理过程中真空度波动反弹≤100Pa,真空处理过程中调节环流氩气流量,保证钢水充分的循环,软吹5~6分钟,总真空处理时间>20min,破空后钢水中[H]≤1.2ppm、[O]≤20ppm、[N]≤40ppm;
S4.连铸及稀土处理:强化大包-中包-结晶器之间保证密闭性和中包液面覆盖剂厚度,强化中包氩气吹扫,避免连铸过程中吸气,全程增N量控制在5ppm以内;液相线1520℃,中包过热度控制23~33℃,连铸拉速采用中板铸坯生产拉速执行稳态浇铸,同时在浇注过程中以喂丝的方式在结晶器喂入铈铁稀土包芯线,稀土添加量由稀土包芯线喂丝速度进行调整,生产连铸坯厚度250mm,连铸全程实行保护浇铸;
S5.加热:加热温度1220~1260℃,出炉板坯心部温度大于1180℃,确保均热段保温≥60分钟,保证钢坯烧透、均匀;
S6.轧制工艺:采用两阶段控轧,一阶段开轧温度大于1150℃,压下率60%~70%;二阶段开轧温度850~900℃,终轧温度控制在750~800℃,每道次压下率均≥12%,最后三道次累计压下率不小于≥40%;轧后水冷:冷却速率14℃/s~21℃/s,终冷温度600~680℃,下线堆垛缓冷;
S7.剪切:采用常规空冷方式冷却以后,经过分段剪切,取样后入库。
2.根据权利要求1所述的高寒地区用稀土微合金化耐候桥梁钢的制造方法,其特征在于,钢的化学成分按质量百分比为:
C=0.060~0.100%,Si=0.15~0.45%,Mn=1.20~1.60%,P≤0.020%,S≤0.005%,Als=0.015~0.035%,Nb=0.020~0.040%,Ti=0.010~0.020%,Gr=0.020~0.060%,Mo=0.002~0.005%,Ni=0.015~0.035%,Cu=0.015~0.035%,Ce≥0.0060%,其余为Fe和不可避免的杂质。
3.根据权利要求2所述的高寒地区用稀土微合金化耐候桥梁钢的制造方法,其特征在于,钢的成分质量百分组成为:
C=0.072%,Si=0.32%,Mn=1.46%,P=0.016%,S=0.004%,Als=0.022%,Nb=0.028%,Ti=0.011%,Gr=0.027%,Mo=0.003%,Ni=0.020%,Cu=0.020%,Ce=0.0200%,其余为Fe和不可避免的杂质。
4.根据权利要求2所述的高寒地区用稀土微合金化耐候桥梁钢的制造方法,其特征在于,钢的成分质量百分组成为:
C=0.071%,Si=0.32%,Mn=1.41%,P=0.012%,S=0.003%,Als=0.023%,Nb=0.025%,Ti=0.011%,Gr=0.028%,Mo=0.004%,Ni=0.019%,Cu=0.016%,Ce=0.0370,其余为Fe和不可避免的杂质。
CN202110849583.5A 2021-07-27 2021-07-27 一种高寒地区用稀土微合金化耐候桥梁钢的制造方法 Pending CN113667883A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110849583.5A CN113667883A (zh) 2021-07-27 2021-07-27 一种高寒地区用稀土微合金化耐候桥梁钢的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110849583.5A CN113667883A (zh) 2021-07-27 2021-07-27 一种高寒地区用稀土微合金化耐候桥梁钢的制造方法

Publications (1)

Publication Number Publication Date
CN113667883A true CN113667883A (zh) 2021-11-19

Family

ID=78540307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110849583.5A Pending CN113667883A (zh) 2021-07-27 2021-07-27 一种高寒地区用稀土微合金化耐候桥梁钢的制造方法

Country Status (1)

Country Link
CN (1) CN113667883A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115341131A (zh) * 2022-09-13 2022-11-15 新余钢铁股份有限公司 一种提高低碳钢板连铸头坯收得率的连铸方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102884214A (zh) * 2010-03-29 2013-01-16 安赛乐米塔尔研发有限公司 具有改善的含盐环境耐候性能的钢产品
CN105624584A (zh) * 2014-11-06 2016-06-01 中国石油天然气集团公司 一种高寒地区用k65控轧钢板、直缝埋弧焊管及其制造方法
KR20160078849A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 충격인성이 우수한 저항복비형 고강도 강재 및 그 제조방법
CN105821325A (zh) * 2016-06-15 2016-08-03 山东钢铁股份有限公司 一种调质型高低温韧性管线钢及制造方法
CN110129508A (zh) * 2019-05-23 2019-08-16 包头钢铁(集团)有限责任公司 一种提高稀土高强钢冲击韧性的工艺
CN111676425A (zh) * 2020-08-12 2020-09-18 宝武集团鄂城钢铁有限公司 一种极限低温下韧性优疲劳性强的桥梁钢及其制造方法
CN111996460A (zh) * 2020-09-02 2020-11-27 燕山大学 一种焊接热影响区-40℃冲击功不低于54J的500MPa级耐候桥梁钢
CN112080702A (zh) * 2020-09-16 2020-12-15 燕山大学 焊接粗晶热影响区-60℃冲击吸收功不低于60j的耐候桥梁钢

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102884214A (zh) * 2010-03-29 2013-01-16 安赛乐米塔尔研发有限公司 具有改善的含盐环境耐候性能的钢产品
CN105624584A (zh) * 2014-11-06 2016-06-01 中国石油天然气集团公司 一种高寒地区用k65控轧钢板、直缝埋弧焊管及其制造方法
KR20160078849A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 충격인성이 우수한 저항복비형 고강도 강재 및 그 제조방법
CN105821325A (zh) * 2016-06-15 2016-08-03 山东钢铁股份有限公司 一种调质型高低温韧性管线钢及制造方法
CN110129508A (zh) * 2019-05-23 2019-08-16 包头钢铁(集团)有限责任公司 一种提高稀土高强钢冲击韧性的工艺
CN111676425A (zh) * 2020-08-12 2020-09-18 宝武集团鄂城钢铁有限公司 一种极限低温下韧性优疲劳性强的桥梁钢及其制造方法
CN111996460A (zh) * 2020-09-02 2020-11-27 燕山大学 一种焊接热影响区-40℃冲击功不低于54J的500MPa级耐候桥梁钢
CN112080702A (zh) * 2020-09-16 2020-12-15 燕山大学 焊接粗晶热影响区-60℃冲击吸收功不低于60j的耐候桥梁钢

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115341131A (zh) * 2022-09-13 2022-11-15 新余钢铁股份有限公司 一种提高低碳钢板连铸头坯收得率的连铸方法

Similar Documents

Publication Publication Date Title
CN110129508A (zh) 一种提高稀土高强钢冲击韧性的工艺
CN103320713B (zh) 一种高强度耐候钢及制备方法
CN103627841B (zh) 耐磨钢钢水氮含量控制方法
CN108315646B (zh) 一种连铸生产的热轧圆钢及其生产方法
CN112063930B (zh) 稀土处理低成本高韧性低温压力容器钢板及其生产方法
CN101921953A (zh) 耐腐蚀高强度超厚钢板的生产方法
CN109161671B (zh) 一种大线能量焊接用高强度eh36钢板及其制造方法
CN108866444A (zh) 耐腐蚀镜面模具钢及其制备方法
CN114000048A (zh) 一种公称直径12.5mm的预应力钢绞线用SWRH82B热轧盘条及其制备方法
CN108893682B (zh) 模具钢钢坯及其制备方法
CN110819896A (zh) 一种精密压延用超薄奥氏体不锈钢带材的冶炼方法
CN103695801A (zh) 一种高韧性、高耐候钢及其制造方法
CN114672605B (zh) 耐蚀钢筋机械连接套筒、盘条及盘条的生产方法
CN110029268B (zh) 一种保心部低温韧性的低温压力容器用09MnNiDR钢板及制造方法
CN113528962B (zh) 耐蚀钢筋以及耐蚀钢筋的生产方法
CN102776443B (zh) 一种420MPa级别低合金高强度特厚钢板及其制造方法
CN103643117A (zh) 一种超低铝钢及其冶炼方法
CN108034897B (zh) 一种低压缩比条件生产的特厚板及其生产方法
CN113667883A (zh) 一种高寒地区用稀土微合金化耐候桥梁钢的制造方法
CN116716544B (zh) 一种海洋工程用圆钢及其制备方法
CN112662948A (zh) RE-Cr-Cu复合耐蚀钢及其制备方法
CN112553519A (zh) 低屈强比低成本高性能建筑结构用q420gj中厚钢板的制造方法
CN111893240A (zh) 一种利用稀土提高Nb、Ti微合金钢焊接性能的方法
CN108660289A (zh) 一种解决含铜钢铜脆缺陷的方法
CN116657043A (zh) 一种低碱度胎圈钢丝用钢及其生产工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211119

RJ01 Rejection of invention patent application after publication