CN113661518B - 标识图像数据内的病灶的边界 - Google Patents
标识图像数据内的病灶的边界 Download PDFInfo
- Publication number
- CN113661518B CN113661518B CN202080026839.6A CN202080026839A CN113661518B CN 113661518 B CN113661518 B CN 113661518B CN 202080026839 A CN202080026839 A CN 202080026839A CN 113661518 B CN113661518 B CN 113661518B
- Authority
- CN
- China
- Prior art keywords
- image data
- lesion
- uncertainty
- probability
- potential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/12—Edge-based segmentation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/143—Segmentation; Edge detection involving probabilistic approaches, e.g. Markov random field [MRF] modelling
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/187—Segmentation; Edge detection involving region growing; involving region merging; involving connected component labelling
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20092—Interactive image processing based on input by user
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30096—Tumor; Lesion
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Primary Health Care (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Pathology (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Multimedia (AREA)
- Quality & Reliability (AREA)
- Probability & Statistics with Applications (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Analysis (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP19167213.8A EP3719746A1 (en) | 2019-04-04 | 2019-04-04 | Identifying boundaries of lesions within image data |
| EP19167213.8 | 2019-04-04 | ||
| PCT/EP2020/059583 WO2020201516A1 (en) | 2019-04-04 | 2020-04-03 | Identifying boundaries of lesions within image data |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113661518A CN113661518A (zh) | 2021-11-16 |
| CN113661518B true CN113661518B (zh) | 2025-05-20 |
Family
ID=66092123
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202080026839.6A Active CN113661518B (zh) | 2019-04-04 | 2020-04-03 | 标识图像数据内的病灶的边界 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US12079989B2 (enExample) |
| EP (2) | EP3719746A1 (enExample) |
| JP (1) | JP7204007B2 (enExample) |
| CN (1) | CN113661518B (enExample) |
| WO (1) | WO2020201516A1 (enExample) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210375437A1 (en) * | 2020-06-01 | 2021-12-02 | Radial Analytics, Inc. | Systems and methods for discharge evaluation triage |
| US12073945B2 (en) * | 2020-06-30 | 2024-08-27 | Cerner Innovation, Inc. | Patient ventilator asynchrony detection |
| WO2022013265A1 (en) * | 2020-07-16 | 2022-01-20 | Koninklijke Philips N.V. | Automatic certainty evaluator for radiology reports |
| US12112844B2 (en) * | 2021-03-12 | 2024-10-08 | Siemens Healthineers Ag | Machine learning for automatic detection of intracranial hemorrhages with uncertainty measures from medical images |
| CN114463323B (zh) * | 2022-02-22 | 2023-09-08 | 数坤(上海)医疗科技有限公司 | 一种病灶区域识别方法、装置、电子设备和存储介质 |
| US20250165860A1 (en) * | 2022-03-01 | 2025-05-22 | Nec Corporation | Learning device, control device, learning method, and storage medium |
| JP2024017902A (ja) * | 2022-07-28 | 2024-02-08 | 株式会社日立製作所 | 判定評価装置、方法、およびプログラム |
| JP2024179020A (ja) * | 2023-06-14 | 2024-12-26 | 株式会社日立製作所 | 計算機システム及び推論の不確実性判定方法 |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7876938B2 (en) * | 2005-10-06 | 2011-01-25 | Siemens Medical Solutions Usa, Inc. | System and method for whole body landmark detection, segmentation and change quantification in digital images |
| US7840046B2 (en) * | 2006-06-27 | 2010-11-23 | Siemens Medical Solutions Usa, Inc. | System and method for detection of breast masses and calcifications using the tomosynthesis projection and reconstructed images |
| WO2009063363A2 (en) * | 2007-11-14 | 2009-05-22 | Koninklijke Philips Electronics N.V. | Computer-aided detection (cad) of a disease |
| JP5117353B2 (ja) * | 2008-11-07 | 2013-01-16 | オリンパス株式会社 | 画像処理装置、画像処理プログラムおよび画像処理方法 |
| US20100158332A1 (en) * | 2008-12-22 | 2010-06-24 | Dan Rico | Method and system of automated detection of lesions in medical images |
| US9122950B2 (en) | 2013-03-01 | 2015-09-01 | Impac Medical Systems, Inc. | Method and apparatus for learning-enhanced atlas-based auto-segmentation |
| JP6346576B2 (ja) * | 2015-02-27 | 2018-06-20 | Hoya株式会社 | 画像処理装置 |
| CN105488781B (zh) * | 2015-06-01 | 2019-04-30 | 深圳市第二人民医院 | 一种基于ct影像肝脏肿瘤病灶的分割方法 |
| US10181188B2 (en) * | 2016-02-19 | 2019-01-15 | International Business Machines Corporation | Structure-preserving composite model for skin lesion segmentation |
| US9886758B2 (en) | 2016-03-31 | 2018-02-06 | International Business Machines Corporation | Annotation of skin image using learned feature representation |
| CN106097335B (zh) * | 2016-06-08 | 2019-01-25 | 安翰光电技术(武汉)有限公司 | 消化道病灶图像识别系统及识别方法 |
| JP7054787B2 (ja) * | 2016-12-22 | 2022-04-15 | パナソニックIpマネジメント株式会社 | 制御方法、情報端末、及びプログラム |
| CA3053487A1 (en) | 2017-02-22 | 2018-08-30 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Detection of prostate cancer in multi-parametric mri using random forest with instance weighting & mr prostate segmentation by deep learning with holistically-nested networks |
| EP3629898A4 (en) * | 2017-05-30 | 2021-01-20 | Arterys Inc. | AUTOMATED LESION DETECTION, SEGMENTATION AND LENGTH IDENTIFICATION |
| CN107730507A (zh) | 2017-08-23 | 2018-02-23 | 成都信息工程大学 | 一种基于深度学习的病变区域自动分割方法 |
| CN111192285B (zh) * | 2018-07-25 | 2022-11-04 | 腾讯医疗健康(深圳)有限公司 | 图像分割方法、装置、存储介质和计算机设备 |
-
2019
- 2019-04-04 EP EP19167213.8A patent/EP3719746A1/en not_active Withdrawn
-
2020
- 2020-04-03 EP EP20714660.6A patent/EP3948777B1/en active Active
- 2020-04-03 WO PCT/EP2020/059583 patent/WO2020201516A1/en not_active Ceased
- 2020-04-03 US US17/600,405 patent/US12079989B2/en active Active
- 2020-04-03 CN CN202080026839.6A patent/CN113661518B/zh active Active
- 2020-04-03 JP JP2021558747A patent/JP7204007B2/ja active Active
Also Published As
| Publication number | Publication date |
|---|---|
| US20220180516A1 (en) | 2022-06-09 |
| EP3719746A1 (en) | 2020-10-07 |
| EP3948777B1 (en) | 2022-11-16 |
| EP3948777A1 (en) | 2022-02-09 |
| JP2022527525A (ja) | 2022-06-02 |
| JP7204007B2 (ja) | 2023-01-13 |
| CN113661518A (zh) | 2021-11-16 |
| WO2020201516A1 (en) | 2020-10-08 |
| US12079989B2 (en) | 2024-09-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113661518B (zh) | 标识图像数据内的病灶的边界 | |
| US11676281B2 (en) | 3-D convolutional neural networks for organ segmentation in medical images for radiotherapy planning | |
| US10489907B2 (en) | Artifact identification and/or correction for medical imaging | |
| US20240203101A1 (en) | Hierarchical workflow for generating annotated training data for machine learning enabled image segmentation | |
| US10265040B2 (en) | Method and apparatus for adaptive computer-aided diagnosis | |
| US20210279868A1 (en) | Medical imaging based on calibrated post contrast timing | |
| US20240161035A1 (en) | Multi-model medical scan analysis system and methods for use therewith | |
| US10130323B2 (en) | Method and apparatus for planning computer-aided diagnosis | |
| US12431244B2 (en) | Interpretable deep machine learning for clinical radiology | |
| Edwards et al. | Abdominal muscle segmentation from CT using a convolutional neural network | |
| CN115004225A (zh) | 弱监督病灶分割 | |
| US12374084B2 (en) | Data augmentation for a machine learning method | |
| EP4343687A1 (en) | Image segmentation with improved expert guidance | |
| Dandıl et al. | A Mask R-CNN based Approach for Automatic Lung Segmentation in Computed Tomography Scans | |
| CN116596830A (zh) | 检测临床工作流程中的机器学习模型的鲁棒性 | |
| EP3896652A1 (en) | Failure detection for segmentation of an image | |
| US20240186022A1 (en) | Progression profile prediction | |
| Gündel | Recognition of Similarities and Abnormalities in Chest Radiographs | |
| Dahl et al. | Modelling Uncertainty in Graph Convolutional Networks for Edge Detection in Mammograms |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |