CN113658744A - 一种柔性导电复合棉线及其制备方法 - Google Patents

一种柔性导电复合棉线及其制备方法 Download PDF

Info

Publication number
CN113658744A
CN113658744A CN202110815141.9A CN202110815141A CN113658744A CN 113658744 A CN113658744 A CN 113658744A CN 202110815141 A CN202110815141 A CN 202110815141A CN 113658744 A CN113658744 A CN 113658744A
Authority
CN
China
Prior art keywords
cotton thread
silver
conductive composite
flexible conductive
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110815141.9A
Other languages
English (en)
Other versions
CN113658744B (zh
Inventor
肖巍
周文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Arts and Sciences
Original Assignee
Chongqing University of Arts and Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Arts and Sciences filed Critical Chongqing University of Arts and Sciences
Priority to CN202110815141.9A priority Critical patent/CN113658744B/zh
Publication of CN113658744A publication Critical patent/CN113658744A/zh
Application granted granted Critical
Publication of CN113658744B publication Critical patent/CN113658744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

一种柔性导电复合棉线,是一种核壳结构,具体是以棉线为内核,棉线表面包覆多孔石墨烯层和银纳米颗粒组成的石墨烯/银纳米颗粒复合膜,银纳米颗粒分布在石墨烯层状结构中,最外层是由银纳米颗粒组成的连续银膜。本发明制备的核壳结构的柔性导电复合棉线具有优异的柔韧性和导电性,其电阻低至2Ω cm‑1;作为柔性线状电极,在三电极体系中0.5 mA cm−1电流密度下其长度比电容和体积比电容分别高达15.1 mF cm−1和11.5 F cm−3,储能性能优异;当电流密度增加至2.5 mA cm−1时,其长度比电容和体积比电容依然保持有6.6 mF cm−1和5.7 F cm−3,电极具有良好的倍率特性;反复充放电10000次以上,电容基本无损失。

Description

一种柔性导电复合棉线及其制备方法
技术领域
本发明涉及柔性导电材料制备技术领域,具体涉及一种柔性导电复合棉线及其制备方法。
背景技术
柔性线状超级电容器得益于良好的柔韧性、小的体积和尺寸以及易于加工成各类形状和易于整合至小型设备中的显著特点而被认为是非常有前景的储能装置。着眼于此,人们一方面借助现成的线状集流体,如各种金属丝作为基底,然后于表面负载上电活性物质以获得柔性线状电极并构筑出相应器件。虽然这些集流体在一定程度上赋予线状电极较好的导电性,但是自身没有存储电荷的能力,同时可编织性较差,成本也较高,这对进一步开发轻质、高性能、好加工、易集成的柔性储能元件来说依然是不小的阻碍。
作为最具代表性的织物,棉线兼具种类多样、廉价易得、质轻柔韧、透气舒适、粗细可调和机械强度高等多重优点,更为重要的是其纺织工艺特别成熟,易于大规模开发与集成整合。不过,将棉线发展成柔性线状电极和器件并非易事,最大阻碍便是其本身的绝缘性。有鉴于此,如何使棉线产生良好导电性和进一步赋予其优异电化学储能性质进而开发出高性能的基于棉线的柔性线状电极和超级电容器是目前储能领域的重点问题,亦是难点所在。虽然专利CN108962619A采用纤维与氧化石墨烯混合打碎,先还原生成银单质,再通过水合肼蒸汽还原氧化石墨烯,形成导电复合薄膜,该方法中纤维被料理机破碎成微纳米级,充分融合在石墨烯的片层结构中,而棉线纤维是一种直径达到毫米级别、肉眼可见的线状结构,与生成的氧化石墨烯/银复合材料的结合力较差,容易从线状结构表面脱落,使其导电性能低、稳定性差、使用寿命短。
发明内容
本发明目的在于提供一种柔性导电复合棉线。该核壳结构的复合棉线具有优异的柔韧性、导电性能、储能性能和倍率特性。
本发明目的在于提供上述柔性导电复合棉线的制备方法。有效保证线状结构不被破坏,同时提高了棉线内核和复合壳层的结合力、以及石墨烯和银之间的结合力。
本发明目的通过如下技术方案实现:
一种柔性导电复合棉线,其特征在于:所述柔性导电复合棉线是一种核壳结构,具体是以棉线为内核,棉线表面包覆多孔石墨烯层和银纳米颗粒组成的石墨烯/银纳米颗粒复合膜,银纳米颗粒分布在石墨烯层状结构中,最外层是由银纳米颗粒组成的连续银膜。
进一步,上述柔性导电复合棉线中,按质量百分比计,棉线占比30~90%,所述石墨烯占比5~40%,所述银纳米颗粒占比5~45%。
一种柔性导电复合棉线的制备方法,其特征在于:是在棉线表面涂覆氧化石墨烯分散液,干燥后置于银氨溶液中浸泡,在湿润状态下悬空于装有氢碘酸和乙醇的混合溶液的上空,密封后先在75~85℃下保温30~40min,然后将温度降至50~60℃保温5~6h。
本领域均知晓,本发明中的核壳结构中的内核是直径为100μm~2mm,长度大于2cm的棉线,是一种肉眼可见的线状结构,我们尝试过分步还原氧化石墨烯和银氨络合离子,制备出以石墨烯和银纳米颗粒形成外壳的核壳结构材料时,形成的壳层与棉线之间的结合力较差,容易脱落分离。因此,本发明通过棉线纤维吸附氧化石墨烯,利用配位和静电作用吸附应氨络合离子,在通过还原剂同步原位还原氧化石墨烯和银氨络合离子,使得还原生成的复合产物高效附着在棉线表面,提高复合材料和棉线之间的结合力。
我们在研究过程中发现采用还原蒸汽进行同步还原氧化石墨烯和银氨络合离子时,还原生成的石墨烯和银单质还来不及结合,就发生团聚,导致石墨烯和银单质结合力差,银颗粒形成的局部团聚使得其无法形成连续的薄膜结构。且同步还原过程中容易对棉线纤维结构造成破坏,导致表面缺陷增加,降低复合材料的导电性。
本发明中以氢碘酸和乙醇的混合溶液作为还原剂,通过乙醇调节还原剂的沸点,在第一段温度下产生足够的碘化氢蒸汽,同时乙醇自身作为还原剂协同碘化氢进行同步还原氧化石墨烯和银氨络合物,在较高温度和高还原剂浓度下加速银成核;然后在低温低还原剂浓度下,分子运动减缓,银单质晶核缓慢生长,最后形成连续的银膜。通过两段温度和还原剂浓度的调控,将银的成核和生长过程有效分开,对银单质颗粒的粒径形成了调控,增加了其表面能,与同样具备高表面能的石墨烯结合来达到稳定状态,从而增强了石墨烯和银的结合能力,并相互消除了石墨烯和银单质的自身团聚,两段缓慢蒸汽还原,保证了棉线纤维结构稳定不被破坏。
进一步,上述氧化石墨烯的浓度为10mg/mL,涂覆后在50~60℃下干燥,涂覆和干燥过程重复进行3~10次左右。
进一步,上述银氨溶液的浓度为100mM,浸泡时间为30~40min。
进一步,上述混合溶液中,碘化氢和乙醇的摩尔比为1:0.2~0.4,混合液中氢碘酸的质量浓度70~80%。
最具体的,一种柔性导电复合棉线的制备方法,其特征在于,按如下步骤进行:
步骤(一)
将棉线绷直,将浓度为10mg/mL的氧化石墨烯分散液涂覆至棉线表面,在50~60℃下烘干,重复涂覆和烘干过程3~10次左右,得核壳结构的棉线/氧化石墨烯;
步骤(二)
将棉线/氧化石墨烯在浓度为100mM的银氨溶液中浸泡30~40min,用去离子水洗涤后,在湿润状态下悬置于氢碘酸和乙醇的混合溶液上空,碘化氢和乙醇的摩尔比为1:0.2~0.4,碘化氢的质量浓度为70~80%;
步骤(三)
在密封环境下,先在75~85℃下保温30~40min,然后将温度降至50~60℃保温5~6h。
本发明具有如下技术效果:
本发明制备的核壳结构的柔性导电复合棉线具有优异的柔韧性,在弯折不发生开裂,脱落,弯折状态下具有优异的电化学稳定性。其电阻低至2Ω cm-1,导电性优异;作为柔性线状电极,在三电极体系中0.5 mA cm−1电流密度下其长度比电容和体积比电容分别高达15.1 mF cm−1和11.5 F cm−3,储能性能优异;当电流密度增加至2.5 mA cm−1时,其长度比电容和体积比电容依然保持有6.6 mF cm−1和5.7 F cm−3,电极具有良好的倍率特性;反复充放电10000次以上,电容基本无损失。
附图说明
图1:本发明制备的柔性导电复合棉线的X衍射图。
图2:本发明制备的柔性导电复合棉线表面的扫描电镜图。
图3:本发明制备的柔性导电复合棉线截面的扫描电镜图。
图4:本发明制备的柔性导电复合棉线的拉曼光谱图。
图5:本发明制备的柔性导电复合棉线长度比电容、体积比电容与电流密度关系曲线图。
图6:本发明制备的柔性导电复合棉线电极在三电极装置中的电容保持率随反复充放电次数的变化关系图。
具体实施方式
下面通过实施例对本发明进行具体的描述,有必要在此指出的是,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术人员可以根据上述本发明内容对本发明作出一些非本质的改进和调整。
实施例1
一种柔性导电复合棉线的制备方法,按如下步骤进行:
步骤(一)
将棉线绷直,将浓度为10mg/mL的氧化石墨烯分散液涂覆至棉线表面,在50℃下烘干,重复涂覆和烘干过程10次,得核壳结构的棉线/氧化石墨烯;
步骤(二)
将棉线/氧化石墨烯在浓度为100mM的银氨溶液中浸泡40min,用去离子水洗涤后,在湿润状态下悬置于氢碘酸和乙醇的混合溶液上空,碘化氢和乙醇的摩尔比为1:0.2,碘化氢的质量浓度为80%;
步骤(三)
在密封环境下,先在75℃下保温40min,然后将温度降至50℃保温6h。
本实施例制备的柔性导电复合棉线中,棉线、石墨烯和银三种成分的质量分数分别为34.2%、44.1%和21.7%。可以任意角度弯折,其电化学性能不受影响。
实施例2
一种柔性导电复合棉线的制备方法,按如下步骤进行:
步骤(一)
将棉线绷直,将浓度为10mg/mL的氧化石墨烯分散液涂覆至棉线表面,在60℃下烘干,重复涂覆和烘干过程3次,得核壳结构的棉线/氧化石墨烯;
步骤(二)
将GO/棉线在浓度为100mM的银氨溶液中浸泡30min,用去离子水洗涤后,在湿润状态下悬置于氢碘酸和乙醇的混合溶液上空,碘化氢和乙醇的摩尔比为1: 0.4,碘化氢的质量浓度为70%;
步骤(三)
在密封环境下,先在85℃下保温30min,然后将温度降至60℃保温5h。
本实施例制备的柔性导电复合棉线中,棉线、石墨烯和银三种成分的质量分数分别为70.9%、6.7%和22.4%。
实施例3
一种柔性导电复合棉线的制备方法,按如下步骤进行:
步骤(一)
将棉线绷直,将浓度为10mg/mL的氧化石墨烯分散液涂覆至棉线表面,在55℃下烘干,重复涂覆和烘干过程6次,得核壳结构的棉线/氧化石墨烯;
步骤(二)
将GO/棉线在浓度为100mM的银氨溶液中浸泡35min,用去离子水洗涤后,在湿润状态下悬置于氢碘酸和乙醇的混合溶液上空,碘化氢和乙醇的摩尔比为1:0.3,碘化氢的质量浓度为75%;
步骤(三)
在密封环境下,先在80℃下保温35min,然后将温度降至55℃保温5.5h。
本实施例制备的柔性导电复合棉线中,棉线、石墨烯和银三种成分的质量分数分别为35.9%、32.6%和31.5%。
本发明制备的柔性导电复合棉线表面呈均匀光亮银色,可任意弯曲,柔性良好。其X衍射图谱具有9个特征峰,前4个衍射峰分别位于2θ = 14.8o、16.7o、22.9o、34.3o,当归属于某一晶型的纤维素,后5个衍射峰分别位于2θ = 38.2o、44.3o、64.5o、77.5o和81.5o,对应于单质银的(111)、(200)、(220)、(311)和(222)晶面。
图2和图3分别为本发明制备的核壳结构的柔性导电复合棉线在不同倍率下的表面和截面扫描电镜图。从图2可知,表面的银纳米颗粒相互紧挨排列形成一层均匀连续的银膜,这是其产生出色导电性的主要原因。图3中可以看到明显的核−壳结构,该核壳结构是棉线作为内核,表面完整且均匀地包覆有多孔石墨/银纳米颗粒复合薄膜,该复合薄膜中,石墨烯片层中均匀分散这大量的银纳米颗粒,在石墨烯/银纳米颗粒复合薄膜的表面由银纳米颗粒形成了连续银膜进行包覆的复合壳层结构。
图4是本发明制备的核壳结构的柔性导电复合棉线和氧化石墨烯的拉曼光谱,两种材料在1350-1和1610cm-1左右均出现了尖锐峰,分别对应了碳的D带振动峰和G带振动峰,D峰主要代表碳原子晶格中的缺陷和无序状态;G峰是有序石墨碳原子的特征峰,是由sp2碳原子的面内伸缩振动所引起的,碳材料石墨化程度高,有利于电子扩散和传导。D峰和G峰的强度比(ID/IG)数值的大小可以用来描述结构的石墨化程度,氧化石墨烯的ID/IG为0.95,而本发明制备的柔性导电复合棉线的ID/IG为1.16,说明本发明制备的柔性导电复合棉线缺陷小,氧化石墨烯被还原后,含氧基团被清除,sp3杂化碳原子脱氧后形成sp2杂化碳原子区域。
实施例4
将实施例1中导电复合棉线作为柔性线状电极直接用于电化学测试:
剪取一段实施例1中的柔性导电复合棉线直接作为工作电极,参比电极和对电极分别选用Hg/HgO和Pt丝,电解质则采取2 M浓度的氢氧化钾水溶液,形成三电极装置,表征其电化学储能性质。
图5为不同电流密度下的恒电流充放电曲线,作为柔性线状电极,在0.5mA cm−1的电流密度下,长度比电容和体积比电容分别为15.1 mF cm−1和11.5 F cm−3;当电流密度增加至2.5 mA cm−1时,其长度比电容和体积比电容依然保持有6.6 mF cm−1和5.7 F cm−3,电极具有良好的倍率特性。图6为本发明制备的柔性导电复合棉线作为柔性线状电极在较大电流密度下(1.25 mA cm−1)反复充放电的稳定性图。可以看出,整个测试期间的电容波动很小,即使在不间断地反复充放电10000次之后其电容保持率仍可接近100%,展现出了极好的电化学稳定性。这些测试结果证明本发明制备柔性导电复合棉线确实有着出众的电化学储能表现和较好的现实应用价值。

Claims (6)

1.一种柔性导电复合棉线,其特征在于:所述柔性导电复合棉线是一种核壳结构,具体是以棉线为内核,棉线表面包覆多孔石墨烯层和银纳米颗粒组成的石墨烯/银纳米颗粒复合膜,银纳米颗粒分布在石墨烯层状结构中,最外层是由银纳米颗粒组成的连续银膜。
2.如权利要求1所述的一种柔性导电复合棉线,其特征在于:按质量百分比计,棉线占比30~90%,所述石墨烯占比5~40%,所述银纳米颗粒占比5~45%。
3.一种如权利要求2所述的柔性导电复合棉线的制备方法,其特征在于:是以棉线为基底,在棉线表面涂覆氧化石墨烯分散液,干燥后于银氨溶液中浸泡,在湿润状态下悬空于装有氢碘酸和乙醇的混合溶液的上空,密封后先在75~85℃下保温30~40min,然后将温度降至50~60℃保温5~6h。
4.如权利要求3所述的一种柔性导电复合棉线的制备方法,其特征在于:所述混合溶液中,碘化氢和乙醇的摩尔比为1:0.2~0.4。
5.如权利要求3或4所述的一种柔性导电复合棉线的制备方法,其特征在于:所述氧化石墨烯的浓度为10mg/mL,涂覆后在50~60℃下干燥,涂覆和干燥过程重复进行3~10次左右。
6.一种柔性导电复合棉线的制备方法,其特征在于,按如下步骤进行:
步骤(一)
将棉线绷直,将浓度为10mg/mL的氧化石墨烯分散液涂覆至棉线表面,在50~60℃下烘干,重复涂覆和烘干过程3~10次左右,得核壳结构的棉线/氧化石墨烯;
步骤(二)
将棉线/氧化石墨烯在银氨溶液中浸泡,然后用去离子水洗涤后,在湿润状态下悬置于氢碘酸和乙醇的混合溶液上空,碘化氢和乙醇的摩尔比为1:0.2~0.4,碘化氢的质量浓度为70~80%;
步骤(三)
在密封环境下,先在75~85℃下保温30~40min,然后将温度降至50~60℃保温5~6h。
CN202110815141.9A 2021-07-19 2021-07-19 一种柔性导电复合棉线及其制备方法 Active CN113658744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110815141.9A CN113658744B (zh) 2021-07-19 2021-07-19 一种柔性导电复合棉线及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110815141.9A CN113658744B (zh) 2021-07-19 2021-07-19 一种柔性导电复合棉线及其制备方法

Publications (2)

Publication Number Publication Date
CN113658744A true CN113658744A (zh) 2021-11-16
CN113658744B CN113658744B (zh) 2022-06-07

Family

ID=78477555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110815141.9A Active CN113658744B (zh) 2021-07-19 2021-07-19 一种柔性导电复合棉线及其制备方法

Country Status (1)

Country Link
CN (1) CN113658744B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610331A (zh) * 2012-04-01 2012-07-25 东华大学 一种银/石墨烯薄膜超级电容器电极材料的制备方法
US20140313562A1 (en) * 2013-04-19 2014-10-23 Board Of Regents, The University Of Texas System Graphene/metal nanowire hybrid transparent conductive films
US20150093572A1 (en) * 2013-04-10 2015-04-02 Huawei Technologies Co., Ltd. Graphene fiber and prepartion method thereof
CN111564616A (zh) * 2020-05-16 2020-08-21 西安建筑科技大学 AgNWs@Si@GO锂离子电池负极材料、其制备及采用其的锂离子电池
CN112030546A (zh) * 2020-09-14 2020-12-04 重庆文理学院 一种柔性液态金属智能纤维的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610331A (zh) * 2012-04-01 2012-07-25 东华大学 一种银/石墨烯薄膜超级电容器电极材料的制备方法
US20150093572A1 (en) * 2013-04-10 2015-04-02 Huawei Technologies Co., Ltd. Graphene fiber and prepartion method thereof
US20140313562A1 (en) * 2013-04-19 2014-10-23 Board Of Regents, The University Of Texas System Graphene/metal nanowire hybrid transparent conductive films
CN111564616A (zh) * 2020-05-16 2020-08-21 西安建筑科技大学 AgNWs@Si@GO锂离子电池负极材料、其制备及采用其的锂离子电池
CN112030546A (zh) * 2020-09-14 2020-12-04 重庆文理学院 一种柔性液态金属智能纤维的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CUI, B; CHU, FQ; SUN, JZ: "Inkjet printing porous graphene/silver flexible electrode with enhanced electrochemical performance based on vapor phase reduction", 《JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS》, vol. 31, no. 13, 23 May 2020 (2020-05-23), pages 10795 - 10802, XP037161476, DOI: 10.1007/s10854-020-03630-1 *
ZOU, ZH; ZHOU, WJ; XIAO, W: ""High-performance flexible all-solid-state supercapacitor constructed by free-standing cellulose/reduced graphene oxide/silver nanoparticles composite film"", 《CHEMICAL ENGINEERING JOURNAL》, vol. 357, 1 February 2019 (2019-02-01), pages 45 - 55 *
付晶;蔡宁;曾欢;韩超;罗晓刚;薛亚楠;喻发全: ""负载石墨烯-银纳米粒子的碳纳米纤维材料的应用研究"", 《中部四省化学化工学会2016年学术年会摘要集》, 23 September 2016 (2016-09-23), pages 1 *

Also Published As

Publication number Publication date
CN113658744B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
Xu et al. In situ growth of Cu2O/CuO nanosheets on Cu coating carbon cloths as a binder-free electrode for asymmetric supercapacitors
Gu et al. CuCo2O4 nanowires grown on a Ni wire for high‐performance, flexible fiber supercapacitors
Hao et al. Hierarchical macroporous Si/Sn composite: Easy preparation and optimized performances towards lithium storage
KR100649092B1 (ko) 금속산화물 코팅 산화티타늄 초극세섬유로 구성된 금속산화물 계 슈퍼커패시터 및 그 제조방법
Kurtan et al. Freestanding electrospun carbon nanofibers uniformly decorated with bimetallic alloy nanoparticles as supercapacitor electrode
Hu et al. Hierarchical CuCo2O4@ CoS-Cu/Co-MOF core-shell nanoflower derived from copper/cobalt bimetallic metal–organic frameworks for supercapacitors
Xu et al. Hierarchical three-dimensional NiMoO 4-anchored rGO/Ni foam as advanced electrode material with improved supercapacitor performance
Jiang et al. Optimized NiCo 2 O 4/rGO hybrid nanostructures on carbon fiber as an electrode for asymmetric supercapacitors
Fang et al. Fabrication and supercapacitive properties of a thick electrode of carbon nanotube–RuO2 core–shell hybrid material with a high RuO2 loading
Shi et al. 3D mesoporous hemp-activated carbon/Ni3S2 in preparation of a binder-free Ni foam for a high performance all-solid-state asymmetric supercapacitor
CN110473711B (zh) 一种超级电容器电极材料的制备方法
Chen et al. Wood-derived scaffolds decorating with nickel cobalt phosphate nanosheets and carbon nanotubes used as monolithic electrodes for assembling high-performance asymmetric supercapacitor
Jiang et al. Weldable and flexible graphene ribbon@ Ni fibers with ultrahigh length capacitance for all-solid-state supercapacitors
CN111333129B (zh) 用于超级电容器的纳米硫化镍/氮掺杂多孔碳复合材料的制备方法
Wu et al. Hierarchical shell/core electrodes with CuO nanowires based on carbon cloths for high performance asymmetric supercapacitors
Lu et al. Reduced-graphene-oxide-modified self-supported NiSe2 nanospheres on nickel foam as a battery-type electrode material for high-efficiency supercapacitors
Zou et al. Co-doped SnS microsphere decorated carbon nanofiber flexible films for supercapacitor applications
Qiu et al. Construction of Cu7KS4@ Ni x Co1–x (OH) 2 Nano-Core–Shell Structures with High Conductivity and Multi-Metal Synergistic Effect for Superior Hybrid Supercapacitors
Du et al. Anchoring 1T/2H MoS 2 nanosheets on carbon nanofibers containing Si nanoparticles as a flexible anode for lithium–ion batteries
Luo et al. Graphene-controlled FeSe nanoparticles embedded in carbon nanofibers for high-performance potassium-ion batteries
Du et al. Microwave-synthesized self-supporting CoSe2/carbon fiber felt electrode for ultra–high cycling life flexible supercapacitors
Du et al. Template agent for assisting in the synthesis of ZnCo 2 O 4 on Ni foam for high-performance supercapacitors
Zhang et al. Promoting the cyclic and rate performance of nickel hydroxide with ZnO via electrodeposition for supercapacitor
Yang et al. Morphological tuning of hollow NiCo2Se4 nanotube arrays anchored on Ni/C at varied selenization duration for efficient battery-type supercapacitors
Zhang et al. Preparation of AgNWs@ NiO–Co3O4 dopant material for an activated carbon thin-film electrode of pseudocapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant