CN113654582A - 一种利用少模fbg-fp同时测量应变和温度的方案 - Google Patents

一种利用少模fbg-fp同时测量应变和温度的方案 Download PDF

Info

Publication number
CN113654582A
CN113654582A CN202111020403.9A CN202111020403A CN113654582A CN 113654582 A CN113654582 A CN 113654582A CN 202111020403 A CN202111020403 A CN 202111020403A CN 113654582 A CN113654582 A CN 113654582A
Authority
CN
China
Prior art keywords
mode
few
fbg
optical fiber
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111020403.9A
Other languages
English (en)
Other versions
CN113654582B (zh
Inventor
张羽
刘帅
金威
张毅博
陈济铭
张亚勋
刘志海
杨军
苑立波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202111020403.9A priority Critical patent/CN113654582B/zh
Publication of CN113654582A publication Critical patent/CN113654582A/zh
Application granted granted Critical
Publication of CN113654582B publication Critical patent/CN113654582B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明提供一种利用少模FBG‑FP同时测量应变和温度的方案。包括窄线宽光源模块、少模FBG‑FP模块、PDH解调模块以及反馈控制模块。由两个与少模FBG‑FP模式相对应波长的窄线宽光纤光源经过光纤耦合器耦合束后向后传递,由直波导调制器进行相位调制,经过光纤环形器后入射至少模FBG‑FP之后,反射回来的两个模式谐振峰再次经过光纤环形器后由光子灯笼将其分离,入射至光电探测器转换为电信号,进入锁相放大模块后得到两个模式的PDH误差信号,由FPGA分别对各PDH信号进行处理。这种方案以单根光纤完成对多参量的同时测量,首次对少模精细光栅结构的传感特性进行探索。

Description

一种利用少模FBG-FP同时测量应变和温度的方案
技术领域:
本发明涉及的是光纤传感领域,具体是涉及到一种利用少模FBG-FP同时测量应变和温度的方案。
背景技术:
少模光纤在单模光纤的基础上扩展出有限的模式,提供光纤中新的自由度,以提高光纤系统的频谱利用率。近年来少模光纤逐步被用于光纤通信领域之中,用以扩展光纤传输带宽,而在光纤传感领域的应用有待深入研究,对于少模光纤传感技术的调制解调手段亟待得到更迭。
在少模光纤刻写光纤布拉格光栅,获取多个频谱特性,以实现多参量的监测,然而目前普通的少模光纤布拉格光栅所能实现的参量分辨率有限,且传感解调手段非实时、低精度,例如张祖兴等人提出的一种基于倾斜少模光纤光栅的扭转传感器(张祖兴,顾昌晟,张婕,刘心宇.一种基于倾斜少模光纤光栅的扭转传感器[P].江苏省:CN107421469B,2019-07-16.)以及张卫华等人提出的一种基于少模光纤和布拉格光栅的气体浓度传感器(张卫华,童峥嵘.一种基于少模光纤和布拉格光栅的气体浓度传感器[P].天津:CN106769875A,2017-05-31.)都是利用光谱仪系统来监测传感单元,难以实现实时传感信息的输出。
发明内容:
一种利用少模FBG-FP同时测量应变和温度的方案,包括窄线宽光源模块、少模FBG-FP模块、PDH解调模块以及反馈控制模块;
所述窄线宽光源模块包含窄线宽激光器.1(1)、窄线宽激光器.2(2)、光纤耦合器(3)、直波导调制器(4);
所述少模FBG-FP模块包含光纤环形器(5)、少模FBG-FP(少模基于光纤布拉格光栅的法布里珀罗干涉仪)(6)、光子灯笼(7);
所述PDH解调模块包含光电探测器.1(8)、光电探测器.2(9)、函数发生器(10)、锁相放大模块(11);
所述反馈控制模块包含FPGA(12)、PID.1(13)及PID.2(14);
所述窄线宽激光器.1(1)与窄线宽激光器.2(2)经过光纤耦合器(3)合束后往后传递,经过直波导调制器(4)进行相位调制,经过光纤环形器(5)后入射至少模FBG-FP(6)之后,反射回来的两个模式谐振峰再次经过光纤环形器(5)后由光子灯笼(7)将其分离,然后分别入射至光电探测器.1(8)与光电探测器.2(9)转换为电信号,进入锁相放大模块(11)后得到两个模式的PDH误差信号,由FPGA(12)分别对各PDH误差信号进行处理,PID.1(13)与PID.2(14)根据FPGA(12)提供的信息分别对光源反馈锁定。
所述窄线宽激光器.1(1)的中心波长在少模FBG-FP(6)的基模波长范围内,窄线宽激光器.2(2)的中心波长在少模FBG-FP(6)的高阶模式波长范围内;
所述窄线宽激光器.1(1)和窄线宽激光器.2(2)具备外部波长电压调谐功能;
所述直波导调制器(SPM)(4)对激光信号进行相位调制,其中调制信号由函数发生器(10)提供;
所述直波导调制器(4)可由具备光相位调制的器件替代,例如相位调制器,Y波导等相位调制器件。
所述少模FBG-FP(6)使用的少模光纤为两模或者四模少模光纤。
所述少模FBG-FP(6)为少模光纤布拉格光栅法布里珀罗干涉仪,在少模光纤上刻写两个参数一致的光纤布拉格光栅;
所述少模FBG-FP(6)通过与单模光纤错芯焊接或者使用模式激励器,实现等能量强度的基模与高阶模式激励;
所述少模FBG-FP(6)的反射谐振峰在光谱域上形式为存在强度相近的基模与高阶模式光纤布拉格光栅反射峰形式的包络,在包络之中存在精细的法布里珀罗干涉引起的精细透射峰(谐振峰)结构;
所述光子灯笼(模式分离器)(Mode Selective Photonic Lantern)(7)提供两个模式通道,将反射的两个模式的谐振峰分离;
所述光电探测器.1(8)与光电探测器.2(9)带宽高于函数发生器(10)提供的调制信号频率;
所述光电探测器.1(8)实现对基模波长下精细谐振峰的探测,光电探测器.2(9)实现对高阶模式波长下精细谐振峰的探测;
所述锁相放大器模块(11)将函数发生器(10)提供的调制信号与光电探测器.1(8)及光电探测器.2(9)采集的信号进行混频、滤波等信号处理过程,获得基模与高阶模式波长下的PDH误差信号;
所述FPGA(12)对锁相放大器模块(11)提供的PDH误差信号进行采集、零点识别及线性区斜率估算等信号处理过程,同时据此配置后续PID.1(13)及PID.2(14)的参数;
所述PID.1(13)根据基模波长下的PDH误差信号信息将窄线宽激光器.1(1)反馈锁定至基模波长下的窄线宽谐振峰,PID.2(14)根据高阶模式波长下的PDH误差信号信息将窄线宽激光器.2(2)反馈锁定至高阶模式波长下的窄线宽谐振峰;
所述一种利用少模FBG-FP同时测量应变和温度的方案为当温度与应变同时加载至少模FBG-FP(6)上时,两个模式对温度与应变灵敏度存在差异,即PID.1(13)与PID.2(14)的反馈输出是不一致的,根据基模与高阶模式对温度及应变的灵敏度来实现对应变与温度的解算;
所述少模FBG-FP(6)中基模对应变的灵敏度为kB_ε,对温度的灵敏度为kB_T,高阶模式对应变的灵敏度为kLP_ε,对温度的灵敏度为kLP_T,基模谐振峰波长为λB,高阶模式谐振峰波长为λLP,那么少模FBG-FP(6)的对外界应变及温度变化的传感原理为:
Figure BDA0003241710580000031
本发明的有益效果在于:
本发明提供一种利用少模FBG-FP同时测量应变和温度的方案,在少模光纤上刻写基于光纤布拉格光栅的法布里珀罗干涉仪(少模FBG-FP)在基模与高阶模式谐振峰中引入精细透射峰,引入激光稳频中的PDH技术,设计基于PDH技术的解调方案,分别实时解调两个模式的精细透射峰,以实现单根光纤对温度及应变参量的高精度监测。本发明提供少模光纤传感系统实时解调方案,充分利用少模光纤的模式特征,具备多参量、高精度、实时性、大动态范围以及高带宽等优点,具备较大的应用潜力。
附图说明:
图1为本发明提供的一种利用少模FBG-FP同时测量应变和温度的方案图。
图2为本发明中少模FBG-FP光谱图(由光谱仪测得)。
图3为本发明中光栅谐振峰扫频图(由窄线宽激光器测得)。
图4为本发明传感原理示意图。
具体实施方式:
为了更加清楚的说明本发明是一种利用少模FBG-FP同时测量应变和温度的方案。下面对本发明的实施作详细的说明,本实施在以本发明技术方案为前提下进行的,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
如图1所示,本实施例包括:包括窄线宽光源模块、少模FBG-FP模块、PDH解调模块以及反馈控制模块。其中,窄线宽光源模块包含窄线宽激光器.1(1)、窄线宽激光器.2(2)、光纤耦合器(3)、直波导调制器(4);少模FBG-FP模块包含光纤环形器(5)、少模FBG-FP(少模基于光纤布拉格光栅的法布里珀罗干涉仪)(6)、光子灯笼(7);PDH解调模块包含光电探测器.1(8)、光电探测器.2(9)、函数发生器(10)、锁相放大模块(11);反馈控制模块包含FPGA(12)、PID.1(13)及PID.2(14)。
窄线宽激光器.1(1)与窄线宽激光器.2(2)经过光纤耦合器(3)合束后往后传递,经过直波导调制器(4)进行相位调制,经过光纤环形器(5)后入射至少模FBG-FP(6)之后,反射回来的两个模式谐振峰再次经过光纤环形器(5)后由光子灯笼(7)将其分离,然后分别入射至光电探测器.1(8)与光电探测器.2(9)转换为电信号,进入锁相放大模块(11)后得到两个模式的PDH误差信号,由FPGA(12)分别对各PDH误差信号进行处理,PID.1(13)与PID.2(14)根据FPGA(12)提供的信息分别对光源反馈锁定。
其中,窄线宽激光器.1(1)的中心波长在少模FBG-FP(6)的基模波长范围内,窄线宽激光器.2(2)的中心波长在少模FBG-FP(6)的高阶模式波长范围内;且窄线宽激光器.1(1)和窄线宽激光器.2(2)具备外部波长电压调谐功能。
直波导调制器(SPM)(4)对激光信号进行相位调制,调制信号由函数发生器(10)提供其中,直波导调制器(4)可由具备光相位调制的器件替代,例如相位调制器,Y波导等相位调制器件。调制效果为:
E=exp[i(ω+βsin(Ω))t]
核心传感元件少模FBG-FP(6)为少模光纤布拉格光栅法布里珀罗干涉仪,使用的少模光纤为两模或者四模少模光纤,在少模光纤上刻写两个参数一致的光纤布拉格光栅;通过与单模光纤错芯焊接或者使用模式激励器,实现等能量强度的基模与高阶模式激励;少模FBG-FP(6)的反射谐振峰在光谱域上形式为存在强度相近的基模与高阶模式光纤布拉格光栅反射峰形式的包络,如图2所示,在包络之中存在精细的法布里珀罗干涉引起的精细透射峰(谐振峰)结构,如图3所示;光子灯笼(模式分离器)(Mode Selective PhotonicLantern)(7)提供两个模式通道,将反射的两个模式的谐振峰分离,注入PDH解调模块中。
在PDH解调模块中,光电探测器.1(8)实现对基模波长下精细谐振峰的探测,光电探测器.2(9)实现对高阶模式波长下精细谐振峰的探测;光电探测器.1(8)与光电探测器.2(9)带宽高于函数发生器(10)提供的调制信号频率;锁相放大器模块(11)将函数发生器(10)提供的调制信号与光电探测器.1(8)及光电探测器.2(9)采集的信号进行混频、滤波等信号处理过程,获得基模与高阶模式波长下的PDH误差信号,如图4所示,PDH误差信号的理论模型描述为:
Figure BDA0003241710580000041
在反馈控制模块中,FPGA(12)对锁相放大器模块(11)提供的PDH误差信号进行采集、零点识别及线性区斜率估算等信号处理过程,同时据此配置后续PID.1(13)及PID.2(14)的参数;PID.1(13)根据基模波长下的PDH误差信号信息将窄线宽激光器.1(1)反馈锁定至基模波长下的窄线宽谐振峰,PID.2(14)根据高阶模式波长下的PDH误差信号信息将窄线宽激光器.2(2)反馈锁定至高阶模式波长下的窄线宽谐振峰,如图4所示。
当温度与应变同时加载至少模FBG-FP(6)上时,两个模式对温度与应变灵敏度存在差异,即PID.1(13)与PID.2(14)的反馈输出是不一致的,根据基模与高阶模式对温度及应变的灵敏度来实现对应变与温度的解算;少模FBG-FP(6)中基模对应变的灵敏度为kB_ε,对温度的灵敏度为kB_T,高阶模式对应变的灵敏度为kLP_ε,对温度的灵敏度为kLP_T,基模谐振峰波长为λB,高阶模式谐振峰波长为λLP,那么少模FBG-FP(6)的对外界应变及温度变化的传感原理为:
Figure BDA0003241710580000051
本发明是少模光纤传感领域的新技术,提出一种少模光纤传感领域的实时解调方案,充分利用少模光纤的模式特征,具备多参量、高精度、实时性、大动态范围以及高带宽等优点,具备较大的应用潜力。以上所述的具体实施例仅为本发明的最佳具体实施实例而已,并不是用于限制本发明,凡在本发明的精神的原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种利用少模FBG-FP同时测量应变和温度的方案,包括窄线宽光源模块、少模FBG-FP模块、PDH解调模块以及反馈控制模块;
所述窄线宽光源模块包含窄线宽激光器.1(1)、窄线宽激光器.2(2)、光纤耦合器(3)、直波导调制器(4);
所述少模FBG-FP模块包含光纤环形器(5)、少模FBG-FP(少模基于光纤布拉格光栅的法布里珀罗干涉仪)(6)、光子灯笼(7);
所述PDH解调模块包含光电探测器.1(8)、光电探测器.2(9)、函数发生器(10)、锁相放大模块(11);
所述反馈控制模块包含FPGA(12)、PID.1(13)及PID.2(14);
所述窄线宽激光器.1(1)与窄线宽激光器.2(2)经过光纤耦合器(3)合束后往后传递,经过直波导调制器(4)进行相位调制,经过光纤环形器(5)后入射至少模FBG-FP(6)之后,反射回来的两个模式谐振峰再次经过光纤环形器(5)后由光子灯笼(7)将其分离,然后分别入射至光电探测器.1(8)与光电探测器.2(9)转换为电信号,进入锁相放大模块(11)后得到两个模式的PDH误差信号,由FPGA(12)分别对各PDH误差信号进行处理,PID.1(13)与PID.2(14)根据FPGA(12)提供的信息分别对光源反馈锁定。
所述窄线宽激光器.1(1)的中心波长在少模FBG-FP(6)的基模波长范围内,窄线宽激光器.2(2)的中心波长在少模FBG-FP(6)的高阶模式波长范围内;
所述窄线宽激光器.1(1)和窄线宽激光器.2(2)具备外部波长电压调谐功能;
所述直波导调制器(SPM)(4)对激光信号进行相位调制,其中调制信号由函数发生器(10)提供;
所述直波导调制器(4)可由具备光相位调制的器件替代,例如相位调制器,Y波导等相位调制器件。
所述少模FBG-FP(6)使用的少模光纤为两模或者四模少模光纤。
所述少模FBG-FP(6)为少模光纤布拉格光栅法布里珀罗干涉仪,在少模光纤上刻写两个参数一致的光纤布拉格光栅;
所述少模FBG-FP(6)通过与单模光纤错芯焊接或者使用模式激励器,实现等能量强度的基模与高阶模式激励;
所述少模FBG-FP(6)的反射谐振峰在光谱域上形式为存在强度相近的基模与高阶模式光纤布拉格光栅反射峰形式的包络,在包络之中存在精细的法布里珀罗干涉引起的精细透射峰(谐振峰)结构;
所述光子灯笼(模式分离器)(Mode Selective Photonic Lantern)(7)提供两个模式通道,将反射的两个模式的谐振峰分离;
所述光电探测器.1(8)与光电探测器.2(9)带宽高于函数发生器(10)提供的调制信号频率;
所述光电探测器.1(8)实现对基模波长下精细谐振峰的探测,光电探测器.2(9)实现对高阶模式波长下精细谐振峰的探测;
所述锁相放大器模块(11)将函数发生器(10)提供的调制信号与光电探测器.1(8)及光电探测器.2(9)采集的信号进行混频、滤波等信号处理过程,获得基模与高阶模式波长下的PDH误差信号;
所述FPGA(12)对锁相放大器模块(11)提供的PDH误差信号进行采集、零点识别及线性区斜率估算等信号处理过程,同时据此配置后续PID.1(13)及PID.2(14)的参数;
所述PID.1(13)根据基模波长下的PDH误差信号信息将窄线宽激光器.1(1)反馈锁定至基模波长下的窄线宽谐振峰,PID.2(14)根据高阶模式波长下的PDH误差信号信息将窄线宽激光器.2(2)反馈锁定至高阶模式波长下的窄线宽谐振峰;
所述一种利用少模FBG-FP同时测量应变和温度的方案为当温度与应变同时加载至少模FBG-FP(6)上时,两个模式对温度与应变灵敏度存在差异,即PID.1(13)与PID.2(14)的反馈输出是不一致的,根据基模与高阶模式对温度及应变的灵敏度来实现对应变与温度的解算;
所述少模FBG-FP(6)中基模对应变的灵敏度为kB_ε,对温度的灵敏度为kB_T,高阶模式对应变的灵敏度为kLP_ε,对温度的灵敏度为kLP_T,基模谐振峰波长为λB,高阶模式谐振峰波长为λLP,那么少模FBG-FP(6)的对外界应变及温度变化的传感原理为:
Figure FDA0003241710570000021
CN202111020403.9A 2021-09-01 2021-09-01 一种利用少模fbg-fp同时测量应变和温度的方案 Active CN113654582B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111020403.9A CN113654582B (zh) 2021-09-01 2021-09-01 一种利用少模fbg-fp同时测量应变和温度的方案

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111020403.9A CN113654582B (zh) 2021-09-01 2021-09-01 一种利用少模fbg-fp同时测量应变和温度的方案

Publications (2)

Publication Number Publication Date
CN113654582A true CN113654582A (zh) 2021-11-16
CN113654582B CN113654582B (zh) 2023-06-02

Family

ID=78492584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111020403.9A Active CN113654582B (zh) 2021-09-01 2021-09-01 一种利用少模fbg-fp同时测量应变和温度的方案

Country Status (1)

Country Link
CN (1) CN113654582B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114894120A (zh) * 2022-05-26 2022-08-12 安徽大学 一种基于双波长的可调量程表面形貌测量装置及测量方法
CN116046025A (zh) * 2023-03-31 2023-05-02 中国船舶集团有限公司第七〇七研究所 基于光子灯笼实现光纤陀螺在线检测的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940362A (zh) * 2014-04-30 2014-07-23 中国科学院半导体研究所 一种高精度光纤光栅低频应变传感解调系统
CN105180823A (zh) * 2015-08-28 2015-12-23 中国科学院半导体研究所 基于锁频技术和拍频原理的光纤激光静态应变解调系统
CN108120525A (zh) * 2017-12-28 2018-06-05 上海交通大学 光纤光栅温度/应变传感系统及其解调方法
CN109916533A (zh) * 2019-03-15 2019-06-21 哈尔滨工程大学 一种pdh解调的保偏光栅fp腔温度应变同时测量装置
EP3757523A1 (en) * 2019-06-28 2020-12-30 Alcatel Submarine Networks Method and apparatus for suppression of noise due to transmitted signal instability in a coherent fiber optical sensor system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940362A (zh) * 2014-04-30 2014-07-23 中国科学院半导体研究所 一种高精度光纤光栅低频应变传感解调系统
CN105180823A (zh) * 2015-08-28 2015-12-23 中国科学院半导体研究所 基于锁频技术和拍频原理的光纤激光静态应变解调系统
CN108120525A (zh) * 2017-12-28 2018-06-05 上海交通大学 光纤光栅温度/应变传感系统及其解调方法
CN109916533A (zh) * 2019-03-15 2019-06-21 哈尔滨工程大学 一种pdh解调的保偏光栅fp腔温度应变同时测量装置
EP3757523A1 (en) * 2019-06-28 2020-12-30 Alcatel Submarine Networks Method and apparatus for suppression of noise due to transmitted signal instability in a coherent fiber optical sensor system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MIN TANG等: "Tilted Fiber Bragg Grating-Based Few-Mode Fabry-Perot Filter for Mode Conversion", 《IEEE PHOTONICS TECHNOLOGY LETTERS》 *
SHUO ZHANG等: "Few-mode fiber-embedded long-period fiber grating for simultaneous measurement of refractive index and temperature", 《APPLIED OPTICS》 *
黄稳柱;张文涛;李芳;: "基于光纤传感的多参量地震综合观测技术研究", 地球科学进展, no. 04 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114894120A (zh) * 2022-05-26 2022-08-12 安徽大学 一种基于双波长的可调量程表面形貌测量装置及测量方法
CN114894120B (zh) * 2022-05-26 2024-03-19 安徽大学 一种基于双波长的可调量程表面形貌测量装置及测量方法
CN116046025A (zh) * 2023-03-31 2023-05-02 中国船舶集团有限公司第七〇七研究所 基于光子灯笼实现光纤陀螺在线检测的方法及系统
CN116046025B (zh) * 2023-03-31 2023-06-02 中国船舶集团有限公司第七〇七研究所 基于光子灯笼实现光纤陀螺在线检测的方法及系统

Also Published As

Publication number Publication date
CN113654582B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN108051400B (zh) 一种扫描激光干涉型光纤声波锁相探测系统及方法
CN105091776B (zh) 基于单边带扫频调制的光纤激光静态应变拍频解调系统
CN107219002B (zh) 一种超高分辨率光谱测量方法及系统
CN113654582A (zh) 一种利用少模fbg-fp同时测量应变和温度的方案
CN103674287B (zh) 一种基于标准具的激光波长监测装置
CN109186643B (zh) 一种基于反射功能谐振滤波器的精确传感系统及传感方法
CN112902861B (zh) 一种基于超大测量范围pdh传感的应变测量装置
CN111829981B (zh) 一种基于tdlas的气体外差检测装置及检测方法
CN101231367A (zh) 高分辨率波长解调系统及其解调方法
CN102353452B (zh) 一种f-p腔自由光谱范围测量系统
CN108120378A (zh) 基于飞秒光频梳的正弦相位调制干涉绝对测距装置与方法
CN107389315B (zh) 光器件频响测量方法及测量装置
CN106989811A (zh) 一种光纤光栅水听器的解调装置及方法
CN109883348B (zh) 一种使用伪随机码码分复用的pdh多传感器应变测量装置
CN113391136A (zh) 一种基于固定低频检测的微波光子频率测量装置及方法
CN209783610U (zh) 基于色散补偿光栅对的光电振荡器双参量传感装置
EP3865851A1 (en) Photoacoustic dual comb spectrometer
CN201716502U (zh) 基于级联长周期光纤光栅的Bragg光栅高速解调系统
CN206378144U (zh) 干涉型光纤传感器输出波长快速解调系统
CN103512607B (zh) 检波器频率响应测量系统
Hu et al. High-resolution time-resolved spectroscopy based on hybrid asynchronous optical sampling
CN112556740A (zh) 一种光电探测器的光电响应测量装置与方法
Zhang et al. Research On High Speed Spectrum Analyzer Based On Fourier Domain Mode Locked Laser
Morozov et al. Advanced Microwave Photonics Sensor Systems: Address FBG Sensors, Interrogation and Calibration
Chen et al. Correlation Demodulation for Optical Fiber Fabry-Perot Based on Microwave Photonic and Frequency-Swept Interference

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant