CN113642714A - 基于小样本学习的绝缘子污秽放电状态识别方法及系统 - Google Patents

基于小样本学习的绝缘子污秽放电状态识别方法及系统 Download PDF

Info

Publication number
CN113642714A
CN113642714A CN202110998433.0A CN202110998433A CN113642714A CN 113642714 A CN113642714 A CN 113642714A CN 202110998433 A CN202110998433 A CN 202110998433A CN 113642714 A CN113642714 A CN 113642714A
Authority
CN
China
Prior art keywords
discharge state
insulator
spectrogram
sound
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110998433.0A
Other languages
English (en)
Other versions
CN113642714B (zh
Inventor
谭奔
岳一石
邹妍晖
黄福勇
王成
王海跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Hunan Electric Power Co Ltd
State Grid Hunan Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Hunan Electric Power Co Ltd
State Grid Hunan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Hunan Electric Power Co Ltd, State Grid Hunan Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202110998433.0A priority Critical patent/CN113642714B/zh
Publication of CN113642714A publication Critical patent/CN113642714A/zh
Application granted granted Critical
Publication of CN113642714B publication Critical patent/CN113642714B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1209Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using acoustic measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1245Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of line insulators or spacers, e.g. ceramic overhead line cap insulators; of insulators in HV bushings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

本发明公开了一种基于小样本学习的绝缘子污秽放电状态识别方法及系统,本发明包括训练图神经网络模型的步骤:获取声音样本信号数据集;针对声音样本信号数据集中的声音样本信号通过短时傅里叶变换获得语谱图;通过对语谱图进行变换以扩充声音样本信号数据集中的样本量;将语谱图输入预先训练好的特征提取神经网络提取得到特征向量,利用特征向量及其对应的标签向量作为输入来训练所述图神经网络模型。本发明可利用相对少量的绝缘子污秽放电声音样本进行机器学习,提高绝缘子污秽放电状态的识别准确率和稳定性,节省了人力物力成本,同时考虑到了实际运行状态下的噪声影响,因此可得到与实际情况更加吻合的绝缘子污秽放电状态。

Description

基于小样本学习的绝缘子污秽放电状态识别方法及系统
技术领域
本发明属于电力设备在线监测技术,具体涉及一种基于小样本学习的绝缘子污秽放电状态识别方法及系统。
背景技术
我国电网容量等级的不断提高以及环境污染的影响,部分地区特别是沿海地区绝缘子污闪事故不断发生。在线运行的绝缘子串表面会逐渐沉积污秽,在有雾、露、毛毛雨以及融雪等潮湿天气下,污秽层受潮形成导电层降低绝缘子串的绝缘性能,提高污闪事故可能性,这威胁到输电线路的安全稳定运行。随着在线监测技术的迅猛发展,现有的监测方法如超声检测、紫外脉冲方法、激光法各有其特点,但存在其固有的不足,目前还没有有效的绝缘子污秽放电状态识别的方法。由于绝缘子污秽放电实际上是能量突然释放的过程,会对周围的介质产生压力,这一压力使空气振动,就产生了声波,即绝缘子污秽放电引起声发射现象。在绝缘子发生污闪(即最初的电晕放电到局部放电,以及由局部放电发展成的闪络)的整个过程中,声信号一直存在。绝缘子污秽放电产生的声波信号可以真实反映绝缘子污秽放电过程,通过监测声波信号可以判断绝缘子的放电状态,正确判断绝缘子的污秽程度并发出相应的报警信息,使运维人员能够及时采取措施防止污闪发生。现有的对于放电声信号的处理采用支持向量机和隐马尔可夫模型等经典机器学习方法,需要人工设计提取特征并识别,适用范围小、泛化能力不强,对于新信号的识别准确率不高,而单纯采用卷积神经网络技术(CNN)对声音信号分类识别虽然无需人工提取特征,但是往往模型参数量巨大,容易过拟合,而且需要大规模训练数据样本,对于样本的获取和标注准确性要求非常高而难以实际运用。
发明内容
本发明要解决的技术问题:针对现有技术的上述问题,提供一种基于小样本学习的绝缘子污秽放电状态识别方法及系统,本发明基于数据增强和图神经网络(GNN)模型通过小样本学习能够实现对绝缘子污秽放电状态,可以利用相对少量的绝缘子污秽放电声音样本进行机器学习,提高绝缘子污秽放电状态的识别准确率和稳定性,节省了人力物力成本,同时考虑到了实际运行状态下的噪声影响,因此可得到与实际情况更加吻合的绝缘子污秽放电状态。
为了解决上述技术问题,本发明采用的技术方案为:
一种基于小样本学习的绝缘子污秽放电状态识别方法,包括训练用于将目标绝缘子的声音信号映射为目标绝缘子的污秽放电状态的图神经网络模型的步骤:
1)采集绝缘子在在不同污秽程度下的声音样本信号,并对声音样本信号的放电状态进行标注,从而得到带有标签向量的声音样本信号数据集;
2)针对声音样本信号数据集中的声音样本信号通过短时傅里叶变换获得语谱图;
3)通过对语谱图进行变换以扩充声音样本信号数据集中的样本量;
4)将语谱图输入预先训练好的特征提取神经网络提取得到特征向量,利用特征向量及其对应的标签向量作为输入来训练所述图神经网络模型,从而建立目标绝缘子的声音信号、目标绝缘子的污秽放电状态之间的映射关系。
可选地,步骤1)中对声音样本信号的放电状态进行标注时,声音样本信号的放电状态包括未放电、电晕放电、污秽放电以及沿面闪络。
可选地,步骤1)之后、步骤2)之前还包括针对声音样本信号数据集中的声音样本信号滤掉低频和高频成分的步骤。
可选地,所述针对声音样本信号数据集中的声音样本信号滤掉低频和高频成分时,采用的滤波器为数字带通滤波器,且所述数字带通滤波器的上限截止频率fp2=40kHz、下限截止频率fp2=8kHz,使得保留的声音样本信号的频带范围为8kHz~40kHz。
可选地,步骤2)中通过短时傅里叶变换获得语谱图时,语谱图频域选取为8kHz~40kHz,所述语谱图中包含声音信号的时间、频率以及幅值信息,且幅值信息以颜色的深浅表示。
可选地,步骤3)中通过对语谱图进行变换以扩充声音样本信号数据集中的样本量时,对语谱图进行变换的方式为局部灰度转换。
可选地,步骤3)中通过对语谱图进行变换以扩充声音样本信号数据集中的样本量时,对语谱图进行变换的方式为生成深度卷积对抗网络。
可选地,步骤3)中通过对语谱图进行变换以扩充声音样本信号数据集中的样本量时,对语谱图进行变换的方式为时域循环移位。
此外,本发明还提供一种小样本学习的绝缘子污秽放电状态识别系统,包括相互连接的微处理器和存储器,该微处理器被编程或配置以执行所述基于小样本学习的绝缘子污秽放电状态识别方法的步骤。
此外,本发明还提供一种计算机可读存储介质,该计算机可读存储介质中存储有被编程或配置以执行所述基于小样本学习的绝缘子污秽放电状态识别方法的计算机程序。
和现有技术相比,本发明具有下述优点:
1、本发明包括针对声音样本信号数据集中的声音样本信号通过短时傅里叶变换获得语谱图,通过对语谱图进行变换以扩充声音样本信号数据集中的样本量,将语谱图输入预先训练好的特征提取神经网络提取得到特征向量,利用特征向量及其对应的标签向量作为输入来训练图神经网络模型,利用语谱图便于变换的特性,可实现扩充声音样本信号数据集中的样本量,更加适用于小样本数据的学习,能够有效提高图神经网络模型的识别率。
2、本发明包括通过对语谱图进行变换以扩充声音样本信号数据集中的样本量,有效扩充了样本量,解决了实际工程运行中绝缘子放电声信号难以获取和标注不规范的问题。
附图说明
图1为本发明实施例一训练方法的基本流程示意图。
图2为本发明实施例一获得的语谱图示例。
图3为本发明实施例一训练方法的详细流程示意图。
图4为本发明实施例一中训练原理示意图。
图5为本发明实施例一中的系统结构示意图。
图6为本发明实施例三的DCGAN网络结构示意图。
具体实施方式
实施例一:
如图1所示,本实施例基于小样本学习的绝缘子污秽放电状态识别方法包括训练用于将目标绝缘子的声音信号映射为目标绝缘子的污秽放电状态的图神经网络模型的步骤:
1)采集绝缘子在在不同污秽程度下的声音样本信号,并对声音样本信号的放电状态进行标注,从而得到带有标签向量的声音样本信号数据集;
2)针对声音样本信号数据集中的声音样本信号通过短时傅里叶变换获得语谱图;
3)通过对语谱图进行变换以扩充声音样本信号数据集中的样本量;
4)将语谱图输入预先训练好的特征提取神经网络提取得到特征向量,利用特征向量及其对应的标签向量作为输入来训练所述图神经网络模型,从而建立目标绝缘子的声音信号、目标绝缘子的污秽放电状态之间的映射关系。
需要说明的,本实施例基于小样本学习的绝缘子污秽放电状态识别方法不依赖于绝缘子的材质,绝缘子可为陶瓷绝缘子或玻璃绝缘子。
本实施例中,步骤1)中采集绝缘子在在不同污秽程度下的声音样本信号时,每个声音样本信号采集时长为2s。此外,也可以根据需要设置声音样本信号的采样时长。
本实施例中,步骤1)中对声音样本信号的放电状态进行标注时,声音样本信号的放电状态包括未放电、电晕放电、污秽放电以及沿面闪络。同样地,本实施例基于小样本学习的绝缘子污秽放电状态识别方法不依赖于特定的放电状态,其完全可以根据绝缘子的材质、绝缘子的形状以及绝缘子所处的环境或场景下选择可能的放电状态来进行标注。
步骤2)中通过短时傅里叶变换获得语谱图可方便地采用Matlab或者Python编程实现。此外,也可以根据需要采用其他工具或编程语言实现。本实施例基于小样本学习的绝缘子污秽放电状态识别方法通过短时傅里叶变换获得语谱图不依赖于特定的工具或编程语言。
经过进一步试验发现,绝缘子在在不同污秽程度下有效的声音样本信号大多集中在8kHz~40kHz的频段内。因此为了进一步提升降低环境噪声和系统噪声的干扰的效果,参见图3,本实施例步骤2)中通过短时傅里叶变换获得语谱图时,语谱图频域选取为8kHz~40kHz,语谱图中包含声音信号的时间、频率以及幅值信息,且幅值信息以颜色的深浅表示。本实施例中,语谱图的像素高度为256,具体的语谱图示例如图2所示。
需要说明的是,参见图3,本实施例中步骤3)中通过对语谱图进行变换以扩充声音样本信号数据集中的样本量可以根据需要采用各类数据增强的方法,包括局部灰度转换、生成深度卷积对抗网络(DCGAN)、时域循环移位、时域拉伸、饱和度增强、对比度增强等方法,通过对语谱图进行变换以扩充声音样本信号数据集中的样本量,有效扩充了样本量,解决了实际工程运行中绝缘子放电声信号难以获取和标注不规范的问题。
作为一种可选的实施方式,本实施例步骤3)中通过对语谱图进行变换以扩充声音样本信号数据集中的样本量时,对语谱图进行变换的方式为局部灰度转换(LocalGrayscale Transformation,LGT)。具体方法如下:
S1)输入语谱图,语谱图的高度和宽度分别为h和w,图像的面积s=w*h。初始化设置灰度转换面积比例为r,转换矩形区面积为st=s*r,限定灰度转换区长和宽分别为ht和wt,二者满足ht*wt=st
S2)利用随机函数Rand(0,w)和Rand(0,h)生成灰度转换区的左上角坐标xl和yl。,从而确定灰度转换区的右下角坐标(xl+wt,yl+ht)。
S3)判断灰度转换区的右下角坐标(xl+wt,yl+ht)是否在语谱图的图像范围内,由此判别灰度转换区是否位于语谱图的范围内,如果是,将语谱图中对应灰度转换区进行灰度转换,否则若样本量仍然尚未满足要求,则跳转执行步骤S2)以继续扩充样本。其中,灰度转换为现有方法,可采用下述函数表达式表示:G=t(R,G,B),其中t()是灰度转换函数,通过在原始图像通道上应用灰度变换函数逐像素进行累加计算得到,转换后的图像添加和原来图像一样的样本标签。由于灰度转换函数为现有公知函数,其具体表达式在此不再列出。
本实施例步骤4)中利用预先训练好的特征提取神经网络提取从语谱图中特征向量,特征提取神经网络可以根据需要采用CNN网络或者LSTM网络等嵌入式网络,其本质上是对语谱图进行下采样以提取特征,采用不同特征提取神经网络可能会对绝缘子污秽放电状态识别的准确度或多或少存在一些差异。
作为一种可选的实施方式,本实施例中特征提取神经网络采用CNN网络,该CNN网络为一个输入层+两个(卷积层+池化层)的组合+一个全连接层构成的轻量级CNN网络。语谱图在输入层输入后,分别通过卷积层、池化层进行处理,然后在全连接层进行全连接后通过激活函数激活,即可获得语谱图中特征向量。
如图4所示,本实施例中以一个4 Way-2 Shots的任务为例进行说明。标签总共四个分类,分别是未放电、电晕放电、污秽放电、沿面闪络,每种分类在数据集中采用2个样本作为支持集图片。将带有标签的支持集(Support Set)语谱图和一个查询集(Query Set),支持集中还有8个带标签的样本(x11,x12,x13,x14,x21,x22,x23,x24,),查询集中含有两个不带标签的样本
Figure BDA0003234609250000051
将上述语谱图输入CNN网络以后获得对应的特征向量
Figure BDA0003234609250000052
Figure BDA0003234609250000053
和标签向量t(l)级联后作为图神经网络模型(GNN网络)的输入,送入图神经网络模型(GNN网络)中进行学习。
本实施例中采用图神经网络模型在训练以建立目标绝缘子的声音信号、目标绝缘子的污秽放电状态之间的映射关系。图神经网络模型为现有的神经网络模型,图神经网络模型GNN是由许多节点(Node)和边组成的图,在本实施例中每个节点都代表一张输入的语谱图,而每个边的权重表示两个节点(即语谱图)之间的相似程度,本实施例中采用稠密连接,边每个节点都两两连接,邻接矩阵存储每两张图之间的权重,权值由一个多层感知机(MLP,Multilayer Perceptron)计算得到,计算公式为:
Figure BDA0003234609250000054
上式中,
Figure BDA0003234609250000055
表示第k层网络中第i,j个节点之间邻接矩阵(权值),
Figure BDA0003234609250000056
表示一个输入为两个节点
Figure BDA0003234609250000057
之间的多层感知机(输入为两个节点之间的绝对差,输出为对应两个节点的权重值),
Figure BDA0003234609250000058
为多层感知机的函数模型,
Figure BDA0003234609250000059
为两个节点
Figure BDA00032346092500000510
之间的绝对值,k表示第k层网络(图神经网络模型GNN具有k层网络),i,j表示第i,j个节点,θ是一个可训练的参数。通过在图神经网络模型GNN中训练后即可建立目标绝缘子的声音信号、目标绝缘子的污秽放电状态之间的映射关系,从而获得完成训练的图神经网络模型GNN,可用于对查询集中的样本给出分类预测结果(未放电、电晕放电、污秽放电、沿面闪络中的一个)。本实施例中,图神经网络模型GNN采用的损失函数为交叉熵:
Figure BDA00032346092500000511
上式中,l(Φ(Γ;Θ),Y)是损失函数,Y*表示节点*的标签,yk表示输入向量中的标签值,ykk是符号函数(如果样本的真实类别等于yk,取1,否则取0),表示预测标签为yk的概率,Φ是模型,Θ是参数矩阵,Y是标签向量,Γ表示步骤4)的整体输入,整体输入由两个部分组成:带标签的数据集,不带标签的查询集,如图4所示。GNN网络的输出为Y={y1,y2}∈{1,K}t,对本实施例中而言,有K=4,t=2。对于K way-n shot任务的K的值可以根据样本量的大小进行调节,t可以根据需要判别的不带标签的样本数量进行调整。此外,对于数据集中可以添加无标签的样本,可以适当修改GNN结构以进行半监督或者主动学习。
综上所述,本实施例方法考虑到实际运行状态下的噪声影响,可得到与实际情况更加吻合的绝缘子污秽放电状态,其通过基于数据增强和图神经网络(GNN)的小样本学习对绝缘子污秽放电状态建立模型,可以利用相对较小的绝缘子污秽放电状态样本进行机器学习,提高绝缘子污秽放电状态的识别准确率和稳定性,节省了人力物力成本,具有重要的工程意义。
在一些具体的实例中,本实施例还提供一种基于小样本学习的绝缘子污秽放电状态识别的系统,如图5所示,包括:采集模块、降噪模块、转换模块、训练模块、显示模块。所述采集模块用于获取目标绝缘子在不同程度污秽环境条件下的不同放电状态的声信号数据集;所述降噪模块用于降低环境噪声和系统噪声的干扰;所述转换模块用于利用短时傅里叶变换将声信号转换为语谱图;所述训练模块用于将语谱图分成数据集、查询集,将所示样本数据集训练放入图神经网络中进行学习;所述显示模块将待识别的绝缘子运行时的声信号在图神经网络模型中得到的所述绝缘子的放电状态进行显示。
应当理解,上述单元模块的具体实现过程参照方法内容,本发明在此不进行具体的赘述,且上述功能模块单元的划分仅仅是一种逻辑功能的划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。同时,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。可以一种或多种程序设计语言,包括Java、Smalltalk、C++、Python或类似的程序设计语言,或其组合来编写用于执行本公开的实施例的操作的计算机程序代码。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)——连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
在一些具体的实例中,本实施例还提供一种小样本学习的绝缘子污秽放电状态识别系统,包括相互连接的微处理器和存储器,该微处理器被编程或配置以执行所述基于小样本学习的绝缘子污秽放电状态识别方法的步骤。在一些具体的实例中,本实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有被编程或配置以执行所述基于小样本学习的绝缘子污秽放电状态识别方法的计算机程序。
实施例二:
本实施例是对实施例一的进一步改进。由于在采集绝缘子在在不同污秽程度下的声音样本信号时,采集得到的声音样本信号必然包含环境噪声和系统噪声,环境噪声和系统噪声会对声音样本信号存在干扰,影响绝缘子污秽放电状态识别的准确度。
为了降低环境噪声和系统噪声的干扰,提高了识别模型的适应性,本实施例中在实施例一的基础上,在步骤1)之后、步骤2)之前还包括针对声音样本信号数据集中的声音样本信号滤掉低频和高频成分的步骤。由于绝缘子在在不同污秽程度下有效的声音样本信号一般为一定频率内的信号,而环境噪声和系统噪声为低频或高频成分,因此滤掉低频和高频成分可在一定程度上降低环境噪声和系统噪声的干扰,提高了识别图神经网络模型的适应性,同时根据绝缘子放电信号频率的特征限定了样本声信号的频率范围,对于降低样本信号复杂度、减小模型复杂度有着较大作用。
此外,经过进一步试验发现,绝缘子在在不同污秽程度下有效的声音样本信号大多集中在8kHz~40kHz的频段内。因此为了进一步提升降低环境噪声和系统噪声的干扰的效果,本实施例中在针对声音样本信号数据集中的声音样本信号滤掉低频和高频成分时,采用的滤波器为数字带通滤波器,且所述数字带通滤波器的上限截止频率fp2=40kHz、下限截止频率fp2=8kHz,使得保留的声音样本信号的频带范围为8kHz~40kHz,这样设置可以最大程度保留有效信息,并降低噪声对建立的模型复杂度和准确度的影响。通过上述手段,可根据绝缘子放电信号频率的特征限定了样本声信号的频率范围,对于降低样本信号复杂度、减小模型复杂度有着较大作用。
作为一种可选的实施方式,本实施例中的数字带通滤波器选用巴特沃斯滤波器,其特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。通过设置其上限截止频率fp2=40kHz,下限截止频率fp2=8kHz,可有效提升降低环境噪声和系统噪声的干扰的效果。
在一些具体的实例中,本实施例还提供一种小样本学习的绝缘子污秽放电状态识别系统,包括相互连接的微处理器和存储器,该微处理器被编程或配置以执行所述基于小样本学习的绝缘子污秽放电状态识别方法的步骤。在一些具体的实例中,本实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有被编程或配置以执行所述基于小样本学习的绝缘子污秽放电状态识别方法的计算机程序。
实施例三:
本实施例与实施例一基本相同,其主要不同点为步骤3)中通过对语谱图进行变换以扩充声音样本信号数据集中的样本量时,对语谱图进行变换的方式不同。
本实施例中,步骤3)中通过对语谱图进行变换以扩充声音样本信号数据集中的样本量时,对语谱图进行变换的方式为生成深度卷积对抗网络(DCGAN)。生成深度卷积对抗网络(DCGAN)为现有的神经学习网络。
如图6所示,深度卷积生成对抗网络是在生成对抗网络(GAN)的基础上改进网络结构得到,在生成器G(Generator)和判别器(Discriminator)加入两个卷积神经网络,提高GAN训练的稳定性和生成速度。为了提高生成样本的质量并加快收敛速度,在G和D的网络中,都取消了池化层(Pooling Layer),并分别使用转置卷积和加入步长(Stride)的卷积替代。D和G中均可使用批归一化(Batch Normalization),G和D中分别使用ReLU和LeakyReLU作为激活函数,G最后一层使用tanh函数。G的噪声输入使用高斯噪声和在非运行状态下采集的绝缘子运行环境噪声。将未放电、电晕放电、污秽放电、沿面闪络的样本分别作为原始样本进行处理,获得的新样本添加原来的语谱图一样的样本标签。
在一些具体的实例中,本实施例还提供一种小样本学习的绝缘子污秽放电状态识别系统,包括相互连接的微处理器和存储器,该微处理器被编程或配置以执行所述基于小样本学习的绝缘子污秽放电状态识别方法的步骤。在一些具体的实例中,本实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有被编程或配置以执行所述基于小样本学习的绝缘子污秽放电状态识别方法的计算机程序。
实施例四:
本实施例与实施例一基本相同,其主要不同点为步骤3)中通过对语谱图进行变换以扩充声音样本信号数据集中的样本量时,对语谱图进行变换的方式不同。
本实施例中,步骤3)中通过对语谱图进行变换以扩充声音样本信号数据集中的样本量时,对语谱图进行变换的方式为时域循环移位。语谱图中时域(y轴)上共有n个数据点,时域循环移位的步骤包括:取整(n/10)作为循环取样的步长m,从1-n进行遍历获得第i个点,将遍历得到的第i个点的频率及该频率处幅值信息传递到第i+m处,如果i+m>n,将该点信息传递到第i+m-n处,由此生成新的语谱图。其中取整的被除数10可以根据实际的采样点个数进行调整。转换后的图像添加和原来图像一样的样本标签。
在一些具体的实例中,本实施例还提供一种小样本学习的绝缘子污秽放电状态识别系统,包括相互连接的微处理器和存储器,该微处理器被编程或配置以执行所述基于小样本学习的绝缘子污秽放电状态识别方法的步骤。在一些具体的实例中,本实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有被编程或配置以执行所述基于小样本学习的绝缘子污秽放电状态识别方法的计算机程序。
应当理解,在本发明实施例中,所称处理器可以是中央处理单元(CentralProcessing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DigitalSignal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
所述可读存储介质为计算机可读存储介质,其可以是前述任一实施例所述的控制器的内部存储单元,例如控制器的硬盘或内存。所述可读存储介质也可以是所述控制器的外部存储设备,例如所述控制器上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述可读存储介质还可以既包括所述控制器的内部存储单元也包括外部存储设备。所述可读存储介质用于存储所述计算机程序以及所述控制器所需的其他程序和数据。所述可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
需要强调的是,本发明所述的实例是说明性的,而不是限定性的,以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于小样本学习的绝缘子污秽放电状态识别方法,其特征在于,包括训练用于将目标绝缘子的声音信号映射为目标绝缘子的污秽放电状态的图神经网络模型的步骤:
1)采集绝缘子在在不同污秽程度下的声音样本信号,并对声音样本信号的放电状态进行标注,从而得到带有标签向量的声音样本信号数据集;
2)针对声音样本信号数据集中的声音样本信号通过短时傅里叶变换获得语谱图;
3)通过对语谱图进行变换以扩充声音样本信号数据集中的样本量;
4)将语谱图输入预先训练好的特征提取神经网络提取得到特征向量,利用特征向量及其对应的标签向量作为输入来训练所述图神经网络模型,从而建立目标绝缘子的声音信号、目标绝缘子的污秽放电状态之间的映射关系。
2.根据权利要求1所述的基于小样本学习的绝缘子污秽放电状态识别方法,其特征在于,步骤1)中对声音样本信号的放电状态进行标注时,声音样本信号的放电状态包括未放电、电晕放电、污秽放电以及沿面闪络。
3.根据权利要求1所述的基于小样本学习的绝缘子污秽放电状态识别方法,其特征在于,步骤1)之后、步骤2)之前还包括针对声音样本信号数据集中的声音样本信号滤掉低频和高频成分的步骤。
4.根据权利要求3所述的基于小样本学习的绝缘子污秽放电状态识别方法,其特征在于,所述针对声音样本信号数据集中的声音样本信号滤掉低频和高频成分时,采用的滤波器为数字带通滤波器,且所述数字带通滤波器的上限截止频率fp2=40kHz、下限截止频率fp2=8kHz,使得保留的声音样本信号的频带范围为8kHz~40kHz。
5.根据权利要求1所述的基于小样本学习的绝缘子污秽放电状态识别方法,其特征在于,步骤2)中通过短时傅里叶变换获得语谱图时,语谱图频域选取为8kHz~40kHz,所述语谱图中包含声音信号的时间、频率以及幅值信息,且幅值信息以颜色的深浅表示。
6.根据权利要求1所述的基于小样本学习的绝缘子污秽放电状态识别方法,其特征在于,步骤3)中通过对语谱图进行变换以扩充声音样本信号数据集中的样本量时,对语谱图进行变换的方式为局部灰度转换。
7.根据权利要求1所述的基于小样本学习的绝缘子污秽放电状态识别方法,其特征在于,步骤3)中通过对语谱图进行变换以扩充声音样本信号数据集中的样本量时,对语谱图进行变换的方式为生成深度卷积对抗网络。
8.根据权利要求1所述的基于小样本学习的绝缘子污秽放电状态识别方法,其特征在于,步骤3)中通过对语谱图进行变换以扩充声音样本信号数据集中的样本量时,对语谱图进行变换的方式为时域循环移位。
9.一种小样本学习的绝缘子污秽放电状态识别系统,包括相互连接的微处理器和存储器,其特征在于,该微处理器被编程或配置以执行权利要求1~8中任意一项所述基于小样本学习的绝缘子污秽放电状态识别方法的步骤。
10.一种计算机可读存储介质,其特征在于,该计算机可读存储介质中存储有被编程或配置以执行权利要求1~8中任意一项所述基于小样本学习的绝缘子污秽放电状态识别方法的计算机程序。
CN202110998433.0A 2021-08-27 2021-08-27 基于小样本学习的绝缘子污秽放电状态识别方法及系统 Active CN113642714B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110998433.0A CN113642714B (zh) 2021-08-27 2021-08-27 基于小样本学习的绝缘子污秽放电状态识别方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110998433.0A CN113642714B (zh) 2021-08-27 2021-08-27 基于小样本学习的绝缘子污秽放电状态识别方法及系统

Publications (2)

Publication Number Publication Date
CN113642714A true CN113642714A (zh) 2021-11-12
CN113642714B CN113642714B (zh) 2024-02-09

Family

ID=78424215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110998433.0A Active CN113642714B (zh) 2021-08-27 2021-08-27 基于小样本学习的绝缘子污秽放电状态识别方法及系统

Country Status (1)

Country Link
CN (1) CN113642714B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114076877A (zh) * 2021-11-19 2022-02-22 国网辽宁省电力有限公司鞍山供电公司 一种基于电磁场大数据的高压绝缘状态分析方法及装置
CN116068287A (zh) * 2023-03-10 2023-05-05 国网山西省电力公司电力科学研究院 一种污秽绝缘子电位测量方法及装置

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1558225A (zh) * 2004-01-13 2004-12-29 武汉大学 绝缘子污秽放电超声监测方法及装置
JP2008026292A (ja) * 2006-07-25 2008-02-07 Kyushu Dengi Kaihatsu Kk がいし放電音判別方法及びその装置
RU2007133044A (ru) * 2007-09-03 2009-03-10 Казанский государственный энергетический университет (КГЭУ) (RU) Способ бесконтактного и дистанционного контроля состояния гирлянд изоляторов воздушных высоковольтных линий электропередачи
CN102628917A (zh) * 2012-04-25 2012-08-08 广州供电局有限公司 局部放电识别方法和系统
JP2012189513A (ja) * 2011-03-11 2012-10-04 Toshiba Corp 部分放電検出用センサ、部分放電検出装置、および部分放電検出方法
CN102982351A (zh) * 2012-11-15 2013-03-20 河北省电力公司电力科学研究院 基于bp神经网络的瓷绝缘子振动声学检测数据分类方法
CN104237757A (zh) * 2014-09-30 2014-12-24 武汉大学 基于eemd和边际谱熵的绝缘子污秽放电模式识别方法
CN106546892A (zh) * 2016-11-10 2017-03-29 华乘电气科技(上海)股份有限公司 基于深度学习的局部放电超声音频识别方法及系统
CN108303624A (zh) * 2018-01-31 2018-07-20 舒天才 一种基于声音信号分析的开关柜局部放电检测方法
CN108597539A (zh) * 2018-02-09 2018-09-28 桂林电子科技大学 基于参数迁移和语谱图的语音情感识别方法
CN108986834A (zh) * 2018-08-22 2018-12-11 中国人民解放军陆军工程大学 基于编解码器架构与递归神经网络的骨导语音盲增强方法
CN109120070A (zh) * 2018-10-23 2019-01-01 宋崇兰 一种智能化电网绝缘子在线监控、缺陷识别、预警与发声系统
CN110428364A (zh) * 2019-08-06 2019-11-08 上海海事大学 帕金森声纹语谱图样本扩充方法、装置及计算机存储介质
CN110456238A (zh) * 2019-07-26 2019-11-15 苏州微木智能系统有限公司 一种电晕放电离子源检测方法及系统
CN110718232A (zh) * 2019-09-23 2020-01-21 东南大学 一种基于二维语谱图和条件生成对抗网络的语音增强方法
CN110906975A (zh) * 2019-11-01 2020-03-24 国网江苏省电力有限公司盐城供电分公司 一种基于太阳能供电的绝缘子污秽检测系统及其检测方法
CN111312292A (zh) * 2020-02-18 2020-06-19 北京三快在线科技有限公司 基于语音的情绪识别方法、装置、电子设备及存储介质
CN111429947A (zh) * 2020-03-26 2020-07-17 重庆邮电大学 一种基于多级残差卷积神经网络的语音情感识别方法
CN111598167A (zh) * 2020-05-18 2020-08-28 中国科学院自动化研究所 基于图学习的小样本图像识别方法及系统
CN111700608A (zh) * 2020-07-24 2020-09-25 武汉中旗生物医疗电子有限公司 一种心电信号多分类方法及装置
CN112259118A (zh) * 2020-10-19 2021-01-22 成都明杰科技有限公司 单声道人声与背景音乐分离方法
CN112867152A (zh) * 2019-11-27 2021-05-28 北京三星通信技术研究有限公司 物理信号传输方法及装置、物理信号资源分配方法及装置
CN113065484A (zh) * 2021-04-09 2021-07-02 华北电力大学(保定) 一种基于紫外图谱的绝缘子污秽状态评估方法
CN113140228A (zh) * 2021-04-14 2021-07-20 广东工业大学 一种基于图神经网络的声乐打分方法
CN113239147A (zh) * 2021-05-12 2021-08-10 平安科技(深圳)有限公司 基于图神经网络的智能会话方法、系统及介质

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1558225A (zh) * 2004-01-13 2004-12-29 武汉大学 绝缘子污秽放电超声监测方法及装置
JP2008026292A (ja) * 2006-07-25 2008-02-07 Kyushu Dengi Kaihatsu Kk がいし放電音判別方法及びその装置
RU2007133044A (ru) * 2007-09-03 2009-03-10 Казанский государственный энергетический университет (КГЭУ) (RU) Способ бесконтактного и дистанционного контроля состояния гирлянд изоляторов воздушных высоковольтных линий электропередачи
JP2012189513A (ja) * 2011-03-11 2012-10-04 Toshiba Corp 部分放電検出用センサ、部分放電検出装置、および部分放電検出方法
CN102628917A (zh) * 2012-04-25 2012-08-08 广州供电局有限公司 局部放电识别方法和系统
CN102982351A (zh) * 2012-11-15 2013-03-20 河北省电力公司电力科学研究院 基于bp神经网络的瓷绝缘子振动声学检测数据分类方法
CN104237757A (zh) * 2014-09-30 2014-12-24 武汉大学 基于eemd和边际谱熵的绝缘子污秽放电模式识别方法
CN106546892A (zh) * 2016-11-10 2017-03-29 华乘电气科技(上海)股份有限公司 基于深度学习的局部放电超声音频识别方法及系统
CN108303624A (zh) * 2018-01-31 2018-07-20 舒天才 一种基于声音信号分析的开关柜局部放电检测方法
CN108597539A (zh) * 2018-02-09 2018-09-28 桂林电子科技大学 基于参数迁移和语谱图的语音情感识别方法
CN108986834A (zh) * 2018-08-22 2018-12-11 中国人民解放军陆军工程大学 基于编解码器架构与递归神经网络的骨导语音盲增强方法
CN109120070A (zh) * 2018-10-23 2019-01-01 宋崇兰 一种智能化电网绝缘子在线监控、缺陷识别、预警与发声系统
CN110456238A (zh) * 2019-07-26 2019-11-15 苏州微木智能系统有限公司 一种电晕放电离子源检测方法及系统
CN110428364A (zh) * 2019-08-06 2019-11-08 上海海事大学 帕金森声纹语谱图样本扩充方法、装置及计算机存储介质
CN110718232A (zh) * 2019-09-23 2020-01-21 东南大学 一种基于二维语谱图和条件生成对抗网络的语音增强方法
CN110906975A (zh) * 2019-11-01 2020-03-24 国网江苏省电力有限公司盐城供电分公司 一种基于太阳能供电的绝缘子污秽检测系统及其检测方法
CN112867152A (zh) * 2019-11-27 2021-05-28 北京三星通信技术研究有限公司 物理信号传输方法及装置、物理信号资源分配方法及装置
CN111312292A (zh) * 2020-02-18 2020-06-19 北京三快在线科技有限公司 基于语音的情绪识别方法、装置、电子设备及存储介质
CN111429947A (zh) * 2020-03-26 2020-07-17 重庆邮电大学 一种基于多级残差卷积神经网络的语音情感识别方法
CN111598167A (zh) * 2020-05-18 2020-08-28 中国科学院自动化研究所 基于图学习的小样本图像识别方法及系统
CN111700608A (zh) * 2020-07-24 2020-09-25 武汉中旗生物医疗电子有限公司 一种心电信号多分类方法及装置
CN112259118A (zh) * 2020-10-19 2021-01-22 成都明杰科技有限公司 单声道人声与背景音乐分离方法
CN113065484A (zh) * 2021-04-09 2021-07-02 华北电力大学(保定) 一种基于紫外图谱的绝缘子污秽状态评估方法
CN113140228A (zh) * 2021-04-14 2021-07-20 广东工业大学 一种基于图神经网络的声乐打分方法
CN113239147A (zh) * 2021-05-12 2021-08-10 平安科技(深圳)有限公司 基于图神经网络的智能会话方法、系统及介质

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
GONG YUNPENG 等: "A general multi-modal data learning method for Person Re-identification", 《ARXIV》, pages 1 - 15 *
SATISH KUMAR POLISETTY: "Partial Discharge Classification Using Acoustic Signals and Artificial Neural Networks and its Application in detection of Defects in Ceramic Insulators", 《ELECTROSTATICS.ORG》, pages 1 - 64 *
SHUBHAM DOKANIA 等: "Graph Representation learning for Audio & Music genre Classification", 《ARXIV》, pages 1 - 7 *
VICTOR GARCIA 等: "FEW-SHOT LEARNING WITH GRAPH NEURAL NETWORKS", 《ARXIV》, pages 1 - 13 *
张若凡 等: "基于语谱图的老年人语音情感识别方法", 《软件导刊》, vol. 17, no. 9, pages 28 - 31 *
汪洋 等: "基于EEMD和边际谱熵的绝缘子污秽放电模式识别", 《绝缘材料》, vol. 48, no. 7, pages 23 - 28 *
陈兴新 等: "基于 XGBoost 算法的绝缘子污秽放电在线诊断方法研究", 《湖南电力》, vol. 41, no. 2, pages 36 - 40 *
龚云鹏 等: "基于灰度域特征增强的行人重识别方法", 《计算机应用》, vol. 41, no. 12, pages 3590 - 3595 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114076877A (zh) * 2021-11-19 2022-02-22 国网辽宁省电力有限公司鞍山供电公司 一种基于电磁场大数据的高压绝缘状态分析方法及装置
CN114076877B (zh) * 2021-11-19 2023-12-19 国网辽宁省电力有限公司鞍山供电公司 一种基于电磁场大数据的高压绝缘状态分析方法及装置
CN116068287A (zh) * 2023-03-10 2023-05-05 国网山西省电力公司电力科学研究院 一种污秽绝缘子电位测量方法及装置
CN116068287B (zh) * 2023-03-10 2023-06-13 国网山西省电力公司电力科学研究院 一种污秽绝缘子电位测量方法及装置

Also Published As

Publication number Publication date
CN113642714B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
CN109065030B (zh) 基于卷积神经网络的环境声音识别方法及系统
Ren et al. Attention-based atrous convolutional neural networks: Visualisation and understanding perspectives of acoustic scenes
CN114022432B (zh) 基于改进的yolov5的绝缘子缺陷检测方法
CN112183203B (zh) 一种基于多尺度像素特征融合的实时交通标志检测方法
CN113642714B (zh) 基于小样本学习的绝缘子污秽放电状态识别方法及系统
CN110853656B (zh) 基于改进神经网络的音频篡改识别方法
CN111898432B (zh) 一种基于改进YOLOv3算法的行人检测系统及方法
CN110890102A (zh) 一种基于rnn声纹识别的发动机缺陷检测算法
CN111259940A (zh) 一种基于空间注意力地图的目标检测方法
CN112488025B (zh) 基于多模态特征融合的双时相遥感影像语义变化检测方法
CN110852215A (zh) 一种多模态情感识别方法、系统及存储介质
CN113487610B (zh) 疱疹图像识别方法、装置、计算机设备和存储介质
CN112068555A (zh) 一种基于语义slam方法的语音控制型移动机器人
CN114724548A (zh) 多模态语音识别模型的训练方法、语音识别方法及设备
CN116150509B (zh) 社交媒体网络的威胁情报识别方法、系统、设备及介质
CN113947114A (zh) 基于Transformer神经网络和轴心轨迹的燃气轮机转子故障诊断方法
CN113488060A (zh) 一种基于变分信息瓶颈的声纹识别方法及系统
CN113111731A (zh) 基于测信道信息的深度神经网络黑盒对抗样本生成方法及系统
CN115620081A (zh) 一种目标检测模型的训练方法及目标检测方法、装置
Liu et al. Simple pooling front-ends for efficient audio classification
CN104867493B (zh) 基于小波变换的多重分形维数端点检测方法
Bai et al. A squeeze-and-excitation and transformer based cross-task model for environmental sound recognition
CN109284752A (zh) 一种车辆的快速检测方法
Zharmagambetov et al. Improved representation learning for acoustic event classification using tree-structured ontology
CN116188785A (zh) 运用弱标签的PolarMask老人轮廓分割方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant