CN113641907B - 一种基于进化算法的超参数自适应深度推荐方法及装置 - Google Patents
一种基于进化算法的超参数自适应深度推荐方法及装置 Download PDFInfo
- Publication number
- CN113641907B CN113641907B CN202110942451.7A CN202110942451A CN113641907B CN 113641907 B CN113641907 B CN 113641907B CN 202110942451 A CN202110942451 A CN 202110942451A CN 113641907 B CN113641907 B CN 113641907B
- Authority
- CN
- China
- Prior art keywords
- model
- super
- parameter
- recommendation
- training
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000012549 training Methods 0.000 claims abstract description 83
- 238000005457 optimization Methods 0.000 claims abstract description 33
- 230000003993 interaction Effects 0.000 claims abstract description 12
- 238000012545 processing Methods 0.000 claims abstract description 7
- 238000010276 construction Methods 0.000 claims abstract description 4
- 238000012546 transfer Methods 0.000 claims abstract description 4
- 239000013598 vector Substances 0.000 claims description 82
- 230000006399 behavior Effects 0.000 claims description 48
- 238000004364 calculation method Methods 0.000 claims description 40
- 238000007781 pre-processing Methods 0.000 claims description 34
- 238000013500 data storage Methods 0.000 claims description 33
- 239000011159 matrix material Substances 0.000 claims description 28
- 230000006870 function Effects 0.000 claims description 27
- 238000013528 artificial neural network Methods 0.000 claims description 16
- 230000003044 adaptive effect Effects 0.000 claims description 14
- 230000004913 activation Effects 0.000 claims description 11
- 230000035772 mutation Effects 0.000 claims description 11
- 238000013135 deep learning Methods 0.000 claims description 8
- 238000013136 deep learning model Methods 0.000 claims description 7
- 238000010200 validation analysis Methods 0.000 claims description 7
- 238000012795 verification Methods 0.000 claims description 5
- 230000004931 aggregating effect Effects 0.000 claims description 3
- 238000011423 initialization method Methods 0.000 claims description 3
- 230000000644 propagated effect Effects 0.000 claims description 3
- 238000010845 search algorithm Methods 0.000 claims description 3
- 230000002776 aggregation Effects 0.000 claims 1
- 238000004220 aggregation Methods 0.000 claims 1
- 238000012163 sequencing technique Methods 0.000 claims 1
- 238000004458 analytical method Methods 0.000 abstract description 2
- 230000009471 action Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/086—Learning methods using evolutionary algorithms, e.g. genetic algorithms or genetic programming
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Physiology (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110942451.7A CN113641907B (zh) | 2021-08-17 | 2021-08-17 | 一种基于进化算法的超参数自适应深度推荐方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110942451.7A CN113641907B (zh) | 2021-08-17 | 2021-08-17 | 一种基于进化算法的超参数自适应深度推荐方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113641907A CN113641907A (zh) | 2021-11-12 |
CN113641907B true CN113641907B (zh) | 2023-11-28 |
Family
ID=78422381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110942451.7A Active CN113641907B (zh) | 2021-08-17 | 2021-08-17 | 一种基于进化算法的超参数自适应深度推荐方法及装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113641907B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117764428B (zh) * | 2023-10-26 | 2024-08-06 | 南京朗赢信息技术有限公司 | 一种基于供需自主匹配算法的能力验证系统及方法 |
CN118227877A (zh) * | 2024-03-18 | 2024-06-21 | 涅生科技(广州)股份有限公司 | 基于深度学习的智能推荐方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110083125A (zh) * | 2019-05-19 | 2019-08-02 | 重庆理工大学 | 一种基于深度学习的机床热误差建模方法 |
CN112085158A (zh) * | 2020-07-21 | 2020-12-15 | 西安工程大学 | 一种基于堆栈降噪自编码器的图书推荐方法 |
CN112800344A (zh) * | 2021-01-29 | 2021-05-14 | 重庆邮电大学 | 一种基于深度神经网络的电影推荐方法 |
CN112989635A (zh) * | 2021-04-22 | 2021-06-18 | 昆明理工大学 | 基于自编码器多样性生成机制的集成学习软测量建模方法 |
-
2021
- 2021-08-17 CN CN202110942451.7A patent/CN113641907B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110083125A (zh) * | 2019-05-19 | 2019-08-02 | 重庆理工大学 | 一种基于深度学习的机床热误差建模方法 |
CN112085158A (zh) * | 2020-07-21 | 2020-12-15 | 西安工程大学 | 一种基于堆栈降噪自编码器的图书推荐方法 |
CN112800344A (zh) * | 2021-01-29 | 2021-05-14 | 重庆邮电大学 | 一种基于深度神经网络的电影推荐方法 |
CN112989635A (zh) * | 2021-04-22 | 2021-06-18 | 昆明理工大学 | 基于自编码器多样性生成机制的集成学习软测量建模方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113641907A (zh) | 2021-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Maliar et al. | Deep learning for solving dynamic economic models. | |
Bai et al. | A model-based reinforcement learning with adversarial training for online recommendation | |
CN112184391B (zh) | 一种推荐模型的训练方法、介质、电子设备和推荐模型 | |
CN107506590A (zh) | 一种基于改进深度信念网络的心血管疾病预测模型 | |
CN109635204A (zh) | 基于协同过滤和长短记忆网络的在线推荐系统 | |
CN109783738B (zh) | 一种基于多相似度的双极限学习机混合协同过滤推荐方法 | |
CN107729999A (zh) | 考虑矩阵相关性的深度神经网络压缩方法 | |
CN113641907B (zh) | 一种基于进化算法的超参数自适应深度推荐方法及装置 | |
Navgaran et al. | Evolutionary based matrix factorization method for collaborative filtering systems | |
CN114202061A (zh) | 基于生成对抗网络模型及深度强化学习的物品推荐方法、电子设备及介质 | |
CN110222838B (zh) | 文档排序方法、装置、电子设备及存储介质 | |
CN115186097A (zh) | 一种基于知识图谱和强化学习的交互式推荐方法 | |
CN114692310A (zh) | 一种基于Dueling DQN的虚实融合一二级分离模型参数优化方法 | |
Huang et al. | Regret theory-based multivariate fusion prediction system and its application to interest rate estimation in multi-scale information systems | |
Hsu | Multi-period time series modeling with sparsity via Bayesian variational inference | |
CN114580747A (zh) | 基于数据相关性和模糊系统的异常数据预测方法及系统 | |
CN110738363B (zh) | 一种光伏发电功率预测方法 | |
Baker et al. | Machine learning: factorization machines and normalized discounted cumulative gain for tourism recommender system optimisation | |
Rahman et al. | Implementation of artificial neural network on regression analysis | |
Ferreira et al. | Data selection in neural networks | |
US20230140702A1 (en) | Search-query suggestions using reinforcement learning | |
CN112949599B (zh) | 基于大数据的候选内容推送方法 | |
US20230124258A1 (en) | Embedding optimization for machine learning models | |
Xue et al. | An improved extreme learning machine based on variable-length particle swarm optimization | |
Brych et al. | Competitiveness of MAP-Elites against Proximal Policy Optimization on locomotion tasks in deterministic simulations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20211112 Assignee: Chongqing Nanao Technology Co.,Ltd. Assignor: CHONGQING INSTITUTE OF GREEN AND INTELLIGENT TECHNOLOGY, CHINESE ACADEMY OF SCIENCES Contract record no.: X2024980010205 Denomination of invention: A hyperparameter adaptive depth recommendation method and device based on evolutionary algorithm Granted publication date: 20231128 License type: Common License Record date: 20240724 |
|
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20211112 Assignee: CHONGQING XIAOAI TECHNOLOGY Co.,Ltd. Assignor: CHONGQING INSTITUTE OF GREEN AND INTELLIGENT TECHNOLOGY, CHINESE ACADEMY OF SCIENCES Contract record no.: X2024980012534 Denomination of invention: A hyperparameter adaptive depth recommendation method and device based on evolutionary algorithm Granted publication date: 20231128 License type: Common License Record date: 20240902 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20211112 Assignee: Chongqing Edge Cloud Network Technology Co.,Ltd. Assignor: CHONGQING INSTITUTE OF GREEN AND INTELLIGENT TECHNOLOGY, CHINESE ACADEMY OF SCIENCES Contract record no.: X2024980012984 Denomination of invention: A hyperparameter adaptive depth recommendation method and device based on evolutionary algorithm Granted publication date: 20231128 License type: Common License Record date: 20240903 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20211112 Assignee: Chongqing Guanyi Technology Co.,Ltd. Assignor: CHONGQING INSTITUTE OF GREEN AND INTELLIGENT TECHNOLOGY, CHINESE ACADEMY OF SCIENCES Contract record no.: X2024980014059 Denomination of invention: A hyperparameter adaptive depth recommendation method and device based on evolutionary algorithm Granted publication date: 20231128 License type: Common License Record date: 20240909 Application publication date: 20211112 Assignee: CHONGQING RUIYUN TECHNOLOGY Co.,Ltd. Assignor: CHONGQING INSTITUTE OF GREEN AND INTELLIGENT TECHNOLOGY, CHINESE ACADEMY OF SCIENCES Contract record no.: X2024980013974 Denomination of invention: A hyperparameter adaptive depth recommendation method and device based on evolutionary algorithm Granted publication date: 20231128 License type: Common License Record date: 20240909 |
|
EE01 | Entry into force of recordation of patent licensing contract |