CN113640405A - 一种电气设备的故障检测方法 - Google Patents

一种电气设备的故障检测方法 Download PDF

Info

Publication number
CN113640405A
CN113640405A CN202110789017.XA CN202110789017A CN113640405A CN 113640405 A CN113640405 A CN 113640405A CN 202110789017 A CN202110789017 A CN 202110789017A CN 113640405 A CN113640405 A CN 113640405A
Authority
CN
China
Prior art keywords
fault
electrical equipment
ion peak
detection
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110789017.XA
Other languages
English (en)
Inventor
卓然
王炜
王邸博
黄青丹
傅明利
宋浩永
罗颜
赵崇智
高萌
刘静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China South Power Grid International Co ltd
Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Original Assignee
China South Power Grid International Co ltd
Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China South Power Grid International Co ltd, Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd filed Critical China South Power Grid International Co ltd
Priority to CN202110789017.XA priority Critical patent/CN113640405A/zh
Publication of CN113640405A publication Critical patent/CN113640405A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8631Peaks
    • G01N30/8634Peak quality criteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • G01N30/8679Target compound analysis, i.e. whereby a limited number of peaks is analysed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1281Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of liquids or gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8859Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample inorganic compounds

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Library & Information Science (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

本发明公开了一种电气设备的故障检测方法,包括:采集电气设备内的C4F7N/CO2混合气体,将C4F7N/CO2混合气体注入气相色谱仪中进行检测,获得C4F7N/CO2混合气体的组分;当检测到组分中不包含分解产物时,判定电气设备内部未发生故障;当检测到组分中包含C4F8或i‑C4F8时,判定电气设备内部发生局部过热故障;当检测到组分中未包含C4F8或i‑C4F8时,检测组分中是否包含C4F6和C3F3N,得到检测结果,并根据检测结果,判断电气设备内部发生的放电故障。本发明实施例通过检测C4F7N/CO2混合气体的分解产物,有效实现对电气设备的故障检测。

Description

一种电气设备的故障检测方法
技术领域
本发明涉及电气设备技术领域,特别是涉及一种电气设备的故障检测方法。
背景技术
由于C4F7N/CO2混合气体绝缘强度高,熄弧能力强,在工程应用上表现出优异的电气性能,而且能够替代对全球变暖造成巨大的影响的气体绝缘介质SF6。因此,近年来采用C4F7N/CO2混合气体作为电气设备的绝缘介质备受关注,但现有技术并未配备针对C4F7N/CO2混合气体的电气设备故障检测方法。
发明内容
本发明实施例的目的是提供一种电气设备的故障检测方法,其能够通过检测C4F7N/CO2混合气体的分解产物,有效实现对电气设备的故障检测。
为实现上述目的,本发明实施例提供了一种电气设备的故障检测方法,包括:
采集电气设备内的C4F7N/CO2混合气体,将所述C4F7N/CO2混合气体注入气相色谱仪中进行检测,获得所述C4F7N/CO2混合气体的组分;
当检测到所述组分中不包含分解产物时,判定所述电气设备内部未发生故障;
当检测到所述组分中包含C4F8或i-C4F8时,判定所述电气设备内部发生局部过热故障;
当检测到所述组分中未包含C4F8或i-C4F8时,检测所述组分中是否包含C4F6和C3F3N,得到检测结果,并根据所述检测结果,判断所述电气设备内部发生的放电故障;其中,所述放电故障为工频击穿故障、局部放电故障或火花放电故障。
作为上述方案的改进,所述根据所述检测结果,判断所述电气设备内部发生的放电故障,具体包括:
当所述检测结果为是时,判定所述电气设备内部发生工频击穿故障;
当所述检测结果为否时,通过定量分析提取C3F8和C2F3N的离子峰面积,并根据所述离子峰面积,判定所述电气设备内部发生的放电故障是局部放电故障还是火花放电故障。
作为上述方案的改进,所述根据所述离子峰面积,判定所述电气设备内部发生的放电故障是局部放电故障还是火花放电故障,具体包括:
对所述C3F8的离子峰面积和所述C2F3N的离子峰面积进行比值分析;
当所述C3F8的离子峰面积和所述C2F3N的离子峰面积的比值大于预设阈值时,判定所述电气设备内部发生局部放电故障;
当所述C3F8的离子峰面积和所述C2F3N的离子峰面积的比值小于所述预设阈值时,判定所述电气设备内部发生火花放电故障。
作为上述方案的改进,所述预设阈值为1。
作为上述方案的改进,所述方法还包括:
当判定所述电气设备内部发生局部过热故障时,对所述电气设备的故障点进行温度检测和过热故障修理。
作为上述方案的改进,所述方法还包括:
当判定所述电气设备内部发生放电故障时,对所述电气设备的故障点进行停运检修。
与现有技术相比,本发明实施例提供的一种电气设备的故障检测方法,首先,采集电气设备内的C4F7N/CO2混合气体,将C4F7N/CO2混合气体注入气相色谱仪中进行检测,获得C4F7N/CO2混合气体的组分;然后,通过检测组分中是否包含C4F7N/CO2的分解产物,判断电气设备内部是否发生故障;最后,通过检测组分中是否包含C4F8或i-C4F8,判断电气设备内部发生局部过热故障或放电故障。本发明实施例能够有效对电气设备进行故障检测,并通过分解产物判断电气设备内部故障为局部过热故障或放电故障。
附图说明
图1是本发明实施例提供的一种电气设备的故障检测方法的流程图;
图2是本发明又一实施例提供的一种电气设备的故障检测方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,图1是本发明实施例提供的一种电气设备的故障检测方法的流程图。
所述电气设备的故障检测方法,应用于采用C4F7N/CO2混合气体作为绝缘介质的电气设备,包括如下步骤:
S1、采集电气设备内的C4F7N/CO2混合气体,将所述C4F7N/CO2混合气体注入气相色谱仪中进行检测,获得所述C4F7N/CO2混合气体的组分;
S2、当检测到所述组分中不包含分解产物时,判定所述电气设备内部未发生故障;
S3、当检测到所述组分中包含C4F8或i-C4F8时,判定所述电气设备内部发生局部过热故障;
S4、当检测到所述组分中未包含C4F8或i-C4F8时,检测所述组分中是否包含C4F6和C3F3N,得到检测结果,并根据所述检测结果,判断所述电气设备内部发生的放电故障;其中,所述放电故障为工频击穿故障、局部放电故障或火花放电故障。
具体的,步骤S1的过程如下:
使用特氟龙FEP薄膜的气体采样袋采集所述电气设备内部的C4F7N/CO2混合气体;
选取长度为30m,内径为0.32mm,膜厚为0μm的Agilent GS-Gaspro型色谱柱,色谱载气为氦气,气体进样分流比为20:1;
设置实验装置的温度程序为以40℃稳定加热1min,然后以20℃/min的升温速率升至160℃稳定加热1min,最后以40℃/min升温速率升至240℃稳定加热6min,加热结束后吹扫出吸附在所述色谱柱上的气体;
使用250μL容量的气体进样针从所述气体采样袋中吸取200μL的所述C4F7N/CO2混合气体;
将所述C4F7N/CO2混合气体注入气相色谱仪中进行检测,获得所述C4F7N/CO2混合气体的组分。
需要说明的是,在步骤S2中所述分解产物主要包括以下中的至少一种:CF4、C2F6、C3F8、C4F10、C2F4、C3F6、C4F8、i-C4F8、C2F3N、C3F5N、C3F3N、C2N2、HCN。
可以理解的,当所述电气设备内部发生局部过热故障或放电故障时,所述电气设备内部的所述C4F7N/CO2混合气体也会发生分解,当检测到任一分解产物时,都可以说明所述电气设备内部发生了故障。
不同故障下的分解产物如表1所示:
表1
Figure BDA0003160146680000041
Figure BDA0003160146680000051
需要说明的是,由于电气设备内部发生局部过热故障时,分解产物的种类与过热温度也存在一定关系,所以不能以单一分解产物作为判断依据,欲通过分解产物的种类对局部过热故障进行区分,需要综合考虑不同温度下的实验结果。
进一步地,在步骤S4中,所述根据所述检测结果,判断所述电气设备内部发生的放电故障,具体包括:
S41、当所述检测结果为是时,判定所述电气设备内部发生工频击穿故障;
S42、当所述检测结果为否时,通过定量分析提取C3F8和C2F3N的离子峰面积,并根据所述离子峰面积,判定所述电气设备内部发生的放电故障是局部放电故障还是火花放电故障。
需要说明的是,通过对局部放电故障和火花放电故障进行定性分析发现,由于火花放电故障是局部放电故障地进一步发展,这两种放电故障的分解产物种类相近。根据这两种放电故障的放电本质原理和在放电间隙之间注入的能量大小不同,进一步通过对分解产物进行定量分析,对比分解产物的离子峰面积判断所述电气设备内部发生局部放电故障或火花放电故障。
进一步地,在步骤S42中,所述根据所述离子峰面积,判定所述电气设备内部发生的放电故障是局部放电故障还是火花放电故障,具体包括:
S421、对所述C3F8的离子峰面积和所述C2F3N的离子峰面积进行比值分析;
S422、当所述C3F8的离子峰面积和所述C2F3N的离子峰面积的比值大于预设阈值时,判定所述电气设备内部发生局部放电故障;
S423、当所述C3F8的离子峰面积和所述C2F3N的离子峰面积的比值小于所述预设阈值时,判定所述电气设备内部发生火花放电故障。
优选的,所述预设阈值为1。
局部放电故障和火花放电故障时所述C3F8和所述C2F3N的离子峰面积信息如表2所示:
表2
Figure BDA0003160146680000061
从表2可以看出,当发生局部放电故障时,所述C3F8的离子峰面积和所述C2F3N的离子峰面积的比值大于1。当发生火花放电故障时,所述C3F8的离子峰面积和所述C2F3N的离子峰面积的比值小于1。
优选的,所述方法还包括:
当判定所述电气设备内部发生局部过热故障时,对所述电气设备的故障点进行温度检测和过热故障修理。
优选的,所述方法还包括:
当判定所述电气设备内部发生放电故障时,对所述电气设备的故障点进行停运检修。
在一个具体的实施例中,参见图2,所述电气设备的故障检测方法具体如下:
首先,采集电气设备内部的C4F7N/CO2混合气体,然后将所述C4F7N/CO2混合气体注入气相色谱仪中进行定性检测,获得所述C4F7N/CO2混合气体的组分;
当检测到所述组分中不包含C4F7N/CO2混合气体的任一分解产物时,则判定所述C4F7N/CO2混合气体未发生复分解,所述电气设备安全运行;
当检测到所述组分中包含一定量的分解产物时,则需要对所述分解产物进行甄别,检测所述组分中是否包含C4F8或i-C4F8
当检测到所述组分中包含所述C4F8或所述i-C4F8时,判定所述电气设备内部发生局部过热故障,需要对所述电气设备的故障点进行温度检测和过热故障修理;
当检测到所述组分中未包含所述C4F8或所述i-C4F8时,则需要重点关注分解产物中含有氰基(CN)的物质,检测所述组分中是否包含C4F6和C3F3N;
当检测所述组分中同时包含所述C4F6和所述C3F3N时,判定所述电气设备内部发生工频击穿故障,需要对所述电气设备的故障点进行停运检修,确保设备安全运行;
当未检测到C4F8、i-C4F8、C4F6、C3F3N这四种分解产物时,则需要重点关注分解产物的离子峰面积,通过定量分析提取C3F8和C2F3N的离子峰面积,并对所述C3F8的离子峰面积和所述C2F3N的离子峰面积进行比值分析;
当所述C3F8的离子峰面积和所述C2F3N的离子峰面积的比值大于1时,判定所述电气设备内部发生局部放电故障,需要对所述电气设备的故障点进行停运检修,确保设备安全运行;
当所述C3F8的离子峰面积和所述C2F3N的离子峰面积的比值小于1时,判定所述电气设备内部发生火花放电故障,所述电气设备内部的放电故障较为严重,需要对所述电气设备的故障点进行停运检修,确保设备安全运行。
本发明实施例提供的一种电气设备的故障检测方法,首先,采集电气设备内的C4F7N/CO2混合气体,将C4F7N/CO2混合气体注入气相色谱仪中进行检测,获得C4F7N/CO2混合气体的组分;其次,通过检测组分中是否包含C4F7N/CO2混合气体的分解产物,判断电气设备内部是否发生故障;最后,通过检测组分中是否包含C4F8或i-C4F8,判断电气设备内部发生局部过热故障或放电故障。本发明实施例能够有效对电气设备进行故障检测,并通过分解产物判断电气设备内部故障为局部过热故障或放电故障。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (6)

1.一种电气设备的故障检测方法,其特征在于,包括:
采集电气设备内的C4F7N/CO2混合气体,将所述C4F7N/CO2混合气体注入气相色谱仪中进行检测,获得所述C4F7N/CO2混合气体的组分;
当检测到所述组分中不包含分解产物时,判定所述电气设备内部未发生故障;
当检测到所述组分中包含C4F8或i-C4F8时,判定所述电气设备内部发生局部过热故障;
当检测到所述组分中未包含C4F8或i-C4F8时,检测所述组分中是否包含C4F6和C3F3N,得到检测结果,并根据所述检测结果,判断所述电气设备内部发生的放电故障;其中,所述放电故障为工频击穿故障、局部放电故障或火花放电故障。
2.如权利要求1所述的电气设备的故障检测方法,其特征在于,所述根据所述检测结果,判断所述电气设备内部发生的放电故障,具体包括:
当所述检测结果为是时,判定所述电气设备内部发生工频击穿故障;
当所述检测结果为否时,通过定量分析提取C3F8和C2F3N的离子峰面积,并根据所述离子峰面积,判定所述电气设备内部发生的放电故障是局部放电故障还是火花放电故障。
3.如权利要求2所述的电气设备的故障检测方法,其特征在于,所述根据所述离子峰面积,判定所述电气设备内部发生的放电故障是局部放电故障还是火花放电故障,具体包括:
对所述C3F8的离子峰面积和所述C2F3N的离子峰面积进行比值分析;
当所述C3F8的离子峰面积和所述C2F3N的离子峰面积的比值大于预设阈值时,判定所述电气设备内部发生局部放电故障;
当所述C3F8的离子峰面积和所述C2F3N的离子峰面积的比值小于所述预设阈值时,判定所述电气设备内部发生火花放电故障。
4.如权利要求3所述的电气设备的故障检测方法,其特征在于,所述预设阈值为1。
5.如权利要求1所述的电气设备的故障检测方法,其特征在于,所述方法还包括:
当判定所述电气设备内部发生局部过热故障时,对所述电气设备的故障点进行温度检测和过热故障修理。
6.如权利要求1所述的电气设备的故障检测方法,其特征在于,所述方法还包括:
当判定所述电气设备内部发生放电故障时,对所述电气设备的故障点进行停运检修。
CN202110789017.XA 2021-07-13 2021-07-13 一种电气设备的故障检测方法 Pending CN113640405A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110789017.XA CN113640405A (zh) 2021-07-13 2021-07-13 一种电气设备的故障检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110789017.XA CN113640405A (zh) 2021-07-13 2021-07-13 一种电气设备的故障检测方法

Publications (1)

Publication Number Publication Date
CN113640405A true CN113640405A (zh) 2021-11-12

Family

ID=78417209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110789017.XA Pending CN113640405A (zh) 2021-07-13 2021-07-13 一种电气设备的故障检测方法

Country Status (1)

Country Link
CN (1) CN113640405A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2154590A1 (en) * 1993-01-25 1994-08-04 Steven C. Quay Phase shift colloids as ultrasound contrast agents
CN112198238A (zh) * 2020-08-25 2021-01-08 西安交通大学 一种检测放电工况下断路器中气体分解产物的方法及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2154590A1 (en) * 1993-01-25 1994-08-04 Steven C. Quay Phase shift colloids as ultrasound contrast agents
CN112198238A (zh) * 2020-08-25 2021-01-08 西安交通大学 一种检测放电工况下断路器中气体分解产物的方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
唐峰 等: "新型环保气体分解产物检测方法研究", 《分析仪器》 *
杨韬 等: "不同故障工况下C4F7N/CO2混合气体分解产物的实验研究", 《高电压技术》 *

Similar Documents

Publication Publication Date Title
Perrier et al. DGA comparison between ester and mineral oils
CN111684272B (zh) 质谱分析方法及质谱分析装置
CN104297644A (zh) 六氟化硫电气设备中环氧树脂绝缘介质绝缘状态的监测方法
Narang et al. Fault detection techniques for transformer maintenance using Dissolved Gas analysis
JP5705388B1 (ja) 油入電気機器の診断方法
CN114019040A (zh) 一种检测六氟化硫中气体杂质的系统
Silva Jr et al. Analytical challenges in doping control: Comprehensive two-dimensional gas chromatography with time of flight mass spectrometry, a promising option
Ghislain et al. Characterization of crude oil asphaltenes by coupling size‐exclusion chromatography directly to an ultrahigh‐resolution mass spectrometer
WO2015022815A1 (ja) 試料分析方法とその装置
CN113640405A (zh) 一种电气设备的故障检测方法
Zhang et al. Breakage features of coal treated by cyclic single pulse electrical disintegration
Back et al. Correlation between mercury content and leaching characteristics in waste phosphor powder from spent UV curing lamp after thermal treatment
Zhang et al. Electroluminescence and electrical degradation of insulating polymers at electrode interfaces under divergent fields
Ghalkhani et al. Influence of aging byproducts on the gassing tendency of transformer oils
JP5899982B2 (ja) ゴム材料の組成分析方法
Haupert et al. A review of the operating principles and practice of dissolved gas analysis
Zhang et al. Influence mechanisms of epoxy degradation on surface traps and charge accumulation under DC electrical–thermal stress
Wang et al. Decomposition products and mechanism of C 5 F 10 O/N 2 gas mixture by electron attachment mass spectrometry
Delaunay-Bertoncini et al. Analysis of low-molar-mass materials in commercial rubber samples by Soxhlet and headspace extractions followed by GC–MS analysis
Pietrzak et al. Thermal Current Interruption Performance of CO2 and CO2/C4F7N mixture
CN113092616A (zh) 一种六氟化硫断路器电弧放电分解产物受喷口材料影响程度的研究方法
Freudenberg et al. Finite Element Analysis of DC Partial Discharges in Failure Types of Thin Insulation Layers in Traction Battery Systems
CN109813584A (zh) 一种基于超声萃取研究煤自燃的方法
US5404219A (en) System for enhancing detection of sample components in plasma based sample analysis systems, and method of use
Arion et al. Conformational and nuclear dynamics effects in molecular Auger spectra: fluorine core-hole decay in CF4

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211112