CN113639664B - 一种分步测量光学镜片曲率半径和检测镜片缺陷的方法 - Google Patents

一种分步测量光学镜片曲率半径和检测镜片缺陷的方法 Download PDF

Info

Publication number
CN113639664B
CN113639664B CN202110922704.4A CN202110922704A CN113639664B CN 113639664 B CN113639664 B CN 113639664B CN 202110922704 A CN202110922704 A CN 202110922704A CN 113639664 B CN113639664 B CN 113639664B
Authority
CN
China
Prior art keywords
lens
radius
curvature radius
curvature
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110922704.4A
Other languages
English (en)
Other versions
CN113639664A (zh
Inventor
窦健泰
龚渭
路森
邓晓龙
冉翔羽
厉淑贞
胡友友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danyang Juxiang Vision Technology Co ltd
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202110922704.4A priority Critical patent/CN113639664B/zh
Publication of CN113639664A publication Critical patent/CN113639664A/zh
Application granted granted Critical
Publication of CN113639664B publication Critical patent/CN113639664B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/255Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring radius of curvature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/025Testing optical properties by measuring geometrical properties or aberrations by determining the shape of the object to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0278Detecting defects of the object to be tested, e.g. scratches or dust

Abstract

本发明提出了一种分步测量光学镜片曲率半径和检测镜片缺陷的方法,包括(1)初始曲率半径求解:根据采集的干涉图T(x,y)的暗环直径,求得初始曲率半径R0;(2)曲线拟合:以R0仿真牛顿环T0(x,y),将T(x,y)和T0(x,y)二阶极坐标变换后消除常数项,再叠加形成莫尔条纹,对莫尔条纹进行曲线拟合,得到待测镜片新的曲率半径R1;(3)移相求波前:对R1仿真的干涉图进行多步移相,得到多幅干涉图,分别与T(x,y)叠加,由多幅莫尔条纹得到波前差数据,进一步根据波前差分法求得待测镜片的高精确曲率半径R2;(4)缺陷提取:利用R2去掉干涉图T(x,y)中由曲率半径解得的波前数据,即可得到待测镜片的缺陷数据。

Description

一种分步测量光学镜片曲率半径和检测镜片缺陷的方法
技术领域
本发明涉及光学检测领域,尤其涉及一种分步测量光学镜片曲率半径和检测镜片缺陷的方法。
背景技术
球面光学镜片作为光学系统中最常见的光学元件,在各类光学系统中有着重要作用。曲率半径是表征球面光学镜片的重要参量,其对光学系统的整体成像质量有着重要影响。除曲率半径外,球面光学镜片表面缺陷和内部缺陷也严重影响成像质量。
中国专利公开号CN110455221A公开了一种快速测量光学镜片曲率半径的光路结构和设备,包括:发光LED、切换式透镜单元、棱镜、半反半透镜﹑保护玻璃、光阑和CCD摄像机。通过采用CCD图像采集和亚像素拟合圆的算法结合,并结合工控机得到被测样本的曲率半径。首先,该结构中存在多次反射改变光迹,使得适用范围变广,但是存在传输损耗,对成像质量存在影响;其次,专利中测量曲率半径的方法是通过工控机对图像进一步处理后再进行亚像素拟合圆得到的曲率半径精度较高,精度受图像质量影响大,并且稳定性降低。
中国专利公开号CN110793467A公开了一种光学镜片曲率半径精度检测装置,包括:包括底板、固定板、LED灯、光栅片、滑道和滑块等。通过调整光栅片在光学镜片球心附近位置,形成莫尔条纹,计算曲率半径。该方法的调试阶段步骤多,较为繁琐,对于曲率半径的测量采用的是朗奇条纹法,在测量精度上受限于对球心位置的精准定位。
中国专利公开号CN107860776A公开了一种镜片缺陷检测装置及方法,包括:光源、参考臂、样品臂、控制器与光纤耦合器。通过原路返回的样品信号光与参考臂原路返回的参考信号光干涉后形成干涉光信号后,经过处理后与标准镜信号曲线对比,再评估缺陷情况。该方法实现了对整个光学镜片各个部位的检测,对缺陷的检测全面,但检测过程中需要多次移动样品镜片,耗时较长,检测质量不高。
中国专利公开号CN211905142U公开了一种全自动眼镜镜片检测设备,包括:上机架、下机架、风机过滤机组、三色灯、显示器、上料传送皮带、下料传送皮带、投影成像图像获取系统、折射成像图像获取系统。通过影成像系统和折射成像系统能很好的反应光学镜片的缺陷情况。该方法提高了图像检测的精度和准确性,但是实验光源需要定制光源才能得到高质量的测量结果,且整体费用较高。
发明内容
发明目的:本发明目的在于提供一种测量精度高、应用性广、效率高、稳定性好和成本低等优势的分步测量光学镜片曲率半径和检测镜片缺陷的方法。
技术方案:本发明包括以下步骤:
(1)初始曲率半径求解:根据采集的干涉图T(x,y)的暗环直径,求得初始曲率半径R0
(2)曲线拟合:以R0仿真牛顿环T0(x,y),将T(x,y)和T0(x,y)进行极坐标变换后消除常数项,再叠加形成莫尔条纹,对莫尔条纹进行曲线拟合,得到待测镜片新的曲率半径R1
(3)移相求波前:对R1仿真的干涉图进行多步移相,得到多幅干涉图,分别与T(x,y)叠加,由多幅莫尔条纹得到波前差数据,进一步根据波前差分法求得待测镜片的高精确曲率半径R2
(4)缺陷提取:利用R2去掉干涉图T(x,y)中由曲率半径解得的波前数据,即可得到待测镜片的缺陷数据。
所述步骤(1)中初始曲率半径的具体求解方法为:将采集到的待测光学镜片的牛顿环干涉图T(x,y)导入计算机内,从干涉图中提取5~10组暗环数据,经像素标定后,计算得m级暗环实际直径Dm和n级暗环实际直径Dn,已知激光波长λ,推导出待测光学镜片的初始曲率半径求解表达式:
Figure BDA0003207999870000021
取其平均值作为待测镜片的初始曲率半径R0
所述步骤(2)中的曲线拟合具体包括:
步骤1、根据初始曲率半径R0仿真出的虚拟牛顿环T0(x,y),经二阶极坐标变换将T0(x,y)和T(x,y)变成线载频T0(ρ,θ)和T(ρ,θ),去干涉图常数项后,分别得到T’0(ρ,θ)和T’(ρ,θ),再将T’0(ρ,θ)与T’(ρ,θ)叠加成莫尔条纹S(ρ,θ),其相关表达式如下:
采集的牛顿环干涉图表达式:T(ρ,θ)=a(ρ,θ)+b(ρ,θ)·cos(2πfρ),其中a(ρ,θ)和b(ρ,θ)分别为T(x,y)在二阶极坐标下的背景光强和条纹对比度,f=1/(R·λ),ρ=x2+y2,式中,f为待求变量,ρ为牛顿环在直角坐标下任意点坐标为(x,y)与牛顿环中心(0,0)的距离;
去常数项后的干涉图表达式:
Figure BDA0003207999870000031
其中Tmin和Tmax分别为T(ρ,θ)的最小值和最大值;
仿真的牛顿环干涉图表达式:T0(ρ,θ)=a0(ρ,θ)+b0(ρ,θ)·cos(2πf0ρ),其中a0(ρ,θ)和b0(ρ,θ)分别为T0(x,y)在二阶极坐标下的背景光强和条纹对比度,f0=1/(R0·λ),ρ=x2+y2
去常数项后的干涉图表达式:
Figure BDA0003207999870000032
其中T0(min)和T0(max)分别为T0(ρ,θ)的最小值和最大值;
去常数项后叠加的莫尔条纹表达式:S(ρ,θ)=T’(ρ,θ)·T’0(ρ,θ)=cos(2πfρ)·cos(2πf0ρ);
步骤2、根据S(ρ,θ),取多个θ角度时对应的S(ρ,θ)的灰度值数据,并以函数
Figure BDA0003207999870000033
来拟合每个θ对应的S(ρ,θ),其中,f0为已知线载频系数,f为待求变量,a为未知常数,以±5%的误差来确定一个f的范围,即0.95f0≤f≤1.05f0,由f=1/(R·λ),得到关于多个θ取值下的R值,取平均值,得到待测镜片新的曲率半径R1
所述步骤(3)中的移相求波前具体包括:
步骤1:以R1仿真多幅具有四步移相的牛顿环干涉图,其表达式分别为:
Figure BDA0003207999870000034
Figure BDA0003207999870000035
Figure BDA0003207999870000036
Figure BDA0003207999870000037
其中:a1(x,y)为背景光强,b1(x,y)为条纹对比度,
Figure BDA0003207999870000038
步骤2:将上述T1(x,y),T2(x,y),T3(x,y),T4(x,y)分别与T(x,y)叠加,得到对应地莫尔条纹,对莫尔条纹进行低通滤波,得到含有波前差信息的表达式如下:
Figure BDA0003207999870000039
Figure BDA0003207999870000041
Figure BDA0003207999870000042
Figure BDA0003207999870000043
利用四步移相方法求出波前差数据:
Figure BDA0003207999870000044
其中,s1(x,y),s2(x,y),s3(x,y),s4(x,y)分别是T(x,y)与T1(x,y),T(x,y)与T2(x,y),T(x,y)与T3(x,y),T(x,y)与T4(x,y)形成的莫尔条纹经低通滤波后得到含有波前差信息的表达式;
步骤3:由波前差w-w1与曲率半径R的关系式:
Figure BDA0003207999870000045
近似推导得到:
Figure BDA0003207999870000046
最终推导的曲率半径为:
Figure BDA0003207999870000047
步骤4:由曲率半径R随w-w1数据点变化的分布图,再用最小二乘法对R的数据进行平面拟合,得到待测镜片的高精度曲率半径R2
所述步骤(4)中的缺陷提取具体包括:
步骤1:像素标定,P=D/L,其中D为待测镜片的实际直径,单位mm,L为采集干涉图的像素直径,P为每单位像素尺寸对应的实际大小;
步骤2:将缺陷检测分成多个区域,利用步骤(3)得到的R2,去除T(x,y)中含曲率半径R2的球面信息,得到待测镜片中关于缺陷的数据,观察二值化处理后的图像,若无缺陷,应是均匀亮度的圆,若有缺陷,则会有暗斑,进一步观察每个区域的暗斑大小,获得暗斑(缺陷)的像素数目s;
步骤3:计算每个暗斑的实际尺寸S=Ps,其中,P为每单位像素尺寸对应的实际大小,s为暗斑的像素数目;
步骤4:根据每个区域的暗斑数量和每个暗斑的S值大小,对比镜片缺陷标准,评估镜片缺陷情况。
所述的干涉图由待测光学镜片的检测装置采集,检测装置中分光镜透射的准直光束经待测球面镜的后表面部分反射,透射光经第一平面反射镜表面反射,经过待测球面镜形成测试光,使得采集到的干涉图中包含待测球面镜的表面和内部缺陷信息。
有益效果:本发明避免了对干涉图的多次采集与繁琐的调试过程,且单幅干涉图中含有待测镜片曲率半径的波前信息和缺陷信息,通过分步求解,提高了曲率半径测量精度,同时,也能得到待测镜片的缺陷信息,实现了对待测镜片的高精度、高效率、高稳定性和成本低的检测。
附图说明
图1为本发明的流程图;
图2为本发明待测光学镜片的检测装置;
图3为缺陷检测分区图。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1所示,本发明的流程包括:(1)初始曲率半径求解:根据采集的干涉图T(x,y)的暗环直径,求得初始曲率半径R0;(2)曲线拟合:以R0仿真牛顿环T0(x,y),将T(x,y)和T0(x,y)二阶极坐标变换后消除常数项,再叠加形成莫尔条纹,对莫尔条纹进行曲线拟合,得到待测镜片新的曲率半径R1;(3)移相求波前:对R1仿真的干涉图进行4步移相,得到4幅干涉图,分别与T(x,y)叠加,由4幅莫尔条纹得到波前差数据,进一步根据波前差分法求得待测镜片的高精确曲率半径R2;(4)缺陷提取:利用R2去掉采集的干涉图T(x,y)中由曲率半径解得的波前数据,即可得到待测镜片的缺陷数据,经二值化处理,便可评估待测镜片的缺陷情况。
具体过程如下:
(1)初始曲率半径求解
如图2所示,本发明待测光学镜片的检测装置包括氦氖激光器1、空间滤波器2、准直系统3、分束镜4、待测球面镜5、第一平面反射镜6、第二平面反射镜7、成像系统8、CCD探测器9,其中,氦氖激光器1、空间滤波器2、准直系统3、分束镜4、待测球面镜5、第一平面反射镜6共光轴依次设置,第二平面反射镜7、成像系统8和CCD探测器9共光轴设置在分束镜4的反射光路上,所有光学元件相对于基底同轴等高。由氦氖激光器1发出一束相干光,通过空间滤波器2滤波,入射至准直系统3形成准直光束,经分光镜4分为透射光和反射光,透射的准直光束经待测球面镜5的后表面部分反射,其余透射光经第一平面反射镜6表面反射经过待测球面镜5形成测试光;分束镜4的反射光经第二平面反射镜7表面反射后,形成标准光;标准光和测试光经分束镜4进入成像系统8,并在CCD探测器9靶面上成像,CCD探测器9靶面上记录的图像灰度信息即为含有待测球面镜5曲率半径的波前信息和缺陷信息的牛顿环干涉图T(x,y)。
将采集到的待测光学镜片的牛顿环干涉图T(x,y)导入计算机内,从干涉图中提取5~10组暗环数据,经像素标定后,计算得m级暗环实际直径Dm和n级暗环实际直径Dn,已知激光波长λ,可以推导出待测光学镜片的初始曲率半径求解表达式:
Figure BDA0003207999870000061
根据5~10组数据求得5~10个R,取其平均值作为待测镜片的初始曲率半径R0
(2)曲线拟合
步骤1:根据步骤(1)得到的初始曲率半径R0仿真出虚拟牛顿环T0(x,y),经二阶极坐标变换将T0(x,y)和T(x,y)变成线载频T0(ρ,θ)和T(ρ,θ),去干涉图常数项后,分别得到T’0(ρ,θ)和T’(ρ,θ),再将T’0(ρ,θ)与T’(ρ,θ)叠加成莫尔条纹S(ρ,θ),其相关表达式如下:
采集的牛顿环干涉图表达式:T(ρ,θ)=a(ρ,θ)+b(ρ,θ)·cos(2πfρ),其中a(ρ,θ)和b(ρ,θ)分别为T(x,y)在二阶极坐标下的背景光强和条纹对比度,f=1/(R·λ),ρ=x2+y2,式中,f为待求变量,ρ为牛顿环在直角坐标下任意点坐标为(x,y)与牛顿环中心(0,0)的距离;
去常数项后的干涉图表达式:
Figure BDA0003207999870000062
其中,Tmin和Tmax分别为T(ρ,θ)的最小值和最大值;
仿真的牛顿环干涉图表达式:T0(ρ,θ)=a0(ρ,θ)+b0(ρ,θ)·cos(2πf0ρ),其中a0(ρ,θ)和b0(ρ,θ)分别为T0(x,y)在二阶极坐标下的背景光强和条纹对比度,f0=1/(R0·λ),ρ=x2+y2
去常数项后的干涉图表达式:
Figure BDA0003207999870000063
其中,T0(min)和T0(max)分别为T0(ρ,θ)的最小值和最大值;
去常数项后叠加的莫尔条纹表达式:S(ρ,θ)=T’(ρ,θ)·T’0(ρ,θ)=cos(2πfρ)·cos(2πf0ρ)。
步骤2:根据S(ρ,θ),分别取θ=π/3、2π/3、π、4π/3和5π/3时对应的S(ρ,θ)的灰度值数据,并以函数
Figure BDA0003207999870000064
来拟合每个θ对应的S(ρ,θ),其中,f0为已知线载频系数,f为待求变量,a为未知常数;为了精确快速的拟合,以±5%的误差来确定一个f的范围,即0.95f0≤f≤1.05f0;而每个θ对应S(ρ,θ)的数据都会使得fθ拟合出一组f和a,由f=1/(R·λ),即可得到关于5个θ取值下的R值,取平均值,得到待测镜片新的曲率半径R1
(3)移相求波前
步骤1:以R1仿真4幅具有四步移相的牛顿环干涉图,其表达式分别为:
Figure BDA0003207999870000071
Figure BDA0003207999870000072
Figure BDA0003207999870000073
Figure BDA0003207999870000074
其中:a1(x,y)为背景光强,b1(x,y)为条纹对比度,
Figure BDA0003207999870000075
步骤2:将上述T1(x,y),T2(x,y),T3(x,y),T4(x,y)分别与T(x,y)叠加,得到4幅莫尔条纹,对4幅莫尔条纹进行低通滤波,得到含有波前差信息的表达式,如下:
Figure BDA0003207999870000076
Figure BDA0003207999870000077
Figure BDA0003207999870000078
Figure BDA0003207999870000079
利用四步移相方法求出波前差数据:
Figure BDA00032079998700000710
其中,s1(x,y),s2(x,y),s3(x,y),s4(x,y)分别是T(x,y)与T1(x,y),T(x,y)与T2(x,y),T(x,y)与T3(x,y),T(x,y)与T4(x,y)形成的莫尔条纹经低通滤波后得到含有波前差信息的表达式;
步骤3:由波前差w-w1与曲率半径R的关系式:
Figure BDA0003207999870000081
近似推导得到:
Figure BDA0003207999870000082
最终推导的曲率半径为:
Figure BDA0003207999870000083
步骤4:由曲率半径R随w-w1数据点变化的分布图,再用最小二乘法对R的数据进行平面拟合,得到待测镜片的高精度曲率半径R2
(4)缺陷提取
如图3所示,本发明缺陷检测分区包括:边缘进去5mm的三区,边缘进去5mm到边缘进去15mm的第二区,以及中心部分的一区,具体缺陷检测为:
步骤1:进行像素标定,P=D/L,其中D为待测镜片的实际直径,单位mm,L为采集干涉图的像素直径,P为每单位像素尺寸对应的实际大小;
步骤2:利用第三步移相求波前中得到的R2,去除T(x,y)中含曲率半径R2的球面信息,得到待测镜片中关于缺陷的数据,观察二值化处理后的图像,若无缺陷,应是均匀亮度的圆,若有缺陷,则会有形状不一的暗斑,进一步观察一区、二区、三区的暗斑大小,获得暗斑(缺陷)的像素数目s;
步骤3:计算每个暗斑的实际尺寸S=Ps,其中,P为每单位像素尺寸对应的实际大小,s为暗斑的像素数目;
步骤4:根据一区、二区、三区每个区域的暗斑数量和每个暗斑的S值大小,对比镜片缺陷标准,即可评估镜片缺陷情况。

Claims (5)

1.一种分步测量光学镜片曲率半径和检测镜片缺陷的方法,其特征在于,包含以下步骤:
(1)初始曲率半径求解:根据采集的干涉图T(x,y)的暗环直径,求得初始曲率半径R0,初始曲率半径的具体求解方法为:将采集到的待测光学镜片的牛顿环干涉图T(x,y)导入计算机内,从干涉图中提取5~10组暗环数据,经像素标定后,计算得m级暗环实际直径Dm和n级暗环实际直径Dn,已知激光波长λ,推导出待测光学镜片的初始曲率半径求解表达式:
Figure FDA0003491375410000011
取其平均值作为待测镜片的初始曲率半径R0
(2)曲线拟合:以R0仿真牛顿环T0(x,y),将T(x,y)和T0(x,y)进行极坐标变换后消除常数项,再叠加形成莫尔条纹,对莫尔条纹进行曲线拟合,得到待测镜片新的曲率半径R1
(3)移相求波前:对R1仿真的干涉图进行多步移相,得到多幅干涉图,分别与T(x,y)叠加,由多幅莫尔条纹得到波前差数据,进一步根据波前差分法求得待测镜片的高精确曲率半径R2
(4)缺陷提取:利用R2去掉干涉图T(x,y)中由曲率半径解得的波前数据,得到待测镜片的缺陷数据。
2.根据权利要求1所述的一种分步测量光学镜片曲率半径和检测镜片缺陷的方法,其特征在于,所述步骤(2)中的曲线拟合具体包括:
步骤1、根据初始曲率半径R0仿真出的虚拟牛顿环T0(x,y),经二阶极坐标变换将T0(x,y)和T(x,y)变成线载频T0(ρ,θ)和T(ρ,θ),去干涉图常数项后,分别得到T’0(ρ,θ)和T’(ρ,θ),再将T’0(ρ,θ)与T’(ρ,θ)叠加成莫尔条纹S(ρ,θ),其相关表达式如下:
采集的牛顿环干涉图表达式:T(ρ,θ)=a(ρ,θ)+b(ρ,θ)·cos(2πfρ),其中a(ρ,θ)和b(ρ,θ)分别为T(x,y)在二阶极坐标下的背景光强和条纹对比度,f=1/(R·λ),ρ=x2+y2,式中,f为待求变量,ρ为牛顿环在直角坐标下任意点坐标为(x,y)与牛顿环中心(0,0)的距离;
去常数项后的干涉图表达式:
Figure FDA0003491375410000012
其中Tmin和Tmax分别为T(ρ,θ)的最小值和最大值;
仿真的牛顿环干涉图表达式:T0(ρ,θ)=a0(ρ,θ)+b0(ρ,θ)·cos(2πf0ρ),其中a0(ρ,θ)和b0(ρ,θ)分别为T0(x,y)在二阶极坐标下的背景光强和条纹对比度,f0=1/(R0·λ),ρ=x2+y2
去常数项后的干涉图表达式:
Figure FDA0003491375410000021
其中T0(min)和T0(max)分别为T0(ρ,θ)的最小值和最大值;
去常数项后叠加的莫尔条纹表达式:S(ρ,θ)=T’(ρ,θ)·T’0(ρ,θ)=cos(2πfρ)·cos(2πf0ρ);
步骤2、根据S(ρ,θ),取多个θ角度时对应的S(ρ,θ)的灰度值数据,并以函数
Figure FDA0003491375410000022
来拟合每个θ对应的S(ρ,θ),其中,f0为已知线载频系数,f为待求变量,a为未知常数,以±5%的误差来确定一个f的范围,即0.95f0≤f≤1.05f0,由f=1/(R·λ),得到关于多个θ取值下的R值,取平均值,得到待测镜片新的曲率半径R1
3.根据权利要求1所述的一种分步测量光学镜片曲率半径和检测镜片缺陷的方法,其特征在于,所述步骤(3)中的移相求波前具体包括:
步骤1:以R1仿真多幅具有四步移相的牛顿环干涉图,其表达式分别为:
Figure FDA0003491375410000023
Figure FDA0003491375410000024
Figure FDA0003491375410000025
Figure FDA0003491375410000026
其中:a1(x,y)为背景光强,b1(x,y)为条纹对比度,
Figure FDA0003491375410000027
步骤2:将上述T1(x,y),T2(x,y),T3(x,y),T4(x,y)分别与T(x,y)叠加,得到对应地莫尔条纹,对莫尔条纹进行低通滤波,得到含有波前差信息的表达式如下:
Figure FDA0003491375410000028
Figure FDA0003491375410000029
Figure FDA00034913754100000210
Figure FDA0003491375410000031
利用四步移相方法求出波前差数据:
Figure FDA0003491375410000032
其中,s1(x,y),s2(x,y),s3(x,y),s4(x,y)分别是T(x,y)与T1(x,y),T(x,y)与T2(x,y),T(x,y)与T3(x,y),T(x,y)与T4(x,y)形成的莫尔条纹经低通滤波后得到含有波前差信息的表达式;
步骤3:由波前差w-w1与曲率半径R的关系式:
Figure FDA0003491375410000033
近似推导得到:
Figure FDA0003491375410000034
最终推导的曲率半径为:
Figure FDA0003491375410000035
步骤4:由曲率半径R随w-w1数据点变化的分布图,再用最小二乘法对R的数据进行平面拟合,得到待测镜片的高精度曲率半径R2
4.根据权利要求1所述的一种分步测量光学镜片曲率半径和检测镜片缺陷的方法,其特征在于,所述步骤(4)中的缺陷提取具体包括:
步骤1:像素标定,P=D/L,其中D为待测镜片的实际直径,单位mm,L为采集干涉图的像素直径,P为每单位像素尺寸对应的实际大小;
步骤2:将缺陷检测分成多个区域,利用步骤(3)得到的R2,去除T(x,y)中含曲率半径R2的球面信息,得到待测镜片中关于缺陷的数据,观察二值化处理后的图像,若无缺陷,应是均匀亮度的圆,若有缺陷,则会有暗斑,进一步观察每个区域的暗斑大小,获得暗斑(缺陷)的像素数目s;
步骤3:计算每个暗斑的实际尺寸S=Ps,其中,P为每单位像素尺寸对应的实际大小,s为暗斑的像素数目;
步骤4:根据每个区域的暗斑数量和每个暗斑的S值大小,对比镜片缺陷标准,评估镜片缺陷情况。
5.根据权利要求1所述的一种分步测量光学镜片曲率半径和检测镜片缺陷的方法,其特征在于,所述的干涉图由待测光学镜片的检测装置采集,检测装置中分光镜(4)透射的准直光束经待测球面镜(5)的后表面部分反射,透射光经第一平面反射镜(6)表面反射,经过待测球面镜(5)形成测试光,使得采集到的干涉图中包含待测球面镜(5)的表面和内部缺陷信息。
CN202110922704.4A 2021-08-12 2021-08-12 一种分步测量光学镜片曲率半径和检测镜片缺陷的方法 Active CN113639664B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110922704.4A CN113639664B (zh) 2021-08-12 2021-08-12 一种分步测量光学镜片曲率半径和检测镜片缺陷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110922704.4A CN113639664B (zh) 2021-08-12 2021-08-12 一种分步测量光学镜片曲率半径和检测镜片缺陷的方法

Publications (2)

Publication Number Publication Date
CN113639664A CN113639664A (zh) 2021-11-12
CN113639664B true CN113639664B (zh) 2022-03-29

Family

ID=78420997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110922704.4A Active CN113639664B (zh) 2021-08-12 2021-08-12 一种分步测量光学镜片曲率半径和检测镜片缺陷的方法

Country Status (1)

Country Link
CN (1) CN113639664B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102128597A (zh) * 2010-11-19 2011-07-20 福建师范大学 一种透镜面形偏差检测装置
CN102128600A (zh) * 2010-12-10 2011-07-20 西安科技大学 一种利用激光测量透镜曲率半径的方法及其装置
CN103398655A (zh) * 2013-08-09 2013-11-20 中国科学院长春光学精密机械与物理研究所 一种波长调谐相移点衍射干涉测量装置及其方法
CN103776389A (zh) * 2014-01-10 2014-05-07 浙江大学 一种高精度非球面组合干涉检测装置与方法
CN105806216A (zh) * 2016-03-16 2016-07-27 福建师范大学 一种基于同步移相偏振干涉技术面型偏差检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102128597A (zh) * 2010-11-19 2011-07-20 福建师范大学 一种透镜面形偏差检测装置
CN102128600A (zh) * 2010-12-10 2011-07-20 西安科技大学 一种利用激光测量透镜曲率半径的方法及其装置
CN103398655A (zh) * 2013-08-09 2013-11-20 中国科学院长春光学精密机械与物理研究所 一种波长调谐相移点衍射干涉测量装置及其方法
CN103776389A (zh) * 2014-01-10 2014-05-07 浙江大学 一种高精度非球面组合干涉检测装置与方法
CN105806216A (zh) * 2016-03-16 2016-07-27 福建师范大学 一种基于同步移相偏振干涉技术面型偏差检测方法

Also Published As

Publication number Publication date
CN113639664A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
JP3811709B2 (ja) 光学素子の幾何学的または光学的構造の絶対的測定方法および実施装置
EP1869401B1 (en) Method for accurate high-resolution measurements of aspheric surfaces
US7831105B2 (en) Method for determining the image quality of an optical imaging system
CN109307480B (zh) 一种透射元件多表面面形检测方法
US4387994A (en) Optical system for surface topography measurement
KR20110106823A (ko) 비구면체 측정 방법 및 장치
CN104949763A (zh) 一种基于逆哈特曼原理的透镜波前像差测量方法
CN103592108A (zh) Ccd芯片调制传递函数测试装置及方法
US20050179911A1 (en) Aspheric diffractive reference for interferometric lens metrology
CN102506759A (zh) 一种大口径非球面朗奇检测方法
CN107144420B (zh) 光学镜头像差检测装置及方法
CN114216659B (zh) 一种大口径长焦距光轴平行度的测量系统及其测量方法
CN114061783A (zh) 基于马赫曾德干涉的高频热释放率脉动场测量装置及方法
JP4340625B2 (ja) 光学検査方法および装置
CA2612237C (en) Method and system for measuring the curvature of an optical surface
CN113639664B (zh) 一种分步测量光学镜片曲率半径和检测镜片缺陷的方法
CN111397634B (zh) 星敏感器固定端面热变形的高分辨干涉检测装置及方法
KR20110065365A (ko) 비구면체 측정 방법 및 장치
US8482740B1 (en) Computer generated reference for measurements of aspheric surfaces
CN108151674A (zh) 一种提高光学检测仪器精度的方法与装置
CN110793465B (zh) 一种微透射元件多面形大动态范围同步测量方法
JP3146590B2 (ja) 形状測定法および形状測定システム
CN108507488B (zh) 基于轴向扫描的锥镜面形检测系统及检测方法
CN110332883A (zh) 斐索干涉仪回程误差的消除方法
CN110082074A (zh) 一种干涉波前检测中剔除平面反射镜引入的系统误差的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230924

Address after: 212399 Danyang hi tech Innovation Park, South Third Ring Road, Yunyang street, Danyang City, Zhenjiang City, Jiangsu Province

Patentee after: Danyang Juxiang Vision Technology Co.,Ltd.

Address before: No.2, Mengxi Road, Jingkou District, Zhenjiang City, Jiangsu Province, 212008

Patentee before: JIANGSU University OF SCIENCE AND TECHNOLOGY