CN113629762A - 多站融合参与的沙漏型配电网络结构及其控制方法 - Google Patents

多站融合参与的沙漏型配电网络结构及其控制方法 Download PDF

Info

Publication number
CN113629762A
CN113629762A CN202110879583.XA CN202110879583A CN113629762A CN 113629762 A CN113629762 A CN 113629762A CN 202110879583 A CN202110879583 A CN 202110879583A CN 113629762 A CN113629762 A CN 113629762A
Authority
CN
China
Prior art keywords
power
layer
energy
electric
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110879583.XA
Other languages
English (en)
Other versions
CN113629762B (zh
Inventor
马速良
李建林
刘硕
宋洁
梁丹曦
屈树慷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Lianzhi Huineng Technology Co ltd
North China University of Technology
Global Energy Interconnection Research Institute
Original Assignee
Beijing Lianzhi Huineng Technology Co ltd
North China University of Technology
Global Energy Interconnection Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Lianzhi Huineng Technology Co ltd, North China University of Technology, Global Energy Interconnection Research Institute filed Critical Beijing Lianzhi Huineng Technology Co ltd
Priority to CN202110879583.XA priority Critical patent/CN113629762B/zh
Publication of CN113629762A publication Critical patent/CN113629762A/zh
Application granted granted Critical
Publication of CN113629762B publication Critical patent/CN113629762B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00036Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/18Systems supporting electrical power generation, transmission or distribution using switches, relays or circuit breakers, e.g. intelligent electronic devices [IED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及多站融合参与的沙漏型配电网络结构及其控制方法。沙漏型配电网络结构包括:上层10kV高压电力传输层,中层信息调度层,下层380V低压电力应用层;上层与下层以中层为公共点,构成沙漏型结构单元;本发明的设置,实现高渗透率分布式电源接入;同时控制方法储能在高SOC阶段,不给储能继续充电,储能在低SOC阶段,储能不继续放电,保证了储能的使用寿命以及安全稳定运行;同时控制方法使电能在上中下三层结构中灵活调度,保证了该配电网络的灵活性与稳定性。

Description

多站融合参与的沙漏型配电网络结构及其控制方法
技术领域:
本发明涉及分布式能源技术领域,具体涉及多站融合参与的沙漏型配电网络结构及其控制方法。
背景技术:
高渗透率分布式电源英文为:Distributed Generation,缩写为DG。随着高渗透率分布式电源不断接入配电网,由于其分布广泛、节点数量多等原因导致系统对所有DG采用集中控制模式操作困难。另外,由于分布式电源出力的随机性及其出力与负荷用电在时序上的不匹配性,其大规模并网导致供电区域对外呈现高度不确定运行特性,大大增加了整个系统运行与调控的复杂程度。为适应高渗透率DG接入,传统垂直一体化的配电网向全局协调、分散自治结构进行变革。近年来,伴随能源加快向清洁低碳方向转型和信息化产业快速发展,在城市区域内,电动汽车、数据中心、分布式发电、储能等蓬勃发展,对土地资源及变配电资源的需求量快速增长。利用城市变电站供电资源及闲余空间资源,建立电动汽车充电站、数据中心等可实现资源集约化开发,构建多站融合场景可提高城市变电站的土地和变配电资源利用率,同时可结合各站间资源禀赋实现站间功能融合互补支撑。亟需一种多站融合参与的沙漏型配电网络结构及其运行策略。
发明内容:
为了实现高渗透率分布式电源接入,多站融合参与的配电网络系统,提出一种沙漏型配电网络结构及其运行策略。具体技术方案如下:
多站融合参与的沙漏型配电网络结构,包括:上层10kV高压电力传输层,中层信息调度层,下层380V低压电力应用层;上层与下层以中层为公共点,构成沙漏型结构单元;
所述上层10kV高压电力传输层由四组电能转换节点与高压输电线组成的正方形单元组成的网格结构;
中层信息调度层为由储能电站、变电站与数据中心站组成的调度中心以正方形方式链接构成的网格结构;
下层380V低压电力应用层为由光伏电站、电动汽车充电站、风电厂以及常规用电负荷通过线路依次链接而成的正方形单元组成的网格结构。
对上述沙漏型配电网络结构的控制方法,包括如下过程:
将储能的SOC状态分为三个阶段,80%SOC以上为高SOC阶段,20%-80%SOC为中SOC阶段,20%SOC以下为低SOC阶段;
步骤1:判断储能的SOC状态是否处于高SOC阶段,如果是,转步骤2,否则转步骤5;
步骤2:判断下层电力应用层中光伏电站与风电场发出的电量能否满足或超过常规负载与电动车充电站的需求,能够则转步骤3,否则转步骤4;
步骤3:储能单元优先通过变电站单元向上层高压电力传输层传输电力,以提高新能源利用率,且确保储能稳定运行在中SOC阶段;此时:
P+P=P+P+Puo
Puo=ΔP+Pdi
P是风电场的功率,P是光伏电站的输出功率,P是电动车充电站所消耗的是储能向上层高压电力传输层输出功率,Pdi是储能来自下层低压电力应用层的输入功率,ΔP是储能自身为维持在中SOC阶段变化的功率的绝对值;
步骤4:储能优先向下层电力应用层传输电力,以满足电力应用层的电能需求;此时:
P+P+Pdo=P+P
Pdo=ΔP
Pdo是储能向下层低压电力应用层输出功率;
步骤5:判断储能是否处于中SOC阶段,若是转步骤6,否则转步骤9;
步骤6:判断下层电力应用层中光伏电站与风电场发出的电量能否满足或超过常规负载与电动车充电站的需求,能够则转步骤7,否则转步骤8;
步骤7:储能优先吸纳下层电力应用层的电力,以提高新能源利用率,并为新能源电能不足时需求提供储备电能;此时:
P+P=P+P+Pdi
Pdi=ΔP;
步骤8:储能优先向下层电力应用层传输电力,以满足电力应用层的电能需求;此时:
P+P+Pdo=P+P
Pdo=ΔP;
步骤9:此时储能处于低SOC阶段判断下层电力应用层中光伏电站与风电场发出的电量能否满足或超过常规负载与电动车充电站的需求,能够则转步骤10,否则转步骤11;
步骤10:储能优先吸纳下层电力应用层的电力,以提高新能源利用率,并为新能源电能不足时需求提供储备电能;此时:
P+P=P+P+Pdi
Pdi=ΔP;
步骤11:储能优先通过变电站单元吸收从上层电力传输层传输的电能,以满足下层电力应用层的电能需求,确保储能稳定运行在中SOC阶段;此时:
P+P+Pui=P+P
Pui=ΔP+Pdo
Pui是储能来自上层高压电力传输层的输入功率。
优选方案之一,所述上层10kV高压电力传输层正方形单元中各电能转换节点通过10kV高压输电线路相互连接形成正方形电力传输单元,与中层信息调度层通过变电站连接,结构上构成四棱锥结构,完成上层10kV高压电力传输层与中层信息调度层的能量交换;电能转换节点由连接在变电站母线上的四组变压器组成,四组变电站分别通过10kV高压输电线路与其他正方形网络中的电能转换节点连接。
优选方案之二,所述下层380V低压电力应用层,正方形单元中各功能节点通过380V低压线路以及柔性电力电子开关器件链接形成正方形电力应用单元,与中层信息调度层通过储能电站连接,结构上构成四棱锥结构,完成380V低压电力应用层与中层信息调度层的能量交换。
优选方案之三,所述中层信息调度层中,储能电站通过柔性电力电子开关器件与变电站相连,完成下层380V低压电力应用层与上层10kV高压电力传输层的能量交换;同时,中层信息调度层中,数据中心站通过变电站以及储能电站的信息采集模块,获取下层380V低压电力应用层与上层10kV高压电力传输层的状态信息,完成三层结构的信息交换;储能电站,信息中心站以及变电站,实现多站融合;信息中心站与其他沙漏型结构的中层信息调度层的信息中心站连接,完成与其他沙漏型单元的通信。
本发明的设置,实现高渗透率分布式电源接入;同时控制方法储能在高SOC阶段,不给储能继续充电,储能在低SOC阶段,储能不继续放电,保证了储能的使用寿命以及安全稳定运行,同时控制方法使电能在上中下三层结构中灵活调度,保证了该配电网络的灵活性与稳定性。
附图说明:
图1是上层10kV高压电力传输层平面示意图。
图2是电能转换节点示意图。
图3是下层380V低压电力应用层平面示意图。
图4是单个沙漏型结构单元示意图。
图5是中层信息调度层结构图。
图6是多站融合参与的沙漏型配电网络结构局部示意图。
具体实施方式:
实施例:
下面结合附图对本发明的实施过程予以说明。
多站融合参与的沙漏型配电网络结构由三层结构组成,分别为:上层10kV高压电力传输层,中层信息调度层,下层380V低压电力应用层。
上层10kV高压电力传输层为由四组电能转换节点与高压输电线组成的正方形单元组成的网格结构;中层信息调度层为由储能电站、变电站与数据中心站组成的调度中心以正方形方式链接构成的网格结构;下层380V低压电力应用层为由光伏电站、电动汽车充电站、风电厂以及常规用电负荷通过线路依次链接而成的正方形单元组成的网格结构。
如图1所示,上层10kV高压电力传输层,正方形单元中各电能转换节点通过10kV高压输电线路相互连接形成正方形电力传输单元,与中层信息调度层通过变电站连接,结构上构成四棱锥结构,完成上层10kV高压电力传输层与中层信息调度层的能量交换;电能转换节点由连接在变电站母线上的四组变压器组成,四组变电站分别通过10kV高压输电线路与其他正方形网络中的电能转换节点连接,示意图如图2所示。
如图3所示,下层380V低压电力应用层,正方形单元中各功能节点通过380V低压线路以及柔性电力电子开关器件链接形成正方形电力应用单元,与中层信息调度层通过储能电站连接,结构上构成四棱锥结构,完成380V低压电力应用层与中层信息调度层的能量交换。
如图4所示,上层与下层以中层为公共点,构成沙漏型结构单元。
如图5所示,中层信息调度层中,储能电站通过柔性电力电子开关器件与变电站相连,完成下层380V低压电力应用层与上层10kV高压电力传输层的能量交换;同时,中层信息调度层中,数据中心站通过变电站以及储能电站的信息采集模块,获取下层380V低压电力应用层与上层10kV高压电力传输层的状态信息,完成三层结构的信息交换;储能电站,信息中心站以及变电站,实现多站融合;信息中心站与其他沙漏型结构的中层信息调度层的信息中心站连接,完成与其他沙漏型单元的通信。
构建完成的多站融合参与的沙漏型配电网络结构局部示意图如图6所示。
由于分布式电源存在较大时间尺度上的不确定性,容易出现无法满足负载需求或远超负载需求出现新能源弃置率较高的问题,为了解决这些问题,需要对多站融合参与的沙漏型配电网络结构制定相应的运行策略,以保证配电网络结构的稳定性,提高新能源的利用率。
系统内的所有功能站点均可以看作网络中的一个节点,所以以下以节点作为所有功能站点的简称。因为结构内,每个节点均存在于多个沙漏结构之中,所以需要根据一个节点所联入的网络数目,对节点的功能进行均分。
在系统中,风电场与光伏只能承担向外输出电能的功能,而电动车充电站与常规负载只能承担消耗电能的功能。因此,记某时刻一个沙漏型单元系统中,风电场与光伏电站输出的功率分别为P和P而电动车充电站与常规负载所消耗的功率分别为P与P。中层信息调度层中的储能单元既可以承担电能的输出,也可以承担电能的吸收,而且既需要承担对上层高压电力传输层的储能功效,又要承担对下层低压电力应用层的储能功效。因而,记某时刻一个沙漏型单元系统中,储能向上层高压电力传输层输出输入功率分别为Puo与Pui,储能向下层低压电力应用层输出输入功率分别为Pdo与Pdi
某一时刻,在一个沙漏型单元内,下层380V低压电力应用层中,
根据储能的荷电状态Stateofcharge,缩写为:SOC,SOC决定储能需要采取的措施,可以将储能的SOC状态分为三个阶段,SOC满状态的80%以上为高SOC阶段,SOC满状态的20%-80%为中SOC阶段,SOC满状态的20%以下为低SOC阶段,为了保证储能的使用寿命以及安全稳定运行,储能在高SOC阶段不应继续充电,储能在低SOC阶段不应继续放电,记储能自身为维持在中SOC阶段变化的功率的绝对值为ΔP;因而,可以根据储能的SOC状态制定如下控制策略。控制方法如下:
步骤1:判断储能的SOC状态是否处于高SOC阶段,如果是,转步骤2,否则转步骤5;
步骤2:判断下层电力应用层中光伏电站与风电场发出的电量能否满足或超过常规负载与电动车充电站的需求,能够则转步骤3,否则转步骤4;
步骤3:储能单元优先通过变电站单元向上层高压电力传输层传输电力,以提高新能源利用率,且确保储能稳定运行在中SOC阶段;此时:
P+P=P+P+Puo
Puo=ΔP+Pdi
P是风电场的功率,P是光伏电站的输出功率,P是电动车充电站所消耗的功率,P是常规负载所消耗的功率,Puo是储能向上层高压电力传输层输出功率,Pdi是储能来自下层低压电力应用层的输入功率,ΔP是储能自身为维持在中SOC阶段变化的功率的绝对值;
步骤4:储能优先向下层电力应用层传输电力,以满足电力应用层的电能需求;此时:
P+P+Pdo=P+P
Pdo是储能向下层低压电力应用层输出功率;
步骤5:判断储能是否处于中SOC阶段,若是转步骤6,否则转步骤9;
步骤6:判断下层电力应用层中光伏电站与风电场发出的电量能否满足或超过常规负载与电动车充电站的需求,能够则转步骤7,否则转步骤8;
步骤7:储能优先吸纳下层电力应用层的电力,以提高新能源利用率,并为新能源电能不足时需求提供储备电能;此时:
P+P=P+P+Pdi
Pdi=ΔP;
步骤8:储能优先向下层电力应用层传输电力,以满足电力应用层的电能需求;此时:
P+P+Pdo=P+P
Pdo=ΔP;
步骤9:此时储能处于低SOC阶段判断下层电力应用层中光伏电站与风电场发出的电量能否满足或超过常规负载与电动车充电站的需求,能够则转步骤10,否则转步骤11;步骤10:储能优先吸纳下层电力应用层的电力,以提高新能源利用率,并为新能源电能不足时需求提供储备电能;此时:
P+P=P+P+Pdi
Pdi=ΔP;
步骤11:储能优先通过变电站单元吸收从上层电力传输层传输的电能,以满足下层电力应用层的电能需求,确保储能稳定运行在中SOC阶段;此时:
P+P+Pui=P+P
Pui=ΔP+Pdo
Pui是储能来自上层高压电力传输层的输入功率。

Claims (5)

1.多站融合参与的沙漏型配电网络结构,其特征在于,包括:上层10kV高压电力传输层,中层信息调度层,下层380V低压电力应用层;上层与下层以中层为公共点,构成沙漏型结构单元;
所述上层10kV高压电力传输层由四组电能转换节点与高压输电线组成的正方形单元组成的网格结构;
中层信息调度层为由储能电站、变电站与数据中心站组成的调度中心以正方形方式链接构成的网格结构;
下层380V低压电力应用层为由光伏电站、电动汽车充电站、风电厂以及常规用电负荷通过线路依次链接而成的正方形单元组成的网格结构。
2.根据权利要求1所述多站融合参与的沙漏型配电网络结构,所述上层10kV高压电力传输层正方形单元中各电能转换节点通过10kV高压输电线路相互连接形成正方形电力传输单元,与中层信息调度层通过变电站连接,结构上构成四棱锥结构,完成上层10kV高压电力传输层与中层信息调度层的能量交换;电能转换节点由连接在变电站母线上的四组变压器组成,四组变电站分别通过10kV高压输电线路与其他正方形网络中的电能转换节点连接。
3.根据权利要求1所述多站融合参与的沙漏型配电网络结构,所述下层380V低压电力应用层,正方形单元中各功能节点通过380V低压线路以及柔性电力电子开关器件链接形成正方形电力应用单元,与中层信息调度层通过储能电站连接,结构上构成四棱锥结构,完成380V低压电力应用层与中层信息调度层的能量交换。
4.根据权利要求1所述多站融合参与的沙漏型配电网络结构,所述中层信息调度层中,储能电站通过柔性电力电子开关器件与变电站相连,完成下层380V低压电力应用层与上层10kV高压电力传输层的能量交换;同时,中层信息调度层中,数据中心站通过变电站以及储能电站的信息采集模块,获取下层380V低压电力应用层与上层10kV高压电力传输层的状态信息,完成三层结构的信息交换;储能电站,信息中心站以及变电站,实现多站融合;信息中心站与其他沙漏型结构的中层信息调度层的信息中心站连接,完成与其他沙漏型单元的通信。
5.对权利要求1所述沙漏型配电网络结构的控制方法,其特征在于,包括如下过程:
将储能的SOC状态分为三个阶段,80%SOC以上为高SOC阶段,20%-80%SOC为中SOC阶段,20%SOC以下为低SOC阶段;
步骤1:判断储能的SOC状态是否处于高SOC阶段,如果是,转步骤2,否则转步骤5;
步骤2:判断下层电力应用层中光伏电站与风电场发出的电量能否满足或超过常规负载与电动车充电站的需求,能够则转步骤3,否则转步骤4;
步骤3:储能单元优先通过变电站单元向上层高压电力传输层传输电力,以提高新能源利用率,且确保储能稳定运行在中SOC阶段;此时:
P+P=P+P+Puo
Puo=ΔP+Pdi
P是风电场的功率,P是光伏电站的输出功率,P是电动车充电站所消耗的功率,P是常规负载所消耗的功率,Puo是储能向上层高压电力传输层输出功率,Pdi是储能来自下层低压电力应用层的输入功率,ΔP是储能自身为维持在中SOC阶段变化的功率的绝对值;
步骤4:储能优先向下层电力应用层传输电力,以满足电力应用层的电能需求;此时:
P+P+Pdo=P+P
Pdo是储能向下层低压电力应用层输出功率;
步骤5:判断储能是否处于中SOC阶段,若是转步骤6,否则转步骤9;
步骤6:判断下层电力应用层中光伏电站与风电场发出的电量能否满足或超过常规负载与电动车充电站的需求,能够则转步骤7,否则转步骤8;
步骤7:储能优先吸纳下层电力应用层的电力,以提高新能源利用率,并为新能源电能不足时需求提供储备电能;此时:
P+P=P+P+Pdi
Pdi=ΔP;
步骤8:储能优先向下层电力应用层传输电力,以满足电力应用层的电能需求;此时:
P+P+Pdo=P+P
Pdo=ΔP;
步骤9:此时储能处于低SOC阶段判断下层电力应用层中光伏电站与风电场发出的电量能否满足或超过常规负载与电动车充电站的需求,能够则转步骤10,否则转步骤11;
步骤10:储能优先吸纳下层电力应用层的电力,以提高新能源利用率,并为新能源电能不足时需求提供储备电能;此时:
P+P=P+P+Pdi
Pdi=ΔP;
步骤11:储能优先通过变电站单元吸收从上层电力传输层传输的电能,以满足下层电力应用层的电能需求,确保储能稳定运行在中SOC阶段;此时:
P+P+Pui=P+P
Pui=ΔP+Pdo
Pui是储能来自上层高压电力传输层的输入功率。
CN202110879583.XA 2021-08-02 2021-08-02 多站融合参与的沙漏型配电网络结构及其控制方法 Active CN113629762B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110879583.XA CN113629762B (zh) 2021-08-02 2021-08-02 多站融合参与的沙漏型配电网络结构及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110879583.XA CN113629762B (zh) 2021-08-02 2021-08-02 多站融合参与的沙漏型配电网络结构及其控制方法

Publications (2)

Publication Number Publication Date
CN113629762A true CN113629762A (zh) 2021-11-09
CN113629762B CN113629762B (zh) 2023-05-23

Family

ID=78382012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110879583.XA Active CN113629762B (zh) 2021-08-02 2021-08-02 多站融合参与的沙漏型配电网络结构及其控制方法

Country Status (1)

Country Link
CN (1) CN113629762B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204465026U (zh) * 2014-12-01 2015-07-08 陕西银河网电科技有限公司 一种电动客车充电站
CN107492909A (zh) * 2017-10-08 2017-12-19 浙江大学 一种分布式有源配电网拓扑
CN109460880A (zh) * 2017-12-15 2019-03-12 国网浙江省电力公司湖州供电公司 一种含有风光储柴的中低压配网风险管控方法
CN111697591A (zh) * 2020-06-30 2020-09-22 中国科学院电工研究所 蜂巢状多站融合配电网系统及其运行控制方法
CN112018790A (zh) * 2020-07-30 2020-12-01 国电南瑞科技股份有限公司 基于分层分布式储能参与需求响应调节控制方法
CN212518499U (zh) * 2020-08-13 2021-02-09 国充充电科技江苏股份有限公司 一种智能充电站供电系统
CN112531684A (zh) * 2020-11-20 2021-03-19 国网天津市电力公司电力科学研究院 面向城市配电网的中压-低压双层蜂巢状网络结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204465026U (zh) * 2014-12-01 2015-07-08 陕西银河网电科技有限公司 一种电动客车充电站
CN107492909A (zh) * 2017-10-08 2017-12-19 浙江大学 一种分布式有源配电网拓扑
CN109460880A (zh) * 2017-12-15 2019-03-12 国网浙江省电力公司湖州供电公司 一种含有风光储柴的中低压配网风险管控方法
CN111697591A (zh) * 2020-06-30 2020-09-22 中国科学院电工研究所 蜂巢状多站融合配电网系统及其运行控制方法
CN112018790A (zh) * 2020-07-30 2020-12-01 国电南瑞科技股份有限公司 基于分层分布式储能参与需求响应调节控制方法
CN212518499U (zh) * 2020-08-13 2021-02-09 国充充电科技江苏股份有限公司 一种智能充电站供电系统
CN112531684A (zh) * 2020-11-20 2021-03-19 国网天津市电力公司电力科学研究院 面向城市配电网的中压-低压双层蜂巢状网络结构

Also Published As

Publication number Publication date
CN113629762B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
CN105552940B (zh) 基于交替方向乘子算法的分布式全局最优能量管理系统
CN110601248A (zh) 一种环状交直流混合微电网系统的多模式协调控制方法
CN111697604A (zh) 多站合一的配置方法、系统及设备
CN110212527B (zh) 一种配电网一次网架结构与配电自动化协同规划方法
CN106786598B (zh) 层次组网的交直流无缝混合全可控灵活配电系统及方法
CN105006827A (zh) 新能源电站三层分布式agc功率控制方法及系统
CN108054782A (zh) 一种适用于大功率风/光电消纳的交直流混合微电网组网系统
CN108092315A (zh) 一种适用于海上风电消纳的交流微网组网系统
CN112242698B (zh) 一种百千瓦级航天器全调节电源系统
CN108448611A (zh) 一种适应大规模新能源外送的电网网架结构构建方法
CN116780521A (zh) 一种基于多状态开关的新型配电网网架构建方法
CN117200363A (zh) 一种交直流协调互动微电网群的控制方法
Yang et al. A coordinated charging strategy on battery swapping station in microgrid considering battery to grid
CN113629762B (zh) 多站融合参与的沙漏型配电网络结构及其控制方法
CN115473228B (zh) 一种异构式多端口交直流电力电子组网装置
Wang et al. Honeycomb distribution networks: concept and central features
CN114759616A (zh) 一种考虑电力电子器件特性的微电网鲁棒优化调度方法
CN115378004A (zh) 一种含分布式储能系统的分布式能源集群配置方法和系统
CN115001024A (zh) 一种海岛群微电网能量优化调度方法及系统
Darbali-Zamora et al. Implementation of a dynamic real time grid-connected DC microgrid simulation model for power management in small communities
CN207910489U (zh) 一种适用于大功率风/光电消纳的交直流混合微电网组网系统
Huang et al. Study of power dispatching control scheme in pyramid solar micro-grid
CN112994064A (zh) 一种分布式低压直流供电网络拓扑结构
CN104993517B (zh) 一种含新能源电源的高可靠性配电网系统
Liu et al. Research On Multi-source Collaborative Distribution Network Fault Recovery Technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant