CN113625720A - 一种无人艇自主航行控制算法仿真评估系统 - Google Patents

一种无人艇自主航行控制算法仿真评估系统 Download PDF

Info

Publication number
CN113625720A
CN113625720A CN202110952444.5A CN202110952444A CN113625720A CN 113625720 A CN113625720 A CN 113625720A CN 202110952444 A CN202110952444 A CN 202110952444A CN 113625720 A CN113625720 A CN 113625720A
Authority
CN
China
Prior art keywords
unmanned ship
model
obstacle
target
algorithm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110952444.5A
Other languages
English (en)
Other versions
CN113625720B (zh
Inventor
张逸凡
闫红州
唐李军
岳林
刘凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Ship Development and Design Centre
Original Assignee
China Ship Development and Design Centre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Ship Development and Design Centre filed Critical China Ship Development and Design Centre
Priority to CN202110952444.5A priority Critical patent/CN113625720B/zh
Publication of CN113625720A publication Critical patent/CN113625720A/zh
Application granted granted Critical
Publication of CN113625720B publication Critical patent/CN113625720B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0206Control of position or course in two dimensions specially adapted to water vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种无人艇自主航行控制算法仿真评估系统,包括:待测试的航行自主控制器,用于按照无人艇通信协议分别与无人艇运动学模型以及无人艇操控软件进行通信;仿真模型建立模块,用于建立无人艇运动学模型和影响无人艇运动的环境模型;障碍目标仿真模块,用于根据障碍目标的经纬度、航速、航向、大小、障碍类型,模拟无人艇感知系统输出的障碍目标报文;自主航行控制算法评估模块,用于根据无人艇自主航行控制任务对自主航行控制算法进行评估。本发明通过建立无人艇本艇模型、环境模型、模拟目标模型,使无人艇自主航行控制器在没有实艇的状态下进行调试及评估;并且软件硬件定型后可直接用于实艇,加快无人艇软硬件开发迭代速度。

Description

一种无人艇自主航行控制算法仿真评估系统
技术领域
本发明涉及仿真控制技术,尤其涉及一种无人艇自主航行控制算法仿真评估系统。
背景技术
随着军、民无人艇技术的发展,无人艇自主控制器成为无人艇技术的核心,用于支持无人艇在各种任务场景下的动作。随着无人艇的使用场景的不断增加和变换,无人艇的使用环境变得更加的复杂,无人艇自主控制算法的开发、调试以及部署问题变得异常的复杂。比如,当无人艇自主控制系统需要满足10条以上无人艇避障任务时,无人艇的避障算法需要在实际试验中多次迭代调试,才能固化为稳定版本。然而,每增加一次类似的任务,无人艇自主航控系统的开发、调试以及部署代价是高昂的、无法接受的,这将极大的制约无人艇实艇在实际任务中的普及以及自身算法的迭代速度。为使自主航控系统能力尽快的满足不同任务场景及复杂环境,必须尽可能少的依赖实物环境(比如实艇、实际目标等),以保证开发人员可以在不受场地及资源的影响下开发、调试及部署相应算法。
为此,就需要针对之前主要依赖的实物环境进行建模,构建一种不依赖实物的仿真环境,但是依然保持真实的航行控制器、真实岸端操控软件以及真实的通信协议。自主控制器开发人员可以完全与实艇一样通过岸端操控软件下达任务、监控船端状态等;可以与实艇中一样的自主控制器硬件上开发及调试软件。一致的通信协议,可以让调试人员在于实艇上相同的软件环境中进行开发,并在完成后直接部署在实艇上而不需要进行修改。
发明内容
本发明要解决的技术问题在于针对现有技术中的缺陷,提供一种无人艇自主航行控制算法仿真评估系统。
本发明解决其技术问题所采用的技术方案是:一种无人艇自主航行控制算法仿真评估系统,包括:
待测试的航行自主控制器,用于按照无人艇通信协议分别与无人艇运动学模型以及无人艇操控软件进行通信;所述无人艇操控软件为航迹跟踪算法、动态避障算法、目标跟踪算法在内的自主航行控制算法运行软件;
仿真模型建立模块,用于建立无人艇运动学模型和影响无人艇运动的环境模型;
所述无人艇运动学模型的模型输入为无人艇操控软件按照规定协议输出的期望航向及期望航速;无人艇运动学模型的模型输出为向航行自主控制器输出当前航速、航向、经纬度信息;
障碍目标仿真模块,用于根据障碍目标的经纬度、航速、航向、大小、障碍类型,模拟无人艇感知系统输出的障碍目标报文;
自主航行控制算法评估模块,用于根据无人艇自主航行控制任务对自主航行控制算法进行评估;所述无人艇自主航行控制任务包括航迹跟踪、动态避障及目标跟踪任务;
所述自主航行控制算法评估模块包括:
航迹跟踪算法评估子模块,用于根据每个控制周期T获取一次规划航迹数据、模拟障碍目标数据和无人艇状态数据对航迹跟踪算法进行评估;
评估值的计算方式为:
Figure BDA0003218942590000031
其中,m1为从起始点至终点设置的观测点个数;un为第n个观测点处无人艇实际位置与规划位置的偏差;umax为整段航迹中的最大偏差值;Δt为从起始点至终点的总耗时;S为从起始点至终点的总长度;σ1,σ2,σ3为加权比例系数,其中σ123=1并且0≤σ1,σ2,σ3≤1;
动态避障算法评估子模块,用于根据每个控制周期T获取一次规划航迹数据、模拟障碍目标数据和无人艇状态数据对航迹跟踪算法进行评估;
评估值的计算方式为:
Figure BDA0003218942590000041
其中,m2为从起始点至终点的模拟障碍目标数量;gn为本艇距离第n个模拟障碍目标的距离;r为避障半径;gmin为整段避障中的距离模拟障碍最近距离;Δt为从起始点至终点的总耗时;S为从起始点至终点的总长度;σ4,σ5,σ6为加权比例,其中σ456=1并且0≤σ4,σ5,σ6≤1;
目标跟踪算法评估子模块,用于根据每个控制周期T获取一次规划航迹数据、模拟障碍目标数据和无人艇状态数据对目标跟踪算法进行评估;
评估值的计算方式为:
Figure BDA0003218942590000042
其中,m3为从稳定跟踪后,无人艇脱离跟踪区域的次数;tn为第n次偏离跟踪区域的时间;Δtl为稳定跟踪后到结束状态所花时间;Δts为从发现目标到第一次稳定跟踪状态所花事假;σ7,σ8为加权比例,其中σ78=1并且0≤σ7,σ8≤1。
本发明产生的有益效果是:
1、本发明不依赖自主控制器软硬件的类型,并通过建立无人艇本艇模型、环境模型、模拟目标模型,使无人艇自主航行控制器(软件、硬件)在没有实艇的状态下,可以运行、调试及评估;并且软件硬件定型后可直接用于实艇,无需改动,加快无人艇软硬件开发迭代速度。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例的结构示意图;
图2是本发明实施例的无人艇运动学模型示意图;
图3是本发明实施例的无人艇障碍目标设置流程示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,一种无人艇自主航行控制算法仿真评估系统,包括:
待测试的航行自主控制器,用于按照无人艇通信协议分别与无人艇运动学模型以及无人艇操控软件进行通信;
仿真模型建立模块,用于建立无人艇运动学模型和影响无人艇运动的环境模型;
所述无人艇运动学模型的模型输入为无人艇操控软件按照规定协议输出的期望航向及期望航速;无人艇运动学模型的模型输出为向航行自主控制器输出当前航速、航向、经纬度信息;
本实施例中,建立模型的过程如下:
1)建立基于无人艇实际参数的无人艇运动学模型
首先,建立无人艇本艇模型,包含模拟船体、惯导等信息;模型输入为航行自主控制软件按照规定协议输出的期望航向及期望航速;模型输出为按照船用惯导协议向航行自主控制器输出的当前航速、航向、经纬度等相关信息。
表1无人艇模型相关变量及参数说明
Figure BDA0003218942590000061
Figure BDA0003218942590000071
1.1)无人艇当前航速计算
设置单个控制周期允许的最大速度变化为ΔV=T*2。则当|Vexp-Vlast|≤ΔV时,Vcur=Vexp;当Vexp>Vlast,Vcur=Vexp+ΔV;当Vexp<Vlast,Vcur=Vexp-ΔV;
1.2)无人艇当前舵角计算
设置单个控制周期允许的最大舵角变化为
Figure BDA0003218942590000081
当|αexplast|≤Δα时,αcur=αexp;当αexp>αlast,αcur=αexp+Δα;当αexp<αlast,αcur=αexp-Δα;
1.3)经纬度及航向更新
将无人艇运动简化为由后轮打角及驱动的刚性连接结构。如图2所示。
其中,R为旋转半径:
Figure BDA0003218942590000082
则无人艇运动学模型状态更新关系式为:
1、当α>0时;
Figure BDA0003218942590000083
Figure BDA0003218942590000084
Figure BDA0003218942590000085
Figure BDA0003218942590000086
或者
Figure BDA0003218942590000087
Figure BDA0003218942590000088
Figure BDA0003218942590000089
则:
Figure BDA00032189425900000810
如果β2≥2π,则β2=β2-2π;当
Figure BDA0003218942590000091
Figure BDA0003218942590000092
Figure BDA0003218942590000093
Figure BDA0003218942590000094
或者
Figure BDA0003218942590000095
Figure BDA0003218942590000096
Figure BDA0003218942590000097
2、当α<0时;
Figure BDA0003218942590000098
Figure BDA0003218942590000099
Figure BDA00032189425900000910
Figure BDA00032189425900000911
或者
Figure BDA00032189425900000912
Figure BDA00032189425900000913
Figure BDA00032189425900000914
Figure BDA00032189425900000915
如果β2<0,则β2=β2+2π;当
Figure BDA00032189425900000916
Figure BDA0003218942590000101
Figure BDA0003218942590000102
Figure BDA0003218942590000103
或者
Figure BDA0003218942590000104
Figure BDA0003218942590000105
Figure BDA0003218942590000106
3、当α=0时;
R=Vcur*T
β2=β1
当0≤β2<π,
Figure BDA0003218942590000107
y2=y1+Rcos(β2)
当π≤β2<2π,
Figure BDA0003218942590000108
y2=y1+Rcos(β2)
2)建立影响无人艇运动的环境模型
无人艇在海上巡航执行任务时,不可避免的会受到洋流、气象等因素的影响,会对船体上产生环境干扰力(力矩)。风、浪、流这些具有随机性的干扰,没有规律可循。在进行无人艇建模时,需要模拟这些环境干扰的产生,考虑环境干扰量对无人艇产生的运动干扰。
定义无人艇受到的环境干扰力矩τd,单位为N.m,τd=(τdxdydz)T
τd=τwistrwa
式中τwi,τstr,τwa分别代表着风、浪、流对无人艇的干扰转矩。
障碍目标仿真模块,用于根据障碍目标的经纬度、航速、航向、大小、障碍类型,模拟无人艇感知系统输出的障碍目标报文;
该功能模块用于模拟无人艇感知系统输出的目标报文,其中包含目标的经纬度、航速、航向、大小、障碍类型等。由于感知系统对目标检测存在一定偏差或者几率,模拟无人艇感知系统输出的障碍目标报文将参考真实感知系统输出结果,将经纬度在真实值±10m内取任意值、航向在真实值±15°内取任意值、航速在真实值±7kn内取任意值;且设置无人艇存在5%的概率无法上报目标。无人艇障碍目标设置模拟流程如图3所示。
自主航行控制算法评估模块,用于根据无人艇自主航行控制任务对自主航行控制算法进行评估;
所述自主航行控制算法评估模块包括:
航迹跟踪算法评估子模块,用于根据每个控制周期T获取一次规划航迹数据、模拟障碍目标数据和无人艇状态数据对航迹跟踪算法进行评估;
评估值的计算方式为:
Figure BDA0003218942590000121
其中,m1为从起始点至终点设置的观测点个数;un为第n个观测点处无人艇实际位置与规划位置的偏差;umax为整段航迹中的最大偏差值;Δt为从起始点至终点的总耗时;S为从起始点至终点的总长度;σ1,σ2,σ3为加权比例系数,其中σ123=1并且0≤σ1,σ2,σ3≤1;
动态避障算法评估子模块,用于根据每个控制周期T获取一次规划航迹数据、模拟障碍目标数据和无人艇状态数据对航迹跟踪算法进行评估;
评估值的计算方式为:
Figure BDA0003218942590000122
其中,m2为从起始点至终点的模拟障碍目标数量;gn为本艇距离第n个模拟障碍目标的距离;r为避障半径;gmin为整段避障中的距离模拟障碍最近距离;Δt为从起始点至终点的总耗时;S为从起始点至终点的总长度;σ4,σ5,σ6为加权比例,其中σ456=1并且0≤σ4,σ5,σ6≤1;
目标跟踪算法评估子模块,用于根据每个控制周期T获取一次规划航迹数据、模拟障碍目标数据和无人艇状态数据对目标跟踪算法进行评估;
评估值的计算方式为:
Figure BDA0003218942590000131
其中,m3为从稳定跟踪后,无人艇脱离跟踪区域的次数;tn为第n次偏离跟踪区域的时间;Δtl为稳定跟踪后到结束状态所花时间;Δts为从发现目标到第一次稳定跟踪状态所花事假;σ7,σ8为加权比例,其中σ78=1并且0≤σ7,σ8≤1。
仿真建模参数:(1)本艇参数:某无人艇船长12.6米,控制周期10ms;(2)环境参数:风速10kn,流速0.6kn,均为由北向南;(3)模拟目标3个,由西向东,航速15节;(4)任务参数:无人艇执行避障算法调试,无人艇规划由东向西直线运动,全程S=3km,与3个目标相向而行;(5)设置评价参数:r=50,σ4=0.2,σ5=0.1,σ6=0.7。
根据仿真平台运行结果,仿真平台中的评估模块将对该次算法的完整运行给出评价结果。计算过程中,无人艇距离3个目标距离之和最小值为127米;距离单艇最近距离为43米;总耗时531s;则避碰算法评估结果为Γavoid=0.379。根据避碰算法评估结果可以横向比较各避碰算法的性能优劣程度。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (3)

1.一种无人艇自主航行控制算法仿真评估系统,其特征在于,包括:
待测试的航行自主控制器,用于按照无人艇通信协议分别与无人艇运动学模型以及无人艇操控软件进行通信;所述无人艇操控软件为航迹跟踪算法、动态避障算法、目标跟踪算法在内的自主航行控制算法运行软件;
仿真模型建立模块,用于建立无人艇运动学模型和影响无人艇运动的环境模型;
所述无人艇运动学模型的模型输入为无人艇操控软件按照规定协议输出的期望航向及期望航速;无人艇运动学模型的模型输出为向航行自主控制器输出当前航速、航向、经纬度信息;
障碍目标仿真模块,用于根据障碍目标的经纬度、航速、航向、大小、障碍类型,模拟无人艇感知系统输出的障碍目标报文;
自主航行控制算法评估模块,用于根据无人艇自主航行控制任务对自主航行控制算法进行评估;所述无人艇自主航行控制任务包括航迹跟踪、动态避障及目标跟踪任务。
2.根据权利要求1所述的无人艇自主航行控制算法仿真评估系统,其特征在于,所述自主航行控制算法评估模块包括:
航迹跟踪算法评估子模块,用于根据每个控制周期T获取一次规划航迹数据、模拟障碍目标数据和无人艇状态数据对航迹跟踪算法进行评估;
评估值的计算方式为:
Figure FDA0003218942580000021
其中,m1为从起始点至终点设置的观测点个数;un为第n个观测点处无人艇实际位置与规划位置的偏差;umax为整段航迹中的最大偏差值;Δt为从起始点至终点的总耗时;S为从起始点至终点的总长度;σ1,σ2,σ3为加权比例系数,其中σ123=1并且0≤σ1,σ2,σ3≤1;
动态避障算法评估子模块,用于根据每个控制周期T获取一次规划航迹数据、模拟障碍目标数据和无人艇状态数据对航迹跟踪算法进行评估;
评估值的计算方式为:
Figure FDA0003218942580000022
其中,m2为从起始点至终点的模拟障碍目标数量;gn为本艇距离第n个模拟障碍目标的距离;r为避障半径;gmin为整段避障中的距离模拟障碍最近距离;Δt为从起始点至终点的总耗时;S为从起始点至终点的总长度;σ4,σ5,σ6为加权比例,其中σ456=1并且0≤σ4,σ5,σ6≤1;
目标跟踪算法评估子模块,用于根据每个控制周期T获取一次规划航迹数据、模拟障碍目标数据和无人艇状态数据对目标跟踪算法进行评估;
评估值的计算方式为:
Figure FDA0003218942580000031
其中,m3为从稳定跟踪后,无人艇脱离跟踪区域的次数;tn为第n次偏离跟踪区域的时间;Δtl为稳定跟踪后到结束状态所花时间;Δts为从发现目标到第一次稳定跟踪状态所花事假;σ7,σ8为加权比例,其中σ78=1并且0≤σ7,σ8≤1。
3.根据权利要求1所述的无人艇自主航行控制算法仿真评估系统,其特征在于,所述无人艇运动的环境模型为环境干扰量对无人艇产生的运动干扰;
定义无人艇受到的环境干扰力矩τd
τd=τwistrwa
式中,τwi、τstr、τwa分别代表着风、浪、流对无人艇的干扰转矩。
CN202110952444.5A 2021-08-19 2021-08-19 一种无人艇自主航行控制算法仿真评估系统 Active CN113625720B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110952444.5A CN113625720B (zh) 2021-08-19 2021-08-19 一种无人艇自主航行控制算法仿真评估系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110952444.5A CN113625720B (zh) 2021-08-19 2021-08-19 一种无人艇自主航行控制算法仿真评估系统

Publications (2)

Publication Number Publication Date
CN113625720A true CN113625720A (zh) 2021-11-09
CN113625720B CN113625720B (zh) 2024-05-10

Family

ID=78386532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110952444.5A Active CN113625720B (zh) 2021-08-19 2021-08-19 一种无人艇自主航行控制算法仿真评估系统

Country Status (1)

Country Link
CN (1) CN113625720B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115871890A (zh) * 2023-01-03 2023-03-31 中国船舶科学研究中心 一种无人船自主航行能力测试评估系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106444776A (zh) * 2016-10-28 2017-02-22 中国舰船研究设计中心 一种无人艇自主性能评估方法
CN108564202A (zh) * 2018-03-18 2018-09-21 哈尔滨工程大学 一种基于环境预报信息的无人艇航线优化方法
CN110726977A (zh) * 2019-11-29 2020-01-24 中国舰船研究设计中心 一种干扰环境下船舶雷达性能评估方法
CN110782481A (zh) * 2019-10-18 2020-02-11 华中光电技术研究所(中国船舶重工集团有限公司第七一七研究所) 无人艇智能决策方法及系统
CN110837255A (zh) * 2019-11-08 2020-02-25 哈尔滨工程大学 一种适用于高速水面无人艇的自主危险规避方法
CN111409788A (zh) * 2020-04-17 2020-07-14 大连海事大学 一种无人船艇自主航行能力测试方法及系统
CN111580518A (zh) * 2020-05-12 2020-08-25 哈尔滨工程大学 一种基于改进果蝇优化和动态窗口法的无人艇分层避障方法
CN111813128A (zh) * 2020-07-29 2020-10-23 浙江北鲲智能科技有限公司 一种无人艇自主航行性能评估方法
CN111846139A (zh) * 2020-07-29 2020-10-30 浙江北鲲智能科技有限公司 一种水面无人艇智能航行性能综合量化评估方法
CN112327666A (zh) * 2020-10-22 2021-02-05 智慧航海(青岛)科技有限公司 动力巡航系统控制模型的目标函数权重矩阵确定方法
CN112489524A (zh) * 2021-01-25 2021-03-12 南京国立电子科技有限公司 一种雷达侦查与对抗仿真系统的构建方法
CN112882380A (zh) * 2021-01-07 2021-06-01 上海交通大学 时序逻辑任务下多无人艇系统协同控制方法、终端及介质

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106444776A (zh) * 2016-10-28 2017-02-22 中国舰船研究设计中心 一种无人艇自主性能评估方法
CN108564202A (zh) * 2018-03-18 2018-09-21 哈尔滨工程大学 一种基于环境预报信息的无人艇航线优化方法
CN110782481A (zh) * 2019-10-18 2020-02-11 华中光电技术研究所(中国船舶重工集团有限公司第七一七研究所) 无人艇智能决策方法及系统
CN110837255A (zh) * 2019-11-08 2020-02-25 哈尔滨工程大学 一种适用于高速水面无人艇的自主危险规避方法
CN110726977A (zh) * 2019-11-29 2020-01-24 中国舰船研究设计中心 一种干扰环境下船舶雷达性能评估方法
CN111409788A (zh) * 2020-04-17 2020-07-14 大连海事大学 一种无人船艇自主航行能力测试方法及系统
CN111580518A (zh) * 2020-05-12 2020-08-25 哈尔滨工程大学 一种基于改进果蝇优化和动态窗口法的无人艇分层避障方法
CN111813128A (zh) * 2020-07-29 2020-10-23 浙江北鲲智能科技有限公司 一种无人艇自主航行性能评估方法
CN111846139A (zh) * 2020-07-29 2020-10-30 浙江北鲲智能科技有限公司 一种水面无人艇智能航行性能综合量化评估方法
CN112327666A (zh) * 2020-10-22 2021-02-05 智慧航海(青岛)科技有限公司 动力巡航系统控制模型的目标函数权重矩阵确定方法
CN112882380A (zh) * 2021-01-07 2021-06-01 上海交通大学 时序逻辑任务下多无人艇系统协同控制方法、终端及介质
CN112489524A (zh) * 2021-01-25 2021-03-12 南京国立电子科技有限公司 一种雷达侦查与对抗仿真系统的构建方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115871890A (zh) * 2023-01-03 2023-03-31 中国船舶科学研究中心 一种无人船自主航行能力测试评估系统
CN115871890B (zh) * 2023-01-03 2023-10-20 中国船舶科学研究中心 一种无人船自主航行能力测试评估系统

Also Published As

Publication number Publication date
CN113625720B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
CN110221546B (zh) 虚实融合的船舶智能控制系统测试平台
Zinchenko et al. Use of simulator equipment for the development and testing of vessel control systems
CN109540151A (zh) 一种基于强化学习的auv三维路径规划方法
Sun et al. AUV path following controlled by modified Deep Deterministic Policy Gradient
CN110362089A (zh) 一种基于深度强化学习和遗传算法的无人船自主导航的方法
CN108645413A (zh) 一种移动机器人的同时定位与地图创建的动态纠正方法
Rong et al. Evaluation of near-collisions in the Tagus River Estuary using a marine traffic simulation model
JP2021098497A (ja) 自動運航船シミュレーションシステム及びその運用方法
Perera et al. Situation awareness of autonomous ship navigation in a mixed environment under advanced ship predictor
CN113625720A (zh) 一种无人艇自主航行控制算法仿真评估系统
Vagale et al. Evaluation of path planning algorithms of autonomous surface vehicles based on safety and collision risk assessment
CN116519021A (zh) 一种惯性导航系统故障诊断方法、系统及设备
Yang et al. Ultrasonic and IMU based high precision UAV localisation for the low cost autonomous inspection in oil and gas pressure vessels
Lambert STDF model based maritime situation assessments
Yunsheng et al. A method and application platform of testing technology for unmanned ship
Yang et al. Autonomous exploration and navigation of mine countermeasures USV in complex unknown environment
Krishnamurthy et al. A hierarchical control and obstacle avoidance system for Unmanned Sea Surface Vehicles
Chen et al. Research on AIS and radar information fusion method based on distributed Kalman
Keong et al. Reinforcement learning for autonomous aircraft avoidance
CN113934159A (zh) 一种无人船可靠性测试环境模型构建方法
Gan et al. Research on key technology of unmanned surface vehicle motion simulation based on unity3d
Vanek et al. Vision only sense and avoid: A probabilistic approach
CN108459614A (zh) 一种基于cw-rnn网络的uuv实时避碰规划方法
Lin et al. Cross-domain Monitoring of Underwater Targets Based on Q-learning for Heterogeneous Unmanned Vehicles
JP2008180784A (ja) シミュレーション装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant