CN113624907A - 一种点燃实验模拟装置 - Google Patents

一种点燃实验模拟装置 Download PDF

Info

Publication number
CN113624907A
CN113624907A CN202110912818.0A CN202110912818A CN113624907A CN 113624907 A CN113624907 A CN 113624907A CN 202110912818 A CN202110912818 A CN 202110912818A CN 113624907 A CN113624907 A CN 113624907A
Authority
CN
China
Prior art keywords
gas
convection
outlet
ignition
heating system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110912818.0A
Other languages
English (en)
Other versions
CN113624907B (zh
Inventor
雷佼
赵伟杰
张林鹤
刘乃安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN202110912818.0A priority Critical patent/CN113624907B/zh
Publication of CN113624907A publication Critical patent/CN113624907A/zh
Application granted granted Critical
Publication of CN113624907B publication Critical patent/CN113624907B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明公开了一种点燃实验模拟装置,包括对流加热系统、辐射加热系统以及固体实验样本;对流加热系统包括气体管道、空气压缩机和对流加热器以及对流加热控制柜;气体管道的出口设有铂片、铂网和水冷套管;辐射加热系统包括红外加热模块和红外加热控制柜。上述装置包括对流加热系统、辐射加热系统、对流加热控制柜和红外加热控制柜,能够相对独立地调节对流加热系统和辐射加热系统对固体实验样本所施加的对流加热热流值和辐射热通量值,以实现对辐射热通量和对流加热热流的精准控制;且在气体管道的出口设置铂片、铂网和水冷套管,以使出口端成为低辐射管道,进而能够更灵活地调控装置所提供的总热通量中辐射热通量与对流加热热流的相对比例。

Description

一种点燃实验模拟装置
技术领域
本发明涉及材料点燃技术领域,更具体地说,涉及一种点燃实验模拟装置。
背景技术
森林火灾是世界八大自然灾害之一,历史重特大火灾案例表明,包括我国在内的世界各国的森林—城镇交界区域火灾(以下简称交界域火灾)形势日益严峻。交界域中建筑与植被混合分布,可燃物分布和地理环境非常复杂,发生火灾更易导致严重后果。火蔓延是火焰对前方燃料不断预热并持续点燃的过程。可燃物热解与着火是固体火灾发生的初始阶段,对交界域火灾的蔓延与发展至关重要。在真实火蔓延场景中,交界域中的树冠精细燃料存在可燃烧到不可燃的突变,这是目前火蔓延半经验模型无法解释的现象。此外,火灾蔓延模型无法基于对火灾蔓延过程的基本理解来提供更有效的管理方案。采用实验和理论方法来提高对火蔓延过程的认识,特别是灌木和树冠燃料(精细燃料)的点燃行为已经成为当前研究的重点。
火蔓延过程中主要存在对流加热、辐射加热和对流冷却三种传热形式。辐射点燃和对流点燃的机理有所不同;现阶段业内对精细燃料主导加热的机制和灌木树冠燃料的点燃现象存在很大争议。为了建立能够可靠地估计灌木丛和乔木冠层发生火灾(树冠火)的可能性的物理基础,对燃料进行点燃模拟实验研究是不可或缺的。由于对主导加热机制的不确定性,前人在辐射加热或对流加热条件下进行了点燃实验研究,但现有装置无法同时实现对辐射热通量和对流热加热热流的独立控制;且现有的对流加热装置在对流段均使用常规的高发射率材料,未采取措施降低对流装置的背景辐射值,这对点燃特征参数与对流加热变化相关性研究产生了不可忽视的影响。并且,现有对流装置出口端尺寸和气流流速较小,这对实验样本尺寸和实验工况的选择带来了很大限制。即现有装置无法同时实现对辐射热通量和对流加热热流的精细控制,亦不能相对独立地调节对流加热热流和辐射热通量在总加热热流中的占比;且目前的对流加热装置中存在较高的背景辐射值和较低的气流流速上限,无法涵盖真实森林火灾场景中的参数范围。
因此,如何相对独立地实现对辐射热通量和对流加热热流的控制,是现阶段该领域亟待解决的难题。
发明内容
有鉴于此,本发明的目的在于提供一种点燃实验模拟装置,该装置能够相对独立地实现对辐射热通量和对流加热热流的控制,解决了现阶段该领域的难题。
一种点燃实验模拟装置,包括对流加热系统、辐射加热系统以及固体实验样本;
所述对流加热系统包括气体管道、设置于所述气体管道入口的空气压缩机和对流加热器以及用于控制所述对流加热器的对流加热控制柜;所述气体管道出口的内周面设有铂片,外周面包裹有水冷套管,内壁设有能够使气体穿过的铂网;所述气体管道内的所述气体为氧气和氮气的混合物;
所述固体实验样本设置于所述气体管道出口的上方;
所述辐射加热系统包括设置于所述气体管道出口的红外加热模块和用于控制所述红外加热模块的红外加热控制柜。
优选的,所述的点燃实验模拟装置,所述空气压缩机与所述对流加热器之间还设有冷冻式干燥机、减压阀以及气体质量流量控制器。
优选的,所述的点燃实验模拟装置,还包括用于固定所述气体管道的管道支架,所述气体管道的外周面包裹有保温材料。
优选的,所述的点燃实验模拟装置,还包括用于固定所述红外加热模块的模块支架,所述模块支架通过所述管道支架固定于所述气体管道的出口。
优选的,所述的点燃实验模拟装置,还包括用于支撑所述对流加热器的升降台;
所述对流加热器通过法兰与所述气体管道相连接。
优选的,所述的点燃实验模拟装置,还包括测量控制系统,所述测量控制系统包括:用于测试所述固体实验样本的质量损失速率的高精度电子天平;用于拍摄所述固体实验样本点燃过程的DV摄像机;用于测量所述气体管道出口的气体流速的热线风速仪;设置于所述气体管道出口的热电偶、高速红外热像仪,辐射热流计,总热流计以及气体分析系统;
还包括与所述热线风速仪、所述热电偶、所述辐射热流计以及所述总热流计均通讯连接的数据处理装置。
优选的,所述的点燃实验模拟装置,所述气体分析系统包括设置于所述气体管道出口的集气罩,与所述集气罩相连通的鼓风机以及用于测量气体中二氧化碳、一氧化碳、氧气和水蒸气含量的气体分析仪。
优选的,所述的点燃实验模拟装置,还包括用于固定所述DV摄像机的第一固定架,用于固定所述高速红外热像仪的第二固定架以及用于支撑所述固体实验样本的样本支撑架。
优选的,所述的点燃实验模拟装置,所述气体管道内气体的温度范围为25-850℃,流速范围为0-10m/s,氧气浓度范围为0-40%。
优选的,所述的点燃实验模拟装置,所述辐射加热系统的辐射热通量范围为0-70kW/m2
本发明提出的点燃实验模拟装置,包括对流加热系统、辐射加热系统以及固体实验样本;对流加热系统包括气体管道、设置于气体管道入口的空气压缩机和对流加热器以及用于控制对流加热器的对流加热控制柜;气体管道出口的内周面设有铂片,外周面包裹有水冷套管,内壁设有能够使空气穿过的铂网;气体管道内的气体为氧气和氮气的混合物;固体实验样本设置于气体管道出口的上方;辐射加热系统包括设置于气体管道出口的红外加热模块和用于控制红外加热模块的红外加热控制柜。上述点燃实验模拟装置包括对流加热系统和辐射加热系统,并设有对流加热控制柜和红外加热控制柜,能够相对独立地调节对流加热系统和辐射加热系统对固体实验样本所施加的对流加热热流值和辐射热通量值,以实现对辐射热通量和对流加热热流的精准控制;且在气体管道的出口设置铂片、铂网和水冷套管,以使出口端成为低辐射管道,进而能够更灵活地调控装置所提供的总热通量中辐射热通量与对流加热热流的相对比例。因此,本发明提出的点燃实验模拟装置,能够相对独立地实现对辐射热通量和对流加热热流的控制,解决了现阶段该领域的难题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明具体实施方式中点燃实验模拟装置的示意图;
图2为本发明具体实施方式中对流加热系统的正视图;
图3为本发明具体实施方式中气体管道的立体图;
图4为本发明具体实施方式中气体管道出口的俯视图;
图5为本发明具体实施方式中气体管道出口的剖视图;
图6为本发明具体实施方式中辐射加热系统的示意图。
图1-图6中:
气体管道—1;空气压缩机—2;对流加热器—3;对流加热控制柜—4;铂片—5;水冷套管—6;铂网—7;红外加热模块—8;红外加热控制柜—9;冷冻式干燥机—10;减压阀—11;气体质量流量控制器—12;管道支架—13;保温材料—14;模块支架—15;升降台—16;法兰—17;高精度电子天平—18;DV摄像机—19;热线风速仪—20;热电偶—21;高速红外热像仪—22;辐射热流计—23;总热流计—24;集气罩—25;鼓风机—26;气体分析仪—27;第一固定架—28;第二固定架—29;样本支撑架—30;固定器—31;带孔钢板—32;天平支撑架—33。
具体实施方式
本具体实施方式的核心在于提供一种点燃实验模拟装置,该装置能够相对独立地实现对辐射热通量和对流加热热流的控制,解决了现阶段该领域的难题。
以下,参照附图对实施例进行说明。此外,下面所示的实施例不对权利要求所记载的发明内容起任何限定作用。另外,下面实施例所表示的构成的全部内容不限于作为权利要求所记载的发明的解决方案所必需的。
本具体实施方式提供的点燃实验模拟装置,包括对流加热系统、辐射加热系统以及固体实验样本;对流加热系统包括气体管道1、设置于气体管道1入口的空气压缩机2和对流加热器3以及用于控制对流加热器3的对流加热控制柜4;气体管道1出口的内周面设有铂片5,外周面包裹有水冷套管6,内壁设有能够使空气穿过的铂网7;气体管道1内的气体为氧气和氮气的混合物;固体实验样本设置于气体管道1出口的上方;辐射加热系统包括设置于气体管道1出口的红外加热模块8和用于控制红外加热模块8的红外加热控制柜9。
上述点燃实验模拟装置包括对流加热系统和辐射加热系统,并设有对流加热控制柜4和红外加热控制柜9,能够相对独立地调节对流加热系统和辐射加热系统对固体实验样本所施加的对流加热热流值和辐射热通量值,以实现对辐射热通量和对流加热热流的精准控制;且在气体管道1的出口设置铂片5、铂网7和水冷套管6,以使出口端成为低辐射管道,进而能够更灵活地调控装置所提供的总热通量中辐射热通量与对流加热热流的相对比例。
因此,本发明提出的点燃实验模拟装置,能够相对独立地实现对辐射热通量和对流加热热流的控制,解决了现阶段该领域的难题。具体请参见图1-图6。
上述红外加热模块8的个数可以为四个,外形的尺寸可以为350mm*150mm*150mm,总加热功率可以为20kW;当然,亦可以为能够起到同等作用的其他类型。
红外加热模块8可以由红外辐射器、水冷结构、风冷结构、辐射器安装固定装置、红外线模块框架、密封板及固定连接结构等部分组成;且红外加热模块8可以面朝中心,并通过模块支架15来保持斜向上辐射加热的状态,且可以通过模块支架15设置于管道支架13的顶部。
本具体实施方式提供的点燃实验模拟装置,空气压缩机2与对流加热器3之间还可以设有冷冻式干燥机10、减压阀11以及气体质量流量控制器12,进而更好地对气体管道1内气体的各项参数进行控制,进而精准的控制对流加热热流。
进一步,上述点燃实验模拟装置,还可以包括用于固定气体管道1的管道支架13,进而避免在实验过程中气体管道1出现晃动等,保证实验的顺利进行;且气体管道1的外周面可以包裹有保温材料14,进而更好地对气体管道1内的气体的温度进行控温,以降低高温热气流在流经管道时的热损,减少壁面冷却对出口气流热均匀性的影响。
上述气体管道1可以通过固定器31和带孔钢板32实现与管道支架13的固定,且固定器31和带孔钢板32的个数可以根据实际需要进行设计;例如,固定器31可以包裹于气体管道1的外周面,并通过与带孔钢板32的固定实现将气体管道1固定于管道支架13。具体请参见图1-3。
优选的,气体管道1可以为316不锈钢管道,该气体管道1可以包括垂直的水平段和竖直段,气体自水平段进入气体管道1,并自竖直段流出气体管道1;例如,水平段与竖直段的长度可以均为500mm,且两者连接的弯管弯道的半径可以为229mm。
当然,在实际设计时,气体管道1的材质、尺寸以及样式可以根据实际需要进行设计。
本具体实施方式提供的点燃实验模拟装置,还可以包括用于固定红外加热模块8的模块支架15,模块支架15可以通过管道支架13固定于气体管道1的出口,即模块支架15可以固定于管道支架13的顶部,具体位置如图1-6。
本具体实施方式提供的点燃实验模拟装置,还可以包括用于支撑对流加热器3的升降台16;对流加热器3可以通过法兰17与气体管道1相连接;即升降台16用于支撑并调整对流加热器3的高度,以使对流加热器3的中轴线能够与法兰17的中轴线位于同一水平高度上。
上述法兰17可以为焊接法兰17,该法兰17的直径可以为275mm,且在距圆心120mm的半径处均匀开了八个23mm直径的孔以用于螺丝的固定。
本具体实施方式提供的点燃实验模拟装置,还可以包括测量控制系统,测量控制系统可以包括:用于测试固体实验样本的质量损失速率的高精度电子天平18;用于拍摄固体实验样本点燃过程的DV摄像机19;用于测量气体管道1出口的气体流速的热线风速仪20;设置于气体管道1出口的热电偶21、用于拍摄固体实验样本点燃过程的高速红外热像仪22,辐射热流计23,总热流计24以及气体分析系统;还可以包括与热线风速仪20、热电偶21、辐射热流计23以及总热流计24均通讯连接的数据处理装置,进而使得热线风速仪20、热电偶21、辐射热流计23以及总热流计24的测量数据均能够被传送至数据处理装置。
上述数据处理装置主要储存记录相关的测量参数,并根据后续需要采用相关软件对数据进行分析。
其中,热线风速仪20能够实现水平移动和竖直移动,进而能够通过调节热线风速仪20的位置使其与样本支撑架30所处的位置相同,以更好地对点燃实验进行测量和模拟。
上述测量控制系统的存在能够更好地对气体进行检测和分析,进而获得点燃过程中的各项参数,以对固体实验样本的点燃过程进行研究。
进一步,气体分析系统可以包括设置于气体管道1出口的集气罩25,与集气罩25相连通的鼓风机26以及用于测量气体中二氧化碳、一氧化碳、氧气和水蒸气含量的气体分析仪27;进而更好地对点燃后的气体的成分进行分析。
例如,气体分析仪27对二氧化碳的检测范围可以为0-60000ppm,一氧化碳测量的范围可以为0-5000ppm;氧气测量范围可以为0-100%;水的测量范围可以为0-60mmol/mol;在实际设计时,气体分析仪27的种类可以根据实际需要进行选择。
本具体实施方式提供的点燃实验模拟装置,还可以包括用于固定DV摄像机19的第一固定架28,用于固定高速红外热像仪22的第二固定架29以及用于支撑固体实验样本的样本支撑架30。样本支撑架30可以放置于高精度电子天平18上,而高精度电子天平18可以设置于管道支架13外周面的天平支撑架33的顶部。
进一步,可以设计使第一固定架28和第二固定架29可以实现角度调节,进而调节DV摄像机19和高速红外热像仪22的角度,以更好地实现对固体实验样本点燃过程的拍摄。
本具体实施方式提供的点燃实验模拟装置,气体管道1内气体的温度范围可以为25-850℃,流速范围可以为0-10m/s,氧气浓度范围可以为0-40%;进一步,对流加热器可以实现1℃的幅度调节,进而更精准的对气体的温度进行控制;且辐射加热系统的辐射热通量的调节范围可以为0-70kW/m2,上述变量范围能够更好地涵盖真实森林火灾场景中的参数范围,进而可以分别对辐射点燃和对流点燃的机理进行研究。
需要说明的是,气体中氧气含量的范围为0-40%,上述点燃实验模拟装置工作时,空气压缩机2将空气通入气体管道1,并通过氮气气瓶和氧气气瓶来调节气体中氧气的占比。
本具体实施方式中,主要通过参数来确定装置选型,从而达到使对流流速达到10m/s,具体实现过程如下:
首先,根据需要的出口气流流速上限计算要达到此流速所需要的最大气流体积流量(升每分钟--SLM)。
再根据最大气体体积流量对空气压缩机2进行选型,选择能够提供最大流量的空气压缩机2。
且根据流量范围确定选择相应的对流加热器3,并根据对流加热器3的基础参数曲线,确保在最大气体流量范围下对流加热器3出口气流也能加热至温度的最高上限。
需要说明的是,对流加热器3温度的控制以及空气压缩机2流量的控制均通过相应的控制器来实现的。
本具体实施方式提供的点燃实验模拟装置与现有的对流辐射加热实验装置相比,将对流加热系统与辐射加热系统组合在一起,且两个系统可以单独进行使用。
同时,气体管道1的出口段通过使用低发射率的材料铂来降低管道出口端所产生的背景辐射值,能够保证施加对流加热热流时可相对忽略对流装置产生的背景辐射值,进而能够相对独立提供辐射加热和对流加热,以实现对辐射与对流加热热流的精确控制,在实验研究中更灵活地调控装置所提供的总热通量中辐射热通量与对流加热热流的相对比例,进而开展更大变量范围的实验探究。
进一步,红外加热模块8能够调整对固体实验样本施加辐射的角度,对流加热器3能够较为精准地控制加热气体的温度,进而能够使气体管道1内部较为快速获得稳定的高温气流。
气体温度可以在25-850℃之间控制;最大的气流流速可以达到10m/s;辐射热通量能够在0-70kW/m2范围内可任意设定,进而实现对辐射与对流加热热流和环境气氛的精确控制,开展复杂热环境条件下固体可燃物点燃特性的实验观测和精细测量,深入揭示森林火蔓延燃料的点燃机制;此外,该装置中气体管道1中的气体在出口端能够较均匀流出。且固体实验样本能够在很短的时间内从未加热区移动到对流辐射加热区域内,进而能够保证减少在实验中样本在还未进行实验的移动过程中所接收的额外热流量,显著提高实验现象及数据的准确性。
上述点燃实验模拟装置包括对流加热系统和辐射加热系统,并设有对流加热控制柜4和红外加热控制柜9,能够相对独立地调节对流加热系统和辐射加热系统对固体实验样本所施加的对流加热热流值和辐射热通量值,以实现对辐射热通量和对流加热热流的精准控制;且在气体管道1的出口设置铂片5、铂网7和水冷套管6,以使出口端成为低辐射管道,进而能够更灵活地调控装置所提供的总热通量中辐射热通量与对流加热热流的相对比例。具体请参见图1-图6。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种点燃实验模拟装置,其特征在于,包括对流加热系统、辐射加热系统以及固体实验样本;
所述对流加热系统包括气体管道(1)、设置于所述气体管道(1)入口的空气压缩机(2)和对流加热器(3)以及用于控制所述对流加热器(3)的对流加热控制柜(4);所述气体管道(1)出口的内周面设有铂片(5),外周面包裹有水冷套管(6),内壁设有能够使气体穿过的铂网(7);所述气体管道(1)内的所述气体为氧气和氮气的混合物或者空气;
所述固体实验样本设置于所述气体管道(1)出口的上方;
所述辐射加热系统包括设置于所述气体管道(1)出口的红外加热模块(8)和用于控制所述红外加热模块(8)的红外加热控制柜(9)。
2.根据权利要求1所述的点燃实验模拟装置,其特征在于,所述空气压缩机(2)与所述对流加热器(3)之间还设有冷冻式干燥机(10)、减压阀(11)以及气体质量流量控制器(12)。
3.根据权利要求1所述的点燃实验模拟装置,其特征在于,还包括用于固定所述气体管道(1)的管道支架(13),所述气体管道(1)的外周面包裹有保温材料(14)。
4.根据权利要求3所述的点燃实验模拟装置,其特征在于,还包括用于固定所述红外加热模块(8)的模块支架(15),所述模块支架(15)通过所述管道支架(13)固定于所述气体管道(1)的出口。
5.根据权利要求1所述的点燃实验模拟装置,其特征在于,还包括用于支撑所述对流加热器(3)的升降台(16);
所述对流加热器(3)通过法兰(17)与所述气体管道(1)相连接。
6.根据权利要求1所述的点燃实验模拟装置,其特征在于,还包括测量控制系统,所述测量控制系统包括:用于测试所述固体实验样本的质量损失速率的高精度电子天平(18);用于拍摄所述固体实验样本点燃过程的DV摄像机(19);用于测量所述气体管道(1)出口的气体流速的热线风速仪(20);设置于所述气体管道(1)出口的热电偶(21)、高速红外热像仪(22),辐射热流计(23),总热流计(24)以及气体分析系统;
还包括与所述热线风速仪(20)、所述热电偶(21)、所述辐射热流计(23)以及所述总热流计(24)均通讯连接的数据处理装置。
7.根据权利要求6所述的点燃实验模拟装置,其特征在于,所述气体分析系统包括设置于所述气体管道(1)出口的集气罩(25),与所述集气罩(25)相连通的鼓风机(26)以及用于测量气体中二氧化碳、一氧化碳、氧气和水蒸气含量的气体分析仪(27)。
8.根据权利要求6所述的点燃实验模拟装置,其特征在于,还包括用于固定所述DV摄像机(19)的第一固定架(28),用于固定所述高速红外热像仪(22)的第二固定架(29)以及用于支撑所述固体实验样本的样本支撑架(30)。
9.根据权利要求1所述的点燃实验模拟装置,其特征在于,所述气体管道(1)内气体的温度范围为25-850℃,流速范围为0-10m/s,氧气浓度范围为0-40%。
10.根据权利要求1所述的点燃实验模拟装置,其特征在于,所述辐射加热系统的辐射热通量范围为0-70kW/m2
CN202110912818.0A 2021-08-10 2021-08-10 一种点燃实验模拟装置 Active CN113624907B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110912818.0A CN113624907B (zh) 2021-08-10 2021-08-10 一种点燃实验模拟装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110912818.0A CN113624907B (zh) 2021-08-10 2021-08-10 一种点燃实验模拟装置

Publications (2)

Publication Number Publication Date
CN113624907A true CN113624907A (zh) 2021-11-09
CN113624907B CN113624907B (zh) 2022-05-13

Family

ID=78383901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110912818.0A Active CN113624907B (zh) 2021-08-10 2021-08-10 一种点燃实验模拟装置

Country Status (1)

Country Link
CN (1) CN113624907B (zh)

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB541386A (en) * 1939-07-01 1941-11-25 British Thomson Houston Co Ltd Improvements in and relating to apparatus for gas analysis
DE1946424A1 (de) * 1969-09-13 1971-03-25 Dr Wegner Lutz Axel Verfahren und Vorrichtung zur Absorption von gasfoermigen Verbrennungsprodukten als Vorbereitung zur Aktivitaetsbestimmung? radioaktiver,insbesondere biologischer Proben
CA2014810A1 (en) * 1989-04-21 1990-10-21 John Alan Lawton Solid imaging system
WO1991008466A1 (en) * 1987-07-08 1991-06-13 Thermedics Inc. Selective detection of vapors
WO1995035498A1 (en) * 1994-06-20 1995-12-28 Sievers Instruments, Inc. Reagentless oxidation reactor
DE29621637U1 (de) * 1996-12-13 1997-02-13 Pause Barbara Dr Vorrichtung zur Messung der Wärmeübertragung durch einen Schichtenaufbau plattenförmiger Materialproben unter verschiedenen Prüfbedingungen
US20020098592A1 (en) * 2000-11-17 2002-07-25 Flir Systems Boston, Inc. Apparatus and methods for infrared calorimetric measurements
FR2847051A1 (fr) * 2002-11-12 2004-05-14 Centre Nat Rech Scient Procede pour evaluer une grandeur physique representative d'une interaction entre une onde et un obstacle
US20050078732A1 (en) * 2003-10-09 2005-04-14 Fm Global Technologies, Llc Device and method for measuring absorbed heat flux in a fire test apparatus
CN203706566U (zh) * 2014-01-29 2014-07-09 中国科学技术大学 一种外界风作用下高层建筑楼梯井或竖井火灾实验模拟装置
CN104071360A (zh) * 2014-06-12 2014-10-01 上海微小卫星工程中心 一种基于辐射耦合传热等效模拟的瞬态热平衡试验方法及系统
CN204694686U (zh) * 2015-06-18 2015-10-07 赵伟杰 一种用于燃烧实验的装置
CN106896079A (zh) * 2017-03-13 2017-06-27 北京环境特性研究所 耐高温镍基合金材料的光谱发射率建模方法和测量系统
CN207675717U (zh) * 2017-12-26 2018-07-31 沈阳微特通用技术开发有限公司 金属屋面耐火试验装置
CN108982745A (zh) * 2018-08-10 2018-12-11 西安科技大学 不同强度射流火焰热辐射下煤样燃烧特性测试装置
CN109828078A (zh) * 2019-01-31 2019-05-31 应急管理部天津消防研究所 可燃液体平面自由流淌燃烧模拟实验装置及实验方法
CN110057861A (zh) * 2019-04-11 2019-07-26 辽宁工程技术大学 一种地板辐射空调系统的房间热环境特性实验装置及方法
CN110672778A (zh) * 2019-10-31 2020-01-10 上海屹尧仪器科技发展有限公司 可微波点火的氧燃烧反应釜
CN110794000A (zh) * 2019-12-10 2020-02-14 南京工业大学 一种辐射-对流耦合加热可控气氛热解实验系统及测试方法
CN211627272U (zh) * 2019-11-18 2020-10-02 广东省特种设备检测研究院顺德检测院 一种固体燃料的燃烧质量特性测试装置
CN111896431A (zh) * 2020-08-19 2020-11-06 大连理工大学 一种雾霾环境模拟仓体
CN112697954A (zh) * 2020-12-01 2021-04-23 中国科学技术大学 一种多功能大尺度立面火蔓延防控阻隔的实验装置
CN113092583A (zh) * 2021-03-31 2021-07-09 西安电子科技大学 高速旋转涡轮叶片热障涂层的动态损伤检测系统及方法

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB541386A (en) * 1939-07-01 1941-11-25 British Thomson Houston Co Ltd Improvements in and relating to apparatus for gas analysis
DE1946424A1 (de) * 1969-09-13 1971-03-25 Dr Wegner Lutz Axel Verfahren und Vorrichtung zur Absorption von gasfoermigen Verbrennungsprodukten als Vorbereitung zur Aktivitaetsbestimmung? radioaktiver,insbesondere biologischer Proben
WO1991008466A1 (en) * 1987-07-08 1991-06-13 Thermedics Inc. Selective detection of vapors
CA2014810A1 (en) * 1989-04-21 1990-10-21 John Alan Lawton Solid imaging system
WO1995035498A1 (en) * 1994-06-20 1995-12-28 Sievers Instruments, Inc. Reagentless oxidation reactor
DE29621637U1 (de) * 1996-12-13 1997-02-13 Pause Barbara Dr Vorrichtung zur Messung der Wärmeübertragung durch einen Schichtenaufbau plattenförmiger Materialproben unter verschiedenen Prüfbedingungen
US20020098592A1 (en) * 2000-11-17 2002-07-25 Flir Systems Boston, Inc. Apparatus and methods for infrared calorimetric measurements
FR2847051A1 (fr) * 2002-11-12 2004-05-14 Centre Nat Rech Scient Procede pour evaluer une grandeur physique representative d'une interaction entre une onde et un obstacle
US20050078732A1 (en) * 2003-10-09 2005-04-14 Fm Global Technologies, Llc Device and method for measuring absorbed heat flux in a fire test apparatus
CN203706566U (zh) * 2014-01-29 2014-07-09 中国科学技术大学 一种外界风作用下高层建筑楼梯井或竖井火灾实验模拟装置
CN104071360A (zh) * 2014-06-12 2014-10-01 上海微小卫星工程中心 一种基于辐射耦合传热等效模拟的瞬态热平衡试验方法及系统
CN204694686U (zh) * 2015-06-18 2015-10-07 赵伟杰 一种用于燃烧实验的装置
CN106896079A (zh) * 2017-03-13 2017-06-27 北京环境特性研究所 耐高温镍基合金材料的光谱发射率建模方法和测量系统
CN207675717U (zh) * 2017-12-26 2018-07-31 沈阳微特通用技术开发有限公司 金属屋面耐火试验装置
CN108982745A (zh) * 2018-08-10 2018-12-11 西安科技大学 不同强度射流火焰热辐射下煤样燃烧特性测试装置
CN109828078A (zh) * 2019-01-31 2019-05-31 应急管理部天津消防研究所 可燃液体平面自由流淌燃烧模拟实验装置及实验方法
CN110057861A (zh) * 2019-04-11 2019-07-26 辽宁工程技术大学 一种地板辐射空调系统的房间热环境特性实验装置及方法
CN110672778A (zh) * 2019-10-31 2020-01-10 上海屹尧仪器科技发展有限公司 可微波点火的氧燃烧反应釜
CN211627272U (zh) * 2019-11-18 2020-10-02 广东省特种设备检测研究院顺德检测院 一种固体燃料的燃烧质量特性测试装置
CN110794000A (zh) * 2019-12-10 2020-02-14 南京工业大学 一种辐射-对流耦合加热可控气氛热解实验系统及测试方法
CN111896431A (zh) * 2020-08-19 2020-11-06 大连理工大学 一种雾霾环境模拟仓体
CN112697954A (zh) * 2020-12-01 2021-04-23 中国科学技术大学 一种多功能大尺度立面火蔓延防控阻隔的实验装置
CN113092583A (zh) * 2021-03-31 2021-07-09 西安电子科技大学 高速旋转涡轮叶片热障涂层的动态损伤检测系统及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ROBERTS G等: "Fire Activity and Fuel Consumption Dynamics in Sub-Saharan Afirca", 《REMOTE SENSING》 *
徐艳秋等: "高层建筑室外火灾的数值模拟与分析", 《安防科技》 *
涂然等: "利用压力相似预测高原低压环境小尺寸池火燃烧速率的变化特性", 《燃烧科学与技术》 *

Also Published As

Publication number Publication date
CN113624907B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
CN106442858B (zh) 不同温湿度、氧浓度条件下可燃物火蔓延特性实验方法
WO2021057860A1 (zh) 基于置障条件下天然气长输管道喷射火研究的实验装置
Rafidi et al. Heat transfer characteristics of HiTAC heating furnace using regenerative burners
CN107687930B (zh) 一种燃烧风洞实验系统及实验方法
CN110441467A (zh) 一种环境风作用下固体燃料变角度火灾蔓延实验装置
CN208548090U (zh) 一种可变弧度的隧道火灾模拟装置
CN106596835A (zh) 一种可控温湿度、氧浓度的可燃物倾斜燃烧特性实验装置
CN110044961A (zh) 一种粉尘层火蔓延行为的观测试验装置及方法
CN106769606A (zh) 一种快速升温热重分析仪
CN1707561A (zh) 一种模拟火灾烟气释放装置
CN109100464A (zh) 可调复杂构型的建筑墙体保温板材火灾燃烧特性测试装置
CN110794000B (zh) 一种辐射-对流耦合加热可控气氛热解实验系统及测试方法
CN113624907B (zh) 一种点燃实验模拟装置
CA2324935A1 (fr) Procede et dispositif de regulation des fours de cuisson a feu tournant
CN111189959A (zh) 测试粉体热解和燃烧特性及其火蔓延特性的综合实验平台
CN109557242A (zh) 一种沥青材料阻燃性能测试仪器及方法
CN106501015B (zh) 一种多管束集成式辐射管燃烧实验系统及方法
CN116907784A (zh) 一种环境风作用下油池火燃烧效率测量装置和方法
CN107300572B (zh) 一种铺地材料临界热辐射通量测试系统和方法
CN108288428B (zh) 一种可变弧度的隧道火灾模拟装置及其方法
CN209246073U (zh) 蓄热式燃烧器燃烧控制装置及蓄热式燃烧器
CN110501383A (zh) 一种可变环境风条件下建筑外幕墙/墙体耦合构型保温板材火蔓延特性测试装置
CN206523393U (zh) 一种快速升温热重分析仪
CN108648597A (zh) 一种房间火灾移动防排烟试验模拟装置
CN209785395U (zh) 一种火灾模拟装置及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant