CN113621170B - 一种阴离子交换复合膜及其制备方法和应用 - Google Patents

一种阴离子交换复合膜及其制备方法和应用 Download PDF

Info

Publication number
CN113621170B
CN113621170B CN202110924206.3A CN202110924206A CN113621170B CN 113621170 B CN113621170 B CN 113621170B CN 202110924206 A CN202110924206 A CN 202110924206A CN 113621170 B CN113621170 B CN 113621170B
Authority
CN
China
Prior art keywords
anion exchange
composite membrane
substrate
pores
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110924206.3A
Other languages
English (en)
Other versions
CN113621170A (zh
Inventor
吴晓童
汪瀛
陈召钰
庄林
袁中直
刘金成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huizhou Yiwei Hydrogen Energy Co ltd
Original Assignee
Huizhou Yiwei New Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Yiwei New Energy Research Institute filed Critical Huizhou Yiwei New Energy Research Institute
Priority to CN202110924206.3A priority Critical patent/CN113621170B/zh
Publication of CN113621170A publication Critical patent/CN113621170A/zh
Application granted granted Critical
Publication of CN113621170B publication Critical patent/CN113621170B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/06Inorganic compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • D06M10/10Macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/45Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic Table; Aluminates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/49Oxides or hydroxides of elements of Groups 8, 9,10 or 18 of the Periodic Table; Ferrates; Cobaltates; Nickelates; Ruthenates; Osmates; Rhodates; Iridates; Palladates; Platinates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/06Alcohols; Phenols; Ethers; Aldehydes; Ketones; Acetals; Ketals
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • D21H19/385Oxides, hydroxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/46Non-macromolecular organic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/56Macromolecular organic compounds or oligomers thereof obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2255Oxides; Hydroxides of metals of molybdenum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及一种阴离子交换复合膜及其制备方法和应用,所述阴离子交换复合膜包括含有孔隙的基底以及设置于所述孔隙中的碱性聚合物和无机纳米材料;所述碱性聚合物的主链包括芳基、哌啶酮基或咪唑酮基中的任意一种或至少两种的组合;所述碱性聚合物的侧链包括季铵基团。本发明所述阴离子交换复合膜稳定性好,离子交换容量高,氢氧离子电导率高且溶胀程度低,综合性能优异。

Description

一种阴离子交换复合膜及其制备方法和应用
技术领域
本发明涉及电池技术领域,尤其涉及一种阴离子交换复合膜及其制备方法和应用。
背景技术
碱性阴离子交换膜具有特殊的阴离子(OH-)转移通道,可适用于碱性燃料电池、碱性水电解器、二氧化碳还原装置,搭配低成本的非贵金属催化剂,极大提高燃料电池等装置在产业化方向应用的可能性。
CN102945968A公开了一种复合型聚环氧氯丙烷碱性聚合物膜电极及其制备方法,其公开的膜电极包含碱性阴离子交换膜、电极层,该碱性阴离子交换膜是通过卤原子与叔胺发生亲核取代反应,得到季胺化聚环氧氯丙烷,再与多孔聚四氟乙烯膜复合而成;该电极层包含氢电极和氧电极,该氢电极包含气体扩散层及喷涂在其上的氢电极催化层,该氧电极包含气体扩散层及喷涂在其上的氧电极催化层;该膜电极是按照氢电极、碱性阴离子交换膜、氧电极的组合顺序一体化成型形成;该气体扩散层采用碳材料为基体,添加疏水性聚合物形成。本发明所涉及的碱性膜电极,其碱性阴离子交换膜合成方法简单、离子传导率高,可选用成本较低的非铂基催化剂,适用于碱性阴离子交换膜燃料电池。
CN102702507A公开了一种强碱性聚芳醚离聚物及其制备方法和应用,其公开的强碱性聚芳醚离聚物由基于二(4,4’-羟基苯基)二苯基甲烷与具有Ar1、Ar2结构的含氯或者含氟芳香单体聚合而成的一类聚芳醚经氯甲基化,季铵盐化、碱化一系列功能化工艺得到。碱性阴离子交换膜由基于氯甲基化的聚芳醚溶液浇铸成膜经季铵盐化、碱化一系列功能化工艺得到。所得的碱性阴离子交换膜对甲醇具有良好的阻隔作用、物理化学性质良好,热稳定性高,在高温时有较好的导电率,克服了现有聚芳醚类阴离子交换膜性质不稳定,离子电导率低的特点,适用于燃料电池碱性离子交换膜,具有广阔的应用前景。
现有技术中虽然有许多关于碱性离子交换膜的研究,但是,目前碱性离子交换膜仍然存在多次干湿交替的拉伸强度差,吸水/脱水过程中尺寸稳定性变化大等问题,使膜机械性能降低而直接引起装置内阻增大、内短路等现象。
综上所述,开发一种稳定性好,电性能优异的阴离子交换复合膜至关重要。
发明内容
针对现有技术的不足,本发明的目的在于提供一种阴离子交换复合膜及其制备方法和应用,所述阴离子交换复合膜稳定性好,离子交换容量高,离子氢氧化电导率高且溶胀程度低,综合性能优异。
为达此目的,本发明采用以下技术方案:
第一方面,本发明提供一种阴离子交换复合膜,所述阴离子交换复合膜包括含有孔隙的基底以及设置于所述孔隙中的碱性聚合物和无机纳米材料;
所述碱性聚合物的主链包括芳基、哌啶酮基或咪唑酮基中的任意一种或至少两种的组合;
所述碱性聚合物的侧链包括季铵基团。
本发明所述阴离子交换复合膜将碱性聚合物和无机纳米材料设置于基底的孔隙内,所形成的阴离子交换复合膜中碱性聚合物和无机纳米材料分布均匀,传导率高,气体渗透性小,提升了阴离子交换复合膜离子交换容量和氢氧离子电导率,且降低了溶胀程度;本发明所述碱性聚合物的主链包括芳基、哌啶酮基或咪唑酮基中的任意一种或至少两种的组合,含有所述基团的碱性聚合物能提升阴离子交换复合膜的离子交换容量和氢氧离子电导率;本发明所述碱性聚合物包括季铵基团,所述季铵基团与特定的主链结构配合,进一步提升阴离子交换复合膜的离子交换容量和氢氧离子电导率。
优选地,所述碱性聚合物包括C7-C20(例如C7、C8、C9、C10、C12、C14、C16、C17、C18、C19等)的含芳基的烯烃和/或C7-C20(例如C7、C8、C9、C10、C12、C14、C16、C17、C18、C19等)的含芳基的炔烃聚合物。
所述“C7-C20”指的是主链碳原子个数。
优选地,所述C7-C20的含芳基的烯烃和/或C7-C20的含芳基的炔烃聚合物中不包括杂原子。
优选地,所述芳基中不包括杂原子。所述芳基中仅含碳原子和氢原子,不包括杂原子。
优选地,所述杂原子包括氧原子、硫原子或磷原子中的任意一种或至少两种的组合。
优选地,所述碱性化合物包括式Ⅰ和/或式Ⅱ所示聚合物;
Figure BDA0003208616590000031
Figure BDA0003208616590000041
所述n的值为100-6000,例如1000、2000、3000、4000、5000等。
优选地,所述碱性化合物的数均分子量为200000-300000g/mol,例如220000g/mol、240000g/mol、250000g/mol、260000g/mol、280000g/mol等。
优选地,所述含有孔隙的基底包括膨体聚四氟乙烯、无纺布、聚酯纤维、钢带、碳纤维、碳纸或碳布中的任意一种或至少两种的组合,其中典型但非限制性的组合包括:膨体聚四氟乙烯和无纺布的组合,纺布、聚酯纤维、钢带和碳纤维的组合,碳纤维、碳纸和碳布的组合等。
优选地,所述含有孔隙的基底的孔隙率为80%-90%,例如81%、82%、83%、84%、85%、86%、87%、88%、89%等。
本发明所述基底的孔隙率为80%-90%,该范围内的基底形成的阴离子交换复合膜碱性聚合物的填充量大,能进一步提升阴离子交换复合膜的离子交换容量、离子氢氧化电导率和稳定性,降低膜的溶胀程度。
优选地,所述含有孔隙的基底的孔径为0.1-0.45nm,例如0.2nm、0.3nm、0.4nm等。
优选地,所述含有孔隙的基底的厚度为5-50μm,例如10μm、15μm、2μm、25μm、30μm、35μm、40μm、45μm等。
优选地,所述无机纳米材料包括二氧化硅、二氧化钛、二氧化锆、二磷化锆、氧化铈、三氧化二铁、三氧化钨、三氧化钼、石墨烯或碳量子点中的任意一种或至少两种的组合,其中典型但非限制性的组合包括:二氧化硅和二氧化钛的组合,氧化锆、二磷化锆、氧化铈和三氧化二铁的组合,三氧化二铁、三氧化钨、三氧化钼和石墨烯的组合等,优选氧化铈和/或三氧化二铁。
优选地,以所述含有孔隙的基底的质量为100份计,所述碱性聚合物的质量份数为5-99份,例如10份、20份、30份、40份、50份、60份、70份、80份、90份、95份等。
优选地,以所述含有孔隙的基底的质量份数的质量为100份计,所述无机纳米材料的质量份数为1-3份,例如1.2份、1.4份、1.6份、1.8份、2份、2.2份、2.4份、2.6份、2.8份等。
第二方面,本发明提供一种第一方面所述的阴离子交换复合膜的制备方法,所述制备方法包括如下步骤:
将碱性聚合物和无机纳米材料的混合液浇注于含有孔隙的基底中,干燥,得到所述阴离子交换复合膜。
优选地,所述浇注前还包括将含有孔隙的基底进行活化处理。
优选地,所述活化处理包括等离子体活化、激光处理、电解还原处理、表面活性剂处理或含有亲水官能团修饰所述基底表面中的任意一种或至少两种的组合。
优选地,所述碱性聚合物的制备方法包括如下步骤:将含有芳基、哌啶酮基或咪唑酮基中的任意一种或至少两种的组合的单体聚合,再进行季铵化反应和阴离子交换反应,得到所述碱性聚合物。
优选地,所述季铵化反应的取代度为80%-100%,例如82%、84%、86%、88%、90%、92%、94%、96%、98%等。所述季铵化反应的取代度指的是功能化程度即离子交换容量(IEC)。
优选地,所述碱性聚合物的溶解方式包括在剪切下进行恒温水浴或油浴。
优选地,所述溶解的温度为80-120℃,例如85℃、90℃、95℃、100℃、105℃、110℃、115℃等。
优选地,所述溶解的时间为2-12h,例如4h、6h、8h、10h等。
优选地,所述剪切的速率为150-1000rpm,例如200rpm、300rpm、400rpm、500rpm、600rpm、700rpm、800rpm、900rpm等。
优选地,所述无机纳米材料在混合液中的质量百分数为1%-50%,例如5%、10%、15%、20%、25%、30%、35%、40%、45%等。
优选地,所述混合液中,溶剂的添加量是碱性聚合物质量的3-5倍,例如3.2倍、3.4倍、3.6倍、3.8倍、4倍、4.2倍、4.4倍、4.6倍、4.8倍等。
优选地,所述混合液的动力粘度为500-10000cp,例如1000cp、2000cp、3000cp、4000cp、5000cp、6000cp、7000cp、8000cp、9000cp等。
优选地,所述混合液的固含量为10%-25%,例如12%、14%、16%、18%、20%、22%、24%等。
优选地,所述混合液中的溶剂为第一溶剂。
所述第一溶剂包括极性溶剂。
优选地,所述极性溶剂包括二甲基亚砜、N-甲基吡咯烷酮、乙醇、乙二醇、甲醇或水中的任意一种或至少两种的组合,其中典型但非限制性的组合包括:二甲基亚砜和N-甲基吡咯烷酮的组合,乙醇、乙二醇和甲醇的组合,乙醇、乙二醇、甲醇和水的组合等。
优选地,所述浇注的方式包括真空过滤、真空吸附、浸渍、热压、正压过滤、喷涂、刮涂或离心中的任意一种或至少两种的组合,其中典型但非限制性的组合包括:真空过滤和真空吸附的组合,浸渍、热压和正压过滤的组合,浸渍、热压、正压过滤、喷涂、刮涂和离心的组合等,优选正压过滤。
优选地,所述正压过滤的压力为0.2-0.4MPa,例如0.22MPa、0.24MPa、0.26MPa、0.28MPa、0.3MPa、0.32MPa、0.34MPa、0.36MPa、0.38MPa等。
优选地,所述浇注前还包括前处理和后处理。
优选地,所述前处理包括将含有孔隙的基底在第二溶剂中浸泡1-60s,例如5s、10s、15s、20s、25s、30s、35s、40s、45s、50s、55s等。
优选地,所述后处理包括将浇注后的含有孔隙的基底在第二溶剂中正压过滤洗涤。
优选地,所述洗涤的次数为2-3次,例如2次、3次等。
优选地,所述第二溶剂包括甲醇、乙醇、乙二醇、异丙醇或丙醇中的任意一种或至少两种的组合,其中典型但非限制性的组合包括:甲醇、乙醇和乙二醇的组合,异丙醇和丙醇的组合,甲醇、乙醇、乙二醇和异丙醇的组合等。
作为优选的技术方案,所述制备方法包括如下步骤:
(1)将含有芳基、哌啶酮基或咪唑酮基中的任意一种或至少两种的组合的单体聚合,再进行季铵化和阴离子交换反应,得到所述碱性聚合物;
将碱性高分子聚合物在第一溶剂中溶解,再与无机纳米材料混合,得到混合液;
(2)将含有孔隙的基底进行活化处理,再将活化处理后的含有孔隙的基底在第二溶剂中浸泡1-60s,再将步骤(1)所得混合液浇注于所述基底上;
(3)将步骤(2)所得基底在第二溶剂中正压过滤洗涤2-3次,干燥,得到所述阴离子交换复合膜。
第三方面,本发明提供一种第一方面所述的阴离子交换复合膜在碱性燃料电池、碱性水电解器或二氧化碳还原装置中的应用。
相对于现有技术,本发明具有以下有益效果:
本发明所述阴离子交换复合膜在80℃下1mol/L的氢氧化钠溶液中的稳定性在700h以上,离子交换容量在2.5±0.5mmol/g以上,离子氢氧化电导率在40mS/cm以上,溶胀程度在10%以下,本发明所述阴离子交换复合膜稳定性好,离子交换容量高,离子氢氧化电导率高且溶胀程度低,综合性能优异。
附图说明
图1是实施例1所述含有孔隙的基底的截面扫描电镜图;
图2是实施例1所述含有孔隙的基底的表面扫描电镜图;
图3是实施例1所述阴离子交换复合膜的截面扫描电镜图;
图4是实施例1所述阴离子交换复合膜的表面扫描电镜图;
图5是实施例1所述阴离子交换复合膜与均相膜的溶胀曲线的对比图;
图6是实施例1所述碱性聚合物的核磁表征结果图;
图7是实施例3所述碱性聚合物的核磁表征结果图。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
本实施例提供一种阴离子交换复合膜,所述阴离子交换复合膜包括含有孔隙的基底100份以及设置于所述孔隙中的碱性聚合物50份和无机纳米材料2份;
所述基底为无纺布,孔隙率为85%,孔径为0.3nm,厚度为30μm;
所述碱性聚合物的主链包括三联苯基及哌啶酮,结构式如下:
Figure BDA0003208616590000091
其中,n为670。
核磁表征结果如图6所示。
所述无机纳米材料为质量比为1:1的氧化铈和三氧化二铁
上述阴离子交换复合膜的制备方法包括如下步骤:
(1)将含有芳基(三联苯)的单体与哌啶酮聚合,再进行季铵化和阴离子交换反应,得到所述碱性聚合物;
将碱性高分子聚合物与质量为其4倍的第一溶剂(质量比为1:2的二甲基亚砜和N-甲基吡咯烷酮)混合,然后通过恒温水浴在90℃和剪切速率为500rpm的条件下溶解6h,再与无机纳米材料混合,得到混合液,所述混合液的动力粘度为5000c,固含量为15%;
(2)将含有孔隙的基底进行活化处理(等离子体活化),再将活化处理后的含有孔隙的基底在第二溶剂(质量比为2:1的异丙醇和丙醇)中浸泡30s,再将步骤(1)所得混合液以压力为0.3MPa正压过滤浇注于所述基底上;
(3)将步骤(2)所得基底在第二溶剂(甲醇)中正压过滤洗涤2次,干燥,得到所述阴离子交换复合膜。
实施例2
本实施例提供一种阴离子交换复合膜,所述阴离子交换复合膜包括含有孔隙的基底100份以及设置于所述孔隙中的碱性聚合物5份和无机纳米材料1份;
所述基底为膨体聚四氟乙烯,孔隙率为80%,孔径为0.1nm,厚度为5μm,购于厦门施柏德,名称为多孔PTFE膜;
所述碱性聚合物的主链同实施例1。
所述无机纳米材料为质量比为1:1的二氧化硅和石墨烯。
上述阴离子交换复合膜的制备方法包括如下步骤:
(1)将含有芳基的单体与哌啶酮单体聚合,再进行季铵化和阴离子交换反应,得到所述碱性聚合物;
将碱性高分子聚合物与质量为其3倍的第一溶剂(质量比为1:1的甲醇或水)混合,然后通过油浴在80℃和剪切的速率为150rpm的条件下溶解2h,再与无机纳米材料混合,得到混合液,所述混合液的动力粘度为500c,固含量为10%;
(2)将含有孔隙的基底进行活化处理(激光处理后进行电解还原处理),再将活化处理后的含有孔隙的基底在第二溶剂(乙二醇)中浸泡30s,再将步骤(1)所得混合液浸渍于所述基底上;
(3)将步骤(2)所得基底在第二溶剂(乙醇)中正压过滤洗涤3次,干燥,得到所述阴离子交换复合膜。
实施例3
本实施例提供一种阴离子交换复合膜,所述阴离子交换复合膜包括含有孔隙的基底100份以及设置于所述孔隙中的碱性聚合物99份和无机纳米材料3份;
所述基底为层叠设置的钢带、碳纤维和碳纸,孔隙率为90%,孔径为0.45nm,厚度为50μm;
所述碱性聚合物的主链包括三联苯基和咪唑酮基,结构式如下:
Figure BDA0003208616590000111
其中,n为650。
核磁表征结果为如图7所示。
所述无机纳米材料为三氧化钼。
上述阴离子交换复合膜的制备方法包括如下步骤:
(1)将含有芳基的单体和咪唑酮单体聚合,再进行季铵化和阴离子交换反应,得到所述碱性聚合物;
将碱性高分子聚合物与质量为其5倍的第一溶剂(乙二醇)混合,然后通过油浴在120℃和剪切的速率为1000rpm的条件下溶解12h,再与无机纳米材料混合,得到混合液,所述混合液的动力粘度为10000c,固含量为25%;
(2)将含有孔隙的基底进行活化处理(表面活性剂处理),再将活化处理后的含有孔隙的基底在第二溶剂(乙二醇)中浸泡60s,再将步骤(1)所得混合液喷涂于所述基底上;
(3)将步骤(2)所得基底在第二溶剂(乙醇)中正压过滤洗涤3次,干燥,得到所述阴离子交换复合膜。
实施例4-7
实施例4-7与实施例1的区别在于含有孔隙的基底的孔隙率分别为80%(实施例4)、90%(实施例5)、75%(实施例6)和95%(实施例7),其余均与实施例1相同。
对比例1
本对比例与实施例1的区别在于将所述碱性聚合物替换为等质量的季铵化的聚环氧氯丙烷(购于阿拉丁,牌号为E108184-2.5L),其余均与实施例1相同。
对比例2
本对比例与实施例1的区别在于将所述碱性聚合物未经季铵化,其余均与实施例1相同。
性能测试
将实施例1-7和对比例1-2所述阴离子交换复合膜进行如下测试:
(1)形貌表征:扫描电镜;
(2)稳定性:将所述置于80℃下1mol/L的氢氧化钠溶液中,测试其维持性能稳定的时间;
(3)离子交换容量:减量法称取两份样品置于干燥的具塞三角瓶中,用移液管吸取盐酸标准溶液加入到含样品的三角瓶中,浸泡2h后,取出浸泡液并滴加酚酞指示液后用0.1mol/L氢氧化钠进行酸碱滴定至反应终点。
测试标准为:GB 5760-86,详见下式:
E1=(100×N1-4×N2×V1)/m1
其中:E1——阴离子交换树脂湿基全交换容量,meq/g;
N1——盐酸标准溶液的浓度,N;
N2——氢氧化钠标准溶液的浓度,N;
100——盐酸标准溶液的用量,mL;
V1——滴定浸泡液消耗的氢氧化钠标准溶液的体积,mL;
m1——树脂样品的质量,g。
(4)膜电导率:电导率测试仪测试
(5)溶胀程度:将所得的复合膜裁剪成2×2cm2大小后,浸泡于80℃的纯水中保持2h后,取出溶胀后的膜,用无尘纸吸收表面的水后测试复合膜的尺寸,再将该膜用平整的钢板夹住放入烘箱烘干后,取出测量尺寸,最终的尺寸变化率表示为溶胀程度。
测试结果汇总于表1和图1-5中。
表1
Figure BDA0003208616590000131
分析表1数据可知,本发明所述阴离子交换复合膜在80℃下1mol/L的氢氧化钠溶液中的稳定性在700h以上,离子交换容量在2.5±0.5mmol/g以上,离子氢氧化电导率在40mS/cm以上,溶胀程度在10%以下,本发明所述阴离子交换复合膜稳定性好,离子交换容量高,离子氢氧化电导率高且溶胀程度低,综合性能优异。
分析对比例1与实施例1可知,对比例1性能不如实施例1,证明主链选择本发明所述基团形成的阴离子交换复合膜性能更佳。
分析对比例2与实施例1可知,对比例2性能不如实施例1,证明碱性聚合物含有季铵根形成的阴离子交换复合膜性能更佳。
分析实施例4-7可知,实施例6-7性能不如实施例4-5,实施例4-5兼具较高的稳定性、离子交换容量、氢氧离子电导率和较低的溶胀率,基底的孔隙率过高,溶胀率上升明显,孔隙率过低,稳定性和氢氧离子电导率较差,证明基底的孔隙率在80%-90%范围内形成的阴离子交换复合膜性能更佳。
分析图1与图3可知,图3相较于图1,侧切片所得的SEM图显示,基底径向被碱性聚合物及无机纳米材料完全填充。
分析图2与图4可知,图4相较于图2,正面所得的SEM图显示,基底表面经填充复合后表面光滑。
分析图5可知,在不同测试温度下,均相膜的溶胀率明显高于本发明所述阴离子交换复合膜的溶胀率。所述均相膜与实施例1中阴离子交换复合膜的区别在于只含有碱性聚合物,其余均与实施例1相同。
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (30)

1.一种阴离子交换复合膜,其特征在于,所述阴离子交换复合膜包括含有孔隙的基底以及设置于所述孔隙中的碱性聚合物和无机纳米材料;
所述碱性聚合物的主链包括芳基、哌啶酮基或咪唑酮基中的任意一种或至少两种的组合;
所述碱性聚合物的侧链包括季铵基团;
所述碱性聚合物包括式Ⅱ所示聚合物;
Figure FDA0004071567670000011
所述n的值为100-6000;
所述含有孔隙的基底的孔隙率为80%-90%;
以所述含有孔隙的基底的质量为100份计,所述无机纳米材料的质量份数为1-3份;
以所述含有孔隙的基底的质量为100份计,所述碱性聚合物的质量份数为5-99份。
2.根据权利要求1所述的阴离子交换复合膜,其特征在于,所述碱性聚合物的数均分子量为200000-300000g/mol。
3.根据权利要求1所述的阴离子交换复合膜,其特征在于,所述含有孔隙的基底包括膨体聚四氟乙烯、无纺布、聚酯纤维、钢带、碳纤维、碳纸或碳布中的任意一种或至少两种的组合。
4.根据权利要求1所述的阴离子交换复合膜,其特征在于,所述含有孔隙的基底的孔径为0.1-0.45nm。
5.根据权利要求1所述的阴离子交换复合膜,其特征在于,所述含有孔隙的基底的厚度为5-50μm。
6.根据权利要求1所述的阴离子交换复合膜,其特征在于,所述无机纳米材料包括二氧化硅、二氧化钛、二氧化锆、二磷化锆、氧化铈、三氧化二铁、三氧化钨、三氧化钼、石墨烯或碳量子点中的任意一种或至少两种的组合。
7.一种权利要求1-6任一项所述的阴离子交换复合膜的制备方法,其特征在于,所述制备方法包括如下步骤:
将碱性聚合物和无机纳米材料的混合液浇注于含有孔隙的基底中,干燥,得到所述阴离子交换复合膜。
8.根据权利要求7所述的制备方法,其特征在于,所述浇注前还包括将含有孔隙的基底进行活化处理。
9.根据权利要求8所述的制备方法,其特征在于,所述活化处理包括等离子体活化、激光处理、电解还原处理、表面活性剂处理或含有亲水官能团修饰所述基底表面中的任意一种或至少两种的组合。
10.根据权利要求7所述的制备方法,其特征在于,所述碱性聚合物的制备方法包括如下步骤:将含有芳基、哌啶酮基或咪唑酮基中的任意一种或至少两种的组合的单体聚合,再进行季铵化反应和阴离子交换反应,得到所述碱性聚合物。
11.根据权利要求10所述的制备方法,其特征在于,所述季铵化反应的取代度为80%-100%。
12.根据权利要求7所述的制备方法,其特征在于,所述碱性聚合物的溶解方式包括在剪切下进行恒温水浴或油浴。
13.根据权利要求12所述的制备方法,其特征在于,所述溶解的温度为80-120℃。
14.根据权利要求12所述的制备方法,其特征在于,所述溶解的时间为2-12h。
15.根据权利要求12所述的制备方法,其特征在于,所述剪切的速率为150-1000rpm。
16.根据权利要求7所述的制备方法,其特征在于,所述无机纳米材料在混合液中的质量百分数为1%-50%。
17.根据权利要求7所述的制备方法,其特征在于,所述混合液中,溶剂的添加量是碱性聚合物质量的3-5倍。
18.根据权利要求7所述的制备方法,其特征在于,所述混合液的动力粘度为500-10000cp。
19.根据权利要求7所述的制备方法,其特征在于,所述混合液的固含量为10%-25%。
20.根据权利要求7所述的制备方法,其特征在于,所述混合液中的溶剂为第一溶剂;
所述第一溶剂包括极性溶剂。
21.根据权利要求20所述的制备方法,其特征在于,所述极性溶剂包括二甲基亚砜、N-甲基吡咯烷酮、乙醇、乙二醇、甲醇或水中的任意一种或至少两种的组合。
22.根据权利要求7所述的制备方法,其特征在于,所述浇注的方式包括真空过滤、真空吸附、浸渍、热压、正压过滤、喷涂、刮涂或离心中的任意一种或至少两种的组合。
23.根据权利要求22所述的制备方法,其特征在于,所述正压过滤的压力为0.2-0.4MPa。
24.根据权利要求7所述的制备方法,其特征在于,所述浇注前还包括前处理和后处理。
25.根据权利要求24所述的制备方法,其特征在于,所述前处理包括将含有孔隙的基底在第二溶剂中浸泡1-60s。
26.根据权利要求24所述的制备方法,其特征在于,所述后处理包括将浇注后的含有孔隙的基底在第二溶剂中正压过滤洗涤。
27.根据权利要求26所述的制备方法,其特征在于,所述洗涤的次数为2-3次。
28.根据权利要求26所述的制备方法,其特征在于,所述第二溶剂包括甲醇、乙醇、乙二醇、异丙醇或丙醇中的任意一种或至少两种的组合。
29.根据权利要求7所述的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)将含有芳基、哌啶酮基或咪唑酮基中的任意一种或至少两种的组合的单体聚合,再进行季铵化和阴离子交换反应,得到所述碱性聚合物;
将碱性高分子聚合物在第一溶剂中溶解,再与无机纳米材料混合,得到混合液;
(2)将含有孔隙的基底进行活化处理,再将活化处理后的含有孔隙的基底在第二溶剂中浸泡1-60s,再将步骤(1)所得混合液浇注于所述基底上;
(3)将步骤(2)所得基底在第二溶剂中正压过滤洗涤2-3次,干燥,得到所述阴离子交换复合膜。
30.一种权利要求1-6任一项所述的阴离子交换复合膜在碱性燃料电池、碱性水电解器或二氧化碳还原装置中的应用。
CN202110924206.3A 2021-08-12 2021-08-12 一种阴离子交换复合膜及其制备方法和应用 Active CN113621170B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110924206.3A CN113621170B (zh) 2021-08-12 2021-08-12 一种阴离子交换复合膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110924206.3A CN113621170B (zh) 2021-08-12 2021-08-12 一种阴离子交换复合膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113621170A CN113621170A (zh) 2021-11-09
CN113621170B true CN113621170B (zh) 2023-03-31

Family

ID=78384897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110924206.3A Active CN113621170B (zh) 2021-08-12 2021-08-12 一种阴离子交换复合膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113621170B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114044884B (zh) * 2021-11-18 2023-05-23 常州大学 一种基于聚芴的高温磷酸质子交换膜及制备方法
CN114865032A (zh) * 2022-05-05 2022-08-05 淮阴师范学院 一种碳量子点改性的阴离子交换膜及其制备方法和应用
CN117802532A (zh) * 2023-12-25 2024-04-02 碳谐科技(上海)有限公司 复合隔膜及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014012188A1 (en) * 2012-07-20 2014-01-23 Zhongwei Chen Highly ion-conductive nano-engineered porous electrolytic composite membrane for alkaline electrochemical energy systems
CN104835932A (zh) * 2015-04-28 2015-08-12 大连理工大学 一种有机无机复合膜的制备及其在碱性燃料电池中的应用
CN111040137B (zh) * 2019-12-27 2022-09-13 惠州市亿纬新能源研究院 一种阴离子交换聚合物及其制备方法和应用
CN112608503B (zh) * 2020-11-23 2021-10-15 大连理工大学 一种用于碱性电解池的哌啶型阴离子交换膜及其制备方法

Also Published As

Publication number Publication date
CN113621170A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
CN113621170B (zh) 一种阴离子交换复合膜及其制备方法和应用
Shaari et al. Performance of crosslinked sodium alginate/sulfonated graphene oxide as polymer electrolyte membrane in DMFC application: RSM optimization approach
Gouda et al. Poly (vinyl alcohol)-based crosslinked ternary polymer blend doped with sulfonated graphene oxide as a sustainable composite membrane for direct borohydride fuel cells
Li et al. Polyelectrolyte composite membranes of polybenzimidazole and crosslinked polybenzimidazole-polybenzoxazine electrospun nanofibers for proton exchange membrane fuel cells
Xu et al. Solution blown sulfonated poly (ether ether ketone) nanofiber–Nafion composite membranes for proton exchange membrane fuel cells
Shabani et al. Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications
Bagheri et al. Sulfonated poly (etheretherketone) and sulfonated polyvinylidene fluoride-co-hexafluoropropylene based blend proton exchange membranes for direct methanol fuel cell applications
Zhang et al. Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application
Di et al. Novel composite proton-exchange membrane based on proton-conductive glass powders and sulfonated poly (ether ether ketone)
Silva et al. Zirconium oxide hybrid membranes for direct methanol fuel cells—Evaluation of transport properties
Wang et al. Proton-conducting amino acid-modified chitosan nanofibers for nanocomposite proton exchange membranes
CN109755613B (zh) 一种三维骨架与磺化芳香族聚合物复合质子交换膜及其制备方法
Tang et al. High-temperature proton exchange membranes from ionic liquid absorbed/doped superabsorbents
Vijayakumar et al. A quaternized mesoporous silica/polysulfone composite membrane for an efficient alkaline fuel cell application
Barati et al. High temperature proton exchange porous membranes based on polybenzimidazole/lignosulfonate blends: Preparation, morphology and physical and proton conductivity properties
Seol et al. SiO2 ceramic nanoporous substrate-reinforced sulfonated poly (arylene ether sulfone) composite membranes for proton exchange membrane fuel cells
Sun et al. Non-planar backbone structure polybenzimidazole membranes with excellent solubility, high proton conductivity, and better anti-oxidative for HT-PEMFCs
Liu et al. Novel quaternized mesoporous silica nanoparticle modified polysulfone-based composite anion exchange membranes for alkaline fuel cells
Wang et al. Solution‐blown SPEEK/POSS nanofiber–nafion hybrid composite membranes for direct methanol fuel cells
Li et al. Development of a crosslinked pore-filling membrane with an extremely low swelling ratio and methanol crossover for direct methanol fuel cells
Reyes-Rodriguez et al. Conductivity of composite membrane-based poly (ether-ether-ketone) sulfonated (SPEEK) nanofiber mats of varying thickness
Zheng et al. Preparation of covalent-ionically cross-linked UiO-66-NH2/sulfonated aromatic composite proton exchange membranes with excellent performance
Wang et al. Novel proton-conductive nanochannel membranes with modified SiO2 nanospheres for direct methanol fuel cells
Wu et al. Phosphoric acid-doped Gemini quaternary ammonium-grafted SPEEK membranes with superhigh proton conductivity and mechanical strength for direct methanol fuel cells
Wang et al. Preparation and characterization of a semi-interpenetrating network alkaline anion exchange membrane

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240124

Address after: 516000 Factory Building at Plot ZKD-005-02, Sanhe Village, Tonghu Town, Zhongkai High tech Zone, Huizhou City, Guangdong Province

Patentee after: Huizhou Yiwei Hydrogen Energy Co.,Ltd.

Country or region after: China

Address before: 516006 Room 401, 4th floor, R & D building, No. 36, Huifeng Road, Zhongkai high tech Zone, Huizhou City, Guangdong Province

Patentee before: HUIZHOU YIWEI NEW ENERGY Research Institute

Country or region before: China