CN113611543A - 一种碳纳米管掺杂的壳聚糖基活性炭材料、电容去离子电极及制备方法 - Google Patents

一种碳纳米管掺杂的壳聚糖基活性炭材料、电容去离子电极及制备方法 Download PDF

Info

Publication number
CN113611543A
CN113611543A CN202110932344.6A CN202110932344A CN113611543A CN 113611543 A CN113611543 A CN 113611543A CN 202110932344 A CN202110932344 A CN 202110932344A CN 113611543 A CN113611543 A CN 113611543A
Authority
CN
China
Prior art keywords
chitosan
carbon material
activated carbon
solution
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110932344.6A
Other languages
English (en)
Inventor
王海涛
李铁龙
展思辉
孙文爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202110932344.6A priority Critical patent/CN113611543A/zh
Publication of CN113611543A publication Critical patent/CN113611543A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种碳纳米管掺杂的壳聚糖基活性炭材料、电容去离子电极及制备方法。所述活性炭材料的制备方法包括如下步骤:将壳聚糖溶于冰醋酸水溶液中;再加入碳纳米管,分散均匀后,添加钾盐溶液,搅拌均匀后再加入戊二醛水溶液,静置得到水凝胶,冷冻干燥后得到气凝胶;干燥后的气凝胶在惰性气氛下,进行高温碳化处理,水洗至中性,干燥后即得。碳管的添加可以促进碳材料介孔的生成,有助于增强壳聚糖基碳材料的电容大小,提高材料的电化学性能,从而促进电容脱盐性能的提高。本发明工艺简单,操作方便,且壳聚糖氮元素含量高,廉价易得,具有良好的应用前景和经济效益。

Description

一种碳纳米管掺杂的壳聚糖基活性炭材料、电容去离子电极 及制备方法
技术领域
本发明涉及材料制备技术领域,具体是一种碳纳米管掺杂的壳聚糖基活性炭材料、电容去离子电极及制备方法。
背景技术
电容去离子(CDI)因其具有成本低,能耗低、不产生二次污染等特点,是一种有前途的低盐度水淡化工艺。CDI技术基于双电层理论,在两个电极之间加恒定电压形成静电场,溶液中的离子流经时受到电场力和浓度梯度的作用分别向两电极迁移,吸附在电极材料表面形成双电层,达到去除离子的目的;当吸附的离子接近饱和时,去除电极间施加的电压或施加反向电压,离子脱附实现电极再生。电极材料是脱盐技术的核心,其电容大小直接影响脱盐性能,良好的电极材料应该具有较大的比表面积、合理的孔径分布和优异的导电性能。比表面积越大,可提供的离子吸附位点就多,孔径处于2nm左右,有利于离子扩散和迁移,脱盐性能最佳。由于碳材料具有多孔结构、较高的比表面积和良好的稳定性,像活性炭,石墨烯,碳纳米管,活性炭布和碳气凝胶等已被用于CDI电极材料。由于单独碳材料脱盐能力有限,因此对其进行掺杂或者改性成为电容脱盐材料的一个主要研究方向。
壳聚糖(chitosan)是由自然界广泛存在的几丁质,经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。可以从动物的皮、骨、肌腱等结缔组织中提取得到,其含氮量高达16%,并且具有环境友好、价格低廉等优点。壳聚糖被广泛用作制备N掺杂碳材料的前驱体,但是其得到的活性炭材料,孔径主要集中在微孔,用于电容脱盐效果欠佳。
发明内容
本发明为了解决上述技术问题,提供一种碳纳米管掺杂的壳聚糖基活性炭材料、电容去离子电极及制备方法。
第一方面,本发明提供一种碳纳米管掺杂的壳聚糖基活性炭材料的制备方法,是采用以下技术方案实现的。
一种碳纳米管掺杂的壳聚糖基活性炭材料的制备方法,包括以下步骤:
S1.将壳聚糖加入到冰醋酸水溶液中,得到浓度为1~3wt%的溶液;
S2.将碳纳米管加入到步骤S1得到的溶液中,并使碳纳米管分散均匀;所述壳聚糖与碳纳米管的质量比为(5-60:1);
S3.向步骤S2得到的溶液中加入浓度为5~40wt%的钾盐溶液,搅拌均匀;
S4.向步骤S3得到的溶液中加入戊二醛水溶液,搅拌后静置得到水凝胶,再将水凝胶冷冻并干燥,得到气凝胶;
S5.将步骤S4得到的气凝胶在惰性气氛中,600~900℃下高温碳化处理2h;反应结束后洗涤材料并干燥,得到碳纳米管掺杂的壳聚糖基多孔活性炭材料。
进一步的,步骤S1中,冰醋酸水溶液的浓度为1~3wt%;优选的,冰醋酸水溶液的浓度为2wt%。
进一步的,步骤S1中,将壳聚糖加入到冰醋酸水溶液中,得到浓度为1.5wt%的溶液。
进一步的,步骤S2中,碳纳米管选自单壁、双壁或者多壁碳纳米管。所述碳纳米管的长度不限。
进一步的,步骤S2中,碳纳米管的分散方法为:球磨、搅拌或超声;优选的,步骤S2中,碳纳米管的分散方法为球磨。
进一步的,步骤S3中,钾盐溶液选自碳酸钾溶液、醋酸钾溶液或柠檬酸钾溶液。
优选的,步骤S3中,加入20wt%的碳酸钾或者柠檬酸钾溶液。更优选的,步骤S3中,加入20wt%的柠檬酸钾溶液。
进一步的,步骤S4中,加入25wt%的戊二醛水溶液。
进一步的,钾盐溶液与戊二醛水溶液的体积比为(5-20):1。
进一步的,步骤S5中,碳化温度为800℃。
进一步的,步骤S5中,碳化处理后将洗涤后的材料采用真空干燥的方式进行干燥,真空干燥时间为12~24h,温度为60~90℃。
第二方面,本发明提供一种碳纳米管掺杂的壳聚糖基活性炭材料,是采用以下技术方案实现的。
一种上述制备方法制备得到的碳纳米管掺杂的壳聚糖基活性炭材料。
第三方面,本发明提供一种电容去离子电极,是采用以下技术方案实现的。
一种电容去离子电极,包括上述碳纳米管掺杂的壳聚糖基活性炭材料。
第四方面,本发明提供一种电容去离子电极的制备方法,是采用以下技术方案实现的。
一种上述电容去离子电极的制备方法,包括以下步骤:将上述活性碳材料、乙炔黑和粘结剂进行混合研磨,将制备得到的浆料涂覆于石墨纸上,真空干燥,即得到电容去离子电极。
进一步的,活性碳材料、乙炔黑和粘结剂的质量比为8:1:1。
进一步的,所述粘结剂为PVDF的NMP溶液。
进一步的,真空干燥烘干时间为24h,温度为60~80℃。
本发明具有如下有益效果。
本申请碳管掺杂可提高壳聚糖的机械强度和电化学性能,更重要的是,碳纳米管具有一定的催化作用,在壳聚糖碳化过程中能促进介孔的生成,使其在电容去离子方面具有良好的性能。本申请制备工艺简单,制备的复合材料没有副产物等问题,与纯壳聚糖(CS)相比,其作为电极有更高效的电容去离子能力,具有很好的应用前景。
附图说明
图1是本发明碳材料的透射电镜图;
图2是本发明碳材料的N2吸/脱附曲线图;
图3是本发明碳材料的脱盐性能图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
除非特别说明,以下实施例中使用的试剂和仪器均为市售可得产品。
实施例1
一种碳纳米管掺杂的壳聚糖基活性炭材料的制备方法,包括以下步骤:
(1)溶液配置:在100mL的烧杯,配置2wt%的冰醋酸溶液,体积为50mL;取0.5g壳聚糖,溶解到上述乙酸溶液中制成质量分数为1wt%壳聚糖水溶液;取20g柠檬酸钾溶于80g纯水中,配成质量分数为20%的柠檬酸钾水溶液;
(2)称取0.05g碳纳米管,加入上述溶液中,超声处理形成均一溶液(CNTs与CS质量比分别为1:10);
(3)向溶液中分别加入2.5mL柠檬酸钾溶液,并剧烈搅拌;
(4)向溶液中加入240μL质量分数为25%的戊二醛水溶液,混合均匀后静置24h形成水凝胶;
(5)将离心管瓶盖拧紧,放入盛有液氮的容器中,将水凝胶迅速冷冻,将冷冻后的水凝胶放到冷冻干燥机中干燥48h,形成气凝胶;
(6)将上述干燥后的气凝胶材料放入管式炉中,在N2气氛中800℃热解2h;
(7)用大量蒸馏水洗涤除碳化后的材料,去可溶性残留物,60℃真空干燥24h,得到碳纳米管掺杂的壳聚糖基多孔活性炭材料。
实施例2
一种电容去离子电极的制备方法,包括以下步骤:
将实施例1得到的活性炭材料、乙炔黑和粘结剂(PVDF的5%NMF溶液)以8:1:1质量比涂覆于烘干石墨片上,80℃真空干燥24h,即得到电容去离子电极。
对比例1
采用上述步骤制备由壳聚糖碳化的活性炭材料,不添加碳纳米管。
性能检测
1.将本申请制备材料进行TEM和BET表征;
2.电化学和电容去离子性能测试具体步骤如下:
脱盐性能测试采用自组装的对称CDI组件,将一对电极用无纺布分隔,电解液为不同浓度NaCl溶液(1M,0,5M,0.1M,0.05M)。在脱盐实验中,用离子电导仪(DDSJ-308F)每隔6s连续测量溶液电导率。根据电导率的下降量和活性材料的质量,初始溶液的浓度计算吸附量。
材料的TEM如图1所示,碳纳米管均匀的分散在活性炭片材料中。N2吸/脱附结果如图2和表1所示,添加碳管后,尽管材料的比表面积有所下降,但是材料的孔容明显增加,孔径分布显示介孔孔容明显增加,有利于离子吸脱附能力的提高和电容去离子性能的提高。材料的脱盐性能如图3所示,电容去离子性能测试显示,相同条件下,掺杂碳纳米管的材料,其脱盐性能为13.25mg/g,明显高于未掺杂材料的9.32mg/g。
表1材料的BET表征结果
Figure BDA0003211557630000051
综上所述,本发明的内容并不局限在上述的实施例中,相同领域内的有识之士可以在本发明的技术指导思想之内可以轻易提出其他的实施例,但这种实施例都包括在本发明的范围之内。

Claims (10)

1.一种碳纳米管掺杂的壳聚糖基活性炭材料的制备方法,其特征在于,包括以下步骤:
S1.将壳聚糖加入到冰醋酸水溶液中,得到浓度为1~3wt%的溶液;
S2.将碳纳米管加入到步骤S1得到的溶液中,并使碳纳米管分散均匀;所述壳聚糖与碳纳米管的质量比为(5-60:1);
S3.向步骤S2得到的溶液中加入浓度为5~40wt%的钾盐溶液,搅拌均匀;
S4.向步骤S3得到的溶液中加入戊二醛水溶液,搅拌后静置得到水凝胶,再将水凝胶冷冻并干燥,得到气凝胶;
S5.将步骤S4得到的气凝胶在惰性气氛中,600~900℃下高温碳化处理2h;反应结束后洗涤材料并干燥,得到碳纳米管掺杂的壳聚糖基多孔活性炭材料。
2.根据权利要求1所述的一种碳纳米管掺杂的壳聚糖基活性炭材料的制备方法,其特征在于,步骤S1中,冰醋酸水溶液的浓度为1~3wt%。
3.根据权利要求1所述的一种碳纳米管掺杂的壳聚糖基活性炭材料的制备方法,其特征在于,步骤S2中,碳纳米管选自单壁、双壁或者多壁碳纳米管。
4.根据权利要求1所述的一种碳纳米管掺杂的壳聚糖基活性炭材料的制备方法,其特征在于,步骤S2中,碳纳米管的分散方法为:球磨、搅拌或超声。
5.根据权利要求1所述的一种碳纳米管掺杂的壳聚糖基活性炭材料的制备方法,其特征在于,步骤S3中,钾盐溶液选自碳酸钾溶液、醋酸钾溶液或柠檬酸钾溶液。
6.根据权利要求1所述的一种碳纳米管掺杂的壳聚糖基活性炭材料的制备方法,其特征在于,步骤S5中,碳化处理后将洗涤后的材料采用真空干燥的方式进行干燥,真空干燥时间为12~24h,温度为60~90℃。
7.一种权利要求1-6任一所述制备方法制备得到的碳纳米管掺杂的壳聚糖基活性炭材料。
8.一种电容去离子电极,其特征在于:包括权利要求7所述的碳纳米管掺杂的壳聚糖基活性炭材料。
9.一种权利要求8所述电容去离子电极的制备方法,其特征在于:包括以下步骤:将权利要求7的活性碳材料、乙炔黑和粘结剂进行混合研磨,将制备得到的浆料涂覆于石墨纸上,真空干燥,即得到电容去离子电极。
10.根据权利要求9所述的一种电容去离子电极的制备方法,其特征在于:活性碳材料、乙炔黑和粘结剂的质量比为8:1:1。
CN202110932344.6A 2021-08-13 2021-08-13 一种碳纳米管掺杂的壳聚糖基活性炭材料、电容去离子电极及制备方法 Pending CN113611543A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110932344.6A CN113611543A (zh) 2021-08-13 2021-08-13 一种碳纳米管掺杂的壳聚糖基活性炭材料、电容去离子电极及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110932344.6A CN113611543A (zh) 2021-08-13 2021-08-13 一种碳纳米管掺杂的壳聚糖基活性炭材料、电容去离子电极及制备方法

Publications (1)

Publication Number Publication Date
CN113611543A true CN113611543A (zh) 2021-11-05

Family

ID=78340722

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110932344.6A Pending CN113611543A (zh) 2021-08-13 2021-08-13 一种碳纳米管掺杂的壳聚糖基活性炭材料、电容去离子电极及制备方法

Country Status (1)

Country Link
CN (1) CN113611543A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115140728A (zh) * 2022-06-27 2022-10-04 盐城工学院 一种氮硼共掺杂多孔碳材料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103031771A (zh) * 2011-09-29 2013-04-10 苏州捷迪纳米科技有限公司 碳纳米管/活性碳核壳结构碳纸及其制备方法
US20150175449A1 (en) * 2013-12-24 2015-06-25 Samsung Electronics Co., Ltd. Capacitive deionization electrodes, capacitive deionization apparatuses including the same, and production methods thereof
CN105990043A (zh) * 2015-03-02 2016-10-05 江南石墨烯研究院 一种应用于电容式去离子的高效多孔薄膜电极的制备方法
WO2016163899A1 (en) * 2015-04-09 2016-10-13 Nicolaus Copernicus University In Torun Activated carbons with a high nitrogen content and a high electric conduction and the method of manufacturing activated carbons, in particular the method of manufacturing electrodes
CN107056318A (zh) * 2017-03-01 2017-08-18 山东省科学院新材料研究所 一种碳纳米管‑碳气凝胶复合材料及其制备方法
CN109119254A (zh) * 2018-11-02 2019-01-01 齐鲁工业大学 一种橘络状明胶改性壳聚糖基活性炭材料的制备方法
CN111252866A (zh) * 2020-01-20 2020-06-09 中南大学 一种cdi电极活性材料及其制备和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103031771A (zh) * 2011-09-29 2013-04-10 苏州捷迪纳米科技有限公司 碳纳米管/活性碳核壳结构碳纸及其制备方法
US20150175449A1 (en) * 2013-12-24 2015-06-25 Samsung Electronics Co., Ltd. Capacitive deionization electrodes, capacitive deionization apparatuses including the same, and production methods thereof
CN105990043A (zh) * 2015-03-02 2016-10-05 江南石墨烯研究院 一种应用于电容式去离子的高效多孔薄膜电极的制备方法
WO2016163899A1 (en) * 2015-04-09 2016-10-13 Nicolaus Copernicus University In Torun Activated carbons with a high nitrogen content and a high electric conduction and the method of manufacturing activated carbons, in particular the method of manufacturing electrodes
CN107056318A (zh) * 2017-03-01 2017-08-18 山东省科学院新材料研究所 一种碳纳米管‑碳气凝胶复合材料及其制备方法
CN109119254A (zh) * 2018-11-02 2019-01-01 齐鲁工业大学 一种橘络状明胶改性壳聚糖基活性炭材料的制备方法
CN111252866A (zh) * 2020-01-20 2020-06-09 中南大学 一种cdi电极活性材料及其制备和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115140728A (zh) * 2022-06-27 2022-10-04 盐城工学院 一种氮硼共掺杂多孔碳材料的制备方法

Similar Documents

Publication Publication Date Title
US11952278B2 (en) Lignin porous carbon nanosheet, preparation method therefor, and application thereof in supercapacitor electrode materials
Shang et al. Nitrogen-doped carbon composite derived from ZIF-8/polyaniline@ cellulose-derived carbon aerogel for high-performance symmetric supercapacitors
Zhao et al. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode
Xu et al. Biomass-based porous carbon/graphene self-assembled composite aerogels for high-rate performance supercapacitor
Lei et al. Self-sacrificial template synthesis of heteroatom doped porous biochar for enhanced electrochemical energy storage
Luo et al. Graphene bonded carbon nanofiber aerogels with high capacitive deionization capability
Zhao et al. Facile synthesis of interconnected carbon network decorated with Co3O4 nanoparticles for potential supercapacitor applications
Li et al. Covalently-grafted polyaniline on graphene oxide sheets for high performance electrochemical supercapacitors
Zhou et al. High energy supercapacitors based on interconnected porous carbon nanosheets with ionic liquid electrolyte
Śliwak et al. Influence of wet oxidation of herringbone carbon nanofibers on the pseudocapacitance effect
Zhang et al. Synthesis of RuO 2 decorated quasi graphene nanosheets and their application in supercapacitors
Huang et al. Mycelial pellet-derived heteroatom-doped carbon nanosheets with a three-dimensional hierarchical porous structure for efficient capacitive deionization
US20160225538A1 (en) Covalently-grafted polyaniline on graphene oxide sheets and its application in electrochemical supercapacitors
Lv et al. Coal-based 3D hierarchical porous carbon aerogels for high performance and super-long life supercapacitors
Zhu et al. Space-confined synthesis of three-dimensional boron/nitrogen-doped carbon nanotubes/carbon nanosheets line-in-wall hybrids and their electrochemical energy storage applications
CN110073458B (zh) 褶皱状石墨烯复合体的制备方法、由此制备的复合体及包含复合体的超级电容器
Xie et al. High performance aqueous symmetric supercapacitors based on advanced carbon electrodes and hydrophilic poly (vinylidene fluoride) porous separator
Yang et al. Graphene functionalized bio-carbon xerogel for achieving high-rate and high-stability supercapacitors
Yu et al. Graphene-based composite supercapacitor electrodes with diethylene glycol as inter-layer spacer
Ochai-Ejeh et al. Electrochemical performance of hybrid supercapacitor device based on birnessite-type manganese oxide decorated on uncapped carbon nanotubes and porous activated carbon nanostructures
Li et al. Freeze-drying assisted synthesis of hierarchical porous carbons for high-performance supercapacitors
KR101744122B1 (ko) 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법, 이에 따라 제조된 그래핀-탄소나노튜브 복합체 및 이를 포함하는 슈퍼커패시터
Zhou et al. Nitrogen and phosphorus co-doped porous carbon for high-performance supercapacitors
Imtiaz et al. Functionalized bioinspired porous carbon with graphene sheets as anode materials for lithium-ion batteries
Xu et al. Facile hydrothermal synthesis of tubular kapok fiber/MnO 2 composites and application in supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination