CN113602478A - Fluid control surface based on circulation control and vertical micro-jet flow - Google Patents

Fluid control surface based on circulation control and vertical micro-jet flow Download PDF

Info

Publication number
CN113602478A
CN113602478A CN202110142145.5A CN202110142145A CN113602478A CN 113602478 A CN113602478 A CN 113602478A CN 202110142145 A CN202110142145 A CN 202110142145A CN 113602478 A CN113602478 A CN 113602478A
Authority
CN
China
Prior art keywords
fluid chamber
control
fluid
slot
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110142145.5A
Other languages
Chinese (zh)
Other versions
CN113602478B (en
Inventor
李永红
苏继川
吴继飞
彭鑫
刘大伟
黄勇
李为群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Speed Aerodynamics Research Institute of China Aerodynamics Research and Development Center
Original Assignee
High Speed Aerodynamics Research Institute of China Aerodynamics Research and Development Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Speed Aerodynamics Research Institute of China Aerodynamics Research and Development Center filed Critical High Speed Aerodynamics Research Institute of China Aerodynamics Research and Development Center
Priority to CN202110142145.5A priority Critical patent/CN113602478B/en
Publication of CN113602478A publication Critical patent/CN113602478A/en
Application granted granted Critical
Publication of CN113602478B publication Critical patent/CN113602478B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/14Adjustable control surfaces or members, e.g. rudders forming slots
    • B64C9/16Adjustable control surfaces or members, e.g. rudders forming slots at the rear of the wing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C2009/005Ailerons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Lift Valve (AREA)

Abstract

The invention discloses a fluid control surface based on circulation control and vertical micro-jet, which is arranged at the rear edge of an aircraft wing (1) and comprises four fluid chambers and a semi-circular structural body (12) capable of partially rotating, wherein the first fluid chamber (7), the second fluid chamber (10), the third fluid chamber (8) and the fourth fluid chamber (9) are respectively distributed in axial symmetry about the mean camber line of the control surface; a first slit (4) is arranged in the direction of tangency between the tail end of the first fluid chamber (7) and the semicircular structure body (12), and a second slit (11) is arranged in the direction of tangency between the tail end of the second fluid chamber (10) and the semicircular structure body (12); the third slit (13) or the fourth slit (6) is opened by rotating the semicircular structure (12), the third slit (13) is provided at the end of the third fluid chamber (8), and the fourth slit (6) is provided at the end of the fourth fluid chamber (9).

Description

Fluid control surface based on circulation control and vertical micro-jet flow
Technical Field
The invention relates to the field of aerodynamics, in particular to a fluid control surface based on circulation control and vertical micro-jet flow.
Background
Fixed wing aircraft typically employ movable control surfaces, such as ailerons, rudders, etc., at the trailing edge of the wing to effect flow control over the surface of the wing and thereby achieve the desired control forces and control moments. Such conventional mechanical control surfaces require hydraulic actuators, which add structural weight and complexity to the mechanism. In addition, such mechanical control systems have relatively long control time, and particularly, the fast response capability of the control surface structure is further hindered by large inertia force of the control surface structure when the control surface structure is heavy.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides a fluid control surface based on circulation control and vertical object surface micro-jet flow.
In order to achieve the above object, the present invention provides a fluid control rudder surface based on circulation control and vertical micro-jet, which is installed at the trailing edge of an aircraft wing, and comprises four fluid chambers and a semi-circular structure capable of partially rotating, wherein the first fluid chamber and the second fluid chamber are axisymmetrically distributed about the mean camber line of the rudder surface, and the third fluid chamber and the fourth fluid chamber are axisymmetrically distributed about the mean camber line of the rudder surface; a first slit is arranged in the direction of tangency of the tail end of the first fluid chamber and the semicircular structure, and a second slit is arranged in the direction of tangency of the tail end of the second fluid chamber and the semicircular structure; the third slit provided at the end of the third fluid chamber or the fourth slit provided at the end of the fourth fluid chamber is opened by rotating the semicircular structure.
As an improvement of the fluid control surface, the four fluid chambers are respectively provided with a valve close to the wing end.
As an improvement to the fluid control surface described above,
the valve of the first fluid chamber is used for being in an open state when the incoming flow Mach number of the aircraft provided with the control surface is less than 0.5 and the lift force needs to be increased or the low head moment needs to be generated, so that high-pressure gas is sprayed out through the first slot;
and the valve of the second fluid chamber is used for being in an open state when the incoming flow Mach number of the aircraft provided with the control surface is less than 0.5 and the lift force needs to be reduced or the head raising moment needs to be generated, so that high-pressure gas is sprayed out through the second slot.
As an improvement to the fluid control surface described above,
the valve of the third fluid chamber is used for being in an open state when the aircraft provided with the control surface flies at an incoming flow Mach number larger than 0.5 and needs to reduce lift force or generate head raising moment, so that high-pressure gas pushes the semicircular structural body to rotate clockwise, the third slot is opened, and the high-pressure gas is sprayed out from the slot;
and the valve of the fourth fluid chamber is used for being in an open state when the aircraft provided with the control surface flies at an incoming flow Mach number larger than 0.5 and needs to increase lift force or generate low head moment, so that high-pressure gas pushes the semicircular structural body to rotate anticlockwise, the fourth slot is opened, and the high-pressure gas is sprayed out from the slot.
As an improvement of the fluid control surface, the third fluid chamber and the fourth fluid chamber are respectively provided with a small-sized block close to the semicircular structural body for limiting the local rotation of the semicircular structural body.
As an improvement to the above fluid control surface, the radius of the semi-circular structure is greater than 0.5% and less than 1.5% of the chord length of the aircraft wing.
As an improvement to the above-described fluidic control surface, the first slot and the second slot each have a height greater than 0.0125% of the chord length of the aircraft wing and less than 0.125% of the chord length of the aircraft wing.
As an improvement to the above-described flow control surface, the widths of the third and fourth slots are each greater than 0.2% and less than 1.2% of the chord length of the aircraft wing.
Compared with the prior art, the invention has the advantages that:
1. compared with the traditional mechanical control surface, the fluid control surface based on the circulation control and the vertical micro-jet flow has the advantages that the response frequency is higher, a complex action device is not needed, and the structural weight is reduced;
2. according to the fluid control surface based on the circulation control and the vertical micro-jet flow, the two different control modes of the circulation control and the micro-jet flow in the system are switched and selected according to the flying speed of the aircraft, so that the aircraft can have strong control capability under low-speed and high-speed flying conditions, the problems of long control time and large structural weight of the traditional mechanical control surface are solved, and the fluid control surface has high engineering practical value for improving the pneumatic performance of the aircraft.
Drawings
FIG. 1 is a schematic illustration of a cross-section of a fluid control surface based on circulation control and vertical micro-jets of the present invention;
FIG. 2 is a partial schematic view of the trailing edge of the control surface of the invention during control of the circulation;
FIG. 3 is a partial schematic view of the trailing edge of the control surface of the present invention with the vertical micro-jet third fluid chamber valve open;
fig. 4 is a partial schematic view of the trailing edge of the control surface of the present invention with the vertical micro-jet fourth fluid chamber valve open.
Reference numerals
1. Aircraft wing 2, valve 3, block
4. A first slot 5, a rotating shaft 6 and a fourth slot
7. A first fluid chamber 8, a third fluid chamber 9, a fourth fluid chamber
10. Second fluid chamber 11, second slit 12, and semicircular structure
13. Third slot
Detailed Description
The control surface realizes flow control on the surface of the wing by utilizing two blowing modes of annular quantity control of a coanda effect and vertical micro-jet, and generates required control force and control moment.
The invention discloses a fluid control surface based on circulation control and vertical micro-jet flow, which can obviously solve the problem of long response time of a conventional mechanical control surface by utilizing the inherent quick response characteristic of fluid. Based on the strong fluid control capability of the coanda effect-based circulation control under the low-speed incoming flow condition and the vertical micro-jet flow under the high-speed incoming flow condition, the invention can realize the control force and the moment required by the aircraft under different flight speeds.
The technical solution of the present invention will be described in detail below with reference to the accompanying drawings and examples.
Example 1
As shown in fig. 1, embodiment 1 of the present invention provides a fluid control surface based on a circulation control and a vertical micro-jet. The fluid control rudder surface is arranged at the rear edge of the aircraft wing 1 and comprises four fluid chambers and a semi-circular structure 12 capable of partially rotating, wherein the first fluid chamber 7 and the second fluid chamber 10 are distributed in axial symmetry about a mean camber line of the rudder surface, and the third fluid chamber 8 and the fourth fluid chamber 9 are distributed in axial symmetry about the mean camber line of the rudder surface; a first slit 4 is arranged in the direction of the tangent of the tail end of the first fluid chamber 7 and the semicircular structure 12, and a second slit 11 is arranged in the direction of the tangent of the tail end of the second fluid chamber 10 and the semicircular structure 12; the third slit 13 or the fourth slit 6 is opened by rotating the semicircular structure 12, the third slit 13 being provided at the end of the third fluid chamber 8, and the fourth slit 6 being provided at the end of the fourth fluid chamber 9.
1) The trailing edge of the aircraft wing 1 is provided with a semicircular structure 12 which can roll locally and is used as a control surface for realizing the coanda effect; the semicircular structure 12 is provided with a rotating shaft 5;
2) the upper and lower surfaces of the trailing edge of the aircraft wing 1 each have a slot tangential to the semi-circular structure 12: the first slot 4 and the second slot 11 are used as jet outlets for realizing the control of the circulation volume;
3) by local rolling of the semicircular structures 12, slots perpendicular to the upper and lower surfaces of the trailing edge of the aircraft wing 1 can be achieved: the opening and closing of the third slot 13 and the fourth slot 6 are used as outlets of vertical jet flows;
4) the control system contains four fluid chambers: the first fluid chamber 7, the second fluid chamber 10, the third fluid chamber 8 and the fourth fluid chamber 9 are respectively an upper surface and a lower surface circulation control and vertical jet flow inlets, and each chamber is provided with a corresponding angle valve to realize the opening and closing of corresponding jet flow; as valve 2 is arranged in the first fluid chamber 7;
5) upper and lower surface circulation control chambers, i.e., a first fluid chamber 7 and a second fluid chamber 10;
6) the rear edges of the upper and lower vertical micro-jet flow chambers, namely the third fluid chamber 8 and the fourth fluid chamber 9, are respectively provided with a small block which is used as a limiter for the local rolling of the semicircular structural body 12, for example, the block 3 is arranged in the third fluid chamber 8;
7) the local tumbling of the semi-circular structure 12 is achieved by the fluid control force of the chamber jets.
When the flying vehicle with the fluid control rudder surface of the invention flies at an incoming flow Mach number of less than 0.5, as shown in FIG. 2, when the lift needs to be increased or the head moment needs to be generated, the inlet of the first fluid chamber 7 is opened, and high-pressure gas is ejected through the first slot 4. Due to the coanda effect, the jet increases the velocity of the flow on the upper surface of the airfoil, particularly the trailing edge of the airfoil, and the pressure on the upper surface decreases, which in turn increases the total circulation and increases the lift.
When the flying vehicle with the fluid control surface flies at an incoming flow Mach number of less than 0.5 and when the lift force needs to be reduced or the head-up moment needs to be generated, the inlet of the second fluid chamber 10 is opened, and high-pressure gas is sprayed out through the second slot 11. Due to the coanda effect, the jet increases the velocity of the lower surface of the airfoil, particularly the trailing edge of the airfoil, and the pressure of the lower surface decreases, which in turn reduces the total circulation and the lift.
As shown in figure 3, when the flying vehicle with the fluid control rudder surface of the invention flies at an incoming flow Mach number of more than 0.5, when the lift force needs to be reduced or the head-up moment needs to be generated, the inlet of the third fluid chamber 8 is opened, the high-pressure gas pushes the semicircular structural body 12 to rotate clockwise, the third slot 13 is opened, and the high-pressure gas is sprayed out from the slot. Due to the drag of the jet, the velocity of the airfoil upper surface, particularly the trailing edge, is reduced, the upper surface pressure is increased, and the lift is reduced.
As shown in FIG. 4, when the flying vehicle with the fluid control rudder surface of the invention flies at an incoming flow Mach number of more than 0.5 and when the lift needs to be increased or the head moment needs to be generated, the inlet of the fourth fluid chamber 9 is opened, high-pressure gas pushes the semicircular structural body 12 to rotate anticlockwise, the fourth slot 6 is opened, and the high-pressure gas is sprayed out from the slot. Due to the retardation of the jet, the flow velocity of the lower surface of the airfoil, particularly the trailing edge, is reduced, the pressure of the lower surface is increased, and the lift is increased.
The invention discloses a direct fluid control surface for replacing a conventional mechanical control surface, which realizes flow control on the surface of an airfoil under different incoming flow conditions by utilizing two blowing modes of annular quantity control of a coanda effect and vertical micro-jet flow so as to generate required control force and control moment.
Finally, it should be noted that the above embodiments are only used for illustrating the technical solutions of the present invention and are not limited. Although the present invention has been described in detail with reference to the embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the spirit and scope of the invention as defined in the appended claims.

Claims (8)

1. A fluid control rudder surface based on circulation control and vertical micro-jet, which is arranged at the rear edge of an aircraft wing (1), and is characterized in that the fluid control rudder surface comprises four fluid chambers and a semi-circular structure (12) capable of partially rotating, wherein a first fluid chamber (7) and a second fluid chamber (10) are distributed in axial symmetry with respect to the mean camber line of the rudder surface, and a third fluid chamber (8) and a fourth fluid chamber (9) are distributed in axial symmetry with respect to the mean camber line of the rudder surface; a first slit (4) is arranged in the direction of tangency of the tail end of the first fluid chamber (7) and the semicircular structure body (12), and a second slit (11) is arranged in the direction of tangency of the tail end of the second fluid chamber (10) and the semicircular structure body (12); the third slit (13) or the fourth slit (6) is opened by rotating the semicircular structure (12), the third slit (13) is provided at the end of the third fluid chamber (8), and the fourth slit (6) is provided at the end of the fourth fluid chamber (9).
2. The fluid control surface based on circulation control and vertical micro-jet of claim 1, wherein each of the four fluid chambers is provided with a valve near the wing end.
3. The fluid control surface based on circulation control and vertical micro-jets of claim 2,
the valve of the first fluid chamber (7) is used for being in an open state when the incoming flow Mach number of the aircraft provided with the rudder surface is less than 0.5 and the lift force needs to be increased or the low head moment needs to be generated, so that high-pressure gas is ejected out through the first slot (4);
the valve of the second fluid chamber (10) is used for being in an open state when the incoming flow Mach number of the aircraft provided with the rudder surface is less than 0.5 and the lift force needs to be reduced or the head raising moment needs to be generated, so that high-pressure gas is ejected through the second slot (11).
4. The fluid control surface based on circulation control and vertical micro-jets of claim 2,
the valve of the third fluid chamber (8) is used for being in an open state when an aircraft provided with the control surface flies at an incoming flow Mach number larger than 0.5 and needs to reduce lift force or generate head raising moment, so that high-pressure gas pushes the semicircular structural body (12) to rotate clockwise, the third slot (13) is opened, and the high-pressure gas is sprayed out from the slot;
and the valve of the fourth fluid chamber (9) is used for being in an open state when an aircraft provided with the control surface flies at an incoming flow Mach number larger than 0.5 and needs to increase lift force or generate low head moment, so that high-pressure gas pushes the semicircular structural body (12) to rotate anticlockwise, the fourth slot (6) is opened, and the high-pressure gas is sprayed out from the slot.
5. Fluid control surface based on circulation control and vertical micro-jets according to claim 1, characterized in that the third fluid chamber (8) and the fourth fluid chamber (9) are each provided with a small block close to the semi-circular structure (12) for limiting the local rotation of the semi-circular structure (12).
6. The control surface based on circulation control and vertical micro-jets of fluid control of claim 1, characterized in that the radius of the semi-circular structure (12) is greater than 0.5% and less than 1.5% of the chord length of the aircraft wing.
7. Control surface for fluid control based on circulation control and vertical micro jets according to claim 1 characterized in that the height of the first slot (4) and the second slot (11) are each larger than 0.0125% and smaller than 0.125% of the chord length of the aircraft wing.
8. The control surface based on circulation control and vertical micro-jets fluid control according to claim 1, characterized in that the width of the third slot (13) and the fourth slot (6) are both larger than 0.2% and smaller than 1.2% of the chord length of the aircraft wing.
CN202110142145.5A 2021-02-02 2021-02-02 Fluid control surface based on circulation control and vertical micro-jet flow Active CN113602478B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110142145.5A CN113602478B (en) 2021-02-02 2021-02-02 Fluid control surface based on circulation control and vertical micro-jet flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110142145.5A CN113602478B (en) 2021-02-02 2021-02-02 Fluid control surface based on circulation control and vertical micro-jet flow

Publications (2)

Publication Number Publication Date
CN113602478A true CN113602478A (en) 2021-11-05
CN113602478B CN113602478B (en) 2023-06-13

Family

ID=78303274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110142145.5A Active CN113602478B (en) 2021-02-02 2021-02-02 Fluid control surface based on circulation control and vertical micro-jet flow

Country Status (1)

Country Link
CN (1) CN113602478B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115307861A (en) * 2022-10-10 2022-11-08 中国空气动力研究与发展中心低速空气动力研究所 Flight verification method and flight verification model for torque control performance of jet control surface

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474251A (en) * 1980-12-12 1984-10-02 Hydronautics, Incorporated Enhancing liquid jet erosion
JP2004105817A (en) * 2002-09-17 2004-04-08 Mitsubishi Materials Natural Resources Development Corp Treatment method and treatment system for polluted water and organic exhaust gas
JP2008189032A (en) * 2007-02-01 2008-08-21 Fjc:Kk Flying boat and elevator
US20090050734A1 (en) * 2006-09-06 2009-02-26 Bae Systems Plc Flow control actuators
CN103204238A (en) * 2013-04-18 2013-07-17 包绍宸 Jet rudder surface control system, aircraft using same, and method for controlling aircraft
CN206318014U (en) * 2016-12-19 2017-07-11 中国航空工业集团公司沈阳飞机设计研究所 A kind of trailing edge and the flying wing with it
CN107176286A (en) * 2017-05-16 2017-09-19 华南理工大学 Folding fixed-wing vertical take-off and landing unmanned aerial vehicle based on double ducted fan dynamical systems
CN108349585A (en) * 2015-09-02 2018-07-31 杰托普特拉股份有限公司 Fluid propellant system and thrust and lifting force generator for aircraft
CN109715927A (en) * 2016-08-25 2019-05-03 杰托普特拉股份有限公司 Geometry-variable propeller
US20190300159A1 (en) * 2018-03-27 2019-10-03 Subaru Corporation Flow control system, flow control method, and aircraft
CN111846215A (en) * 2020-04-30 2020-10-30 南京航空航天大学 Tail-pushing type non-control-surface double-duct unmanned aerial vehicle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474251A (en) * 1980-12-12 1984-10-02 Hydronautics, Incorporated Enhancing liquid jet erosion
JP2004105817A (en) * 2002-09-17 2004-04-08 Mitsubishi Materials Natural Resources Development Corp Treatment method and treatment system for polluted water and organic exhaust gas
US20090050734A1 (en) * 2006-09-06 2009-02-26 Bae Systems Plc Flow control actuators
JP2008189032A (en) * 2007-02-01 2008-08-21 Fjc:Kk Flying boat and elevator
CN103204238A (en) * 2013-04-18 2013-07-17 包绍宸 Jet rudder surface control system, aircraft using same, and method for controlling aircraft
CN108349585A (en) * 2015-09-02 2018-07-31 杰托普特拉股份有限公司 Fluid propellant system and thrust and lifting force generator for aircraft
CN109715927A (en) * 2016-08-25 2019-05-03 杰托普特拉股份有限公司 Geometry-variable propeller
CN206318014U (en) * 2016-12-19 2017-07-11 中国航空工业集团公司沈阳飞机设计研究所 A kind of trailing edge and the flying wing with it
CN107176286A (en) * 2017-05-16 2017-09-19 华南理工大学 Folding fixed-wing vertical take-off and landing unmanned aerial vehicle based on double ducted fan dynamical systems
US20190300159A1 (en) * 2018-03-27 2019-10-03 Subaru Corporation Flow control system, flow control method, and aircraft
CN111846215A (en) * 2020-04-30 2020-10-30 南京航空航天大学 Tail-pushing type non-control-surface double-duct unmanned aerial vehicle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YONGHONG LI AND NING QIN: "Airfoil gust load alleviation by circulation control", 《AEROSPACE SCIENCE AND TECHNOLOGY》 *
王少永,侯安平,张明明: "科恩达环形射流元件的数值及试验研究", 《工程热物理学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115307861A (en) * 2022-10-10 2022-11-08 中国空气动力研究与发展中心低速空气动力研究所 Flight verification method and flight verification model for torque control performance of jet control surface

Also Published As

Publication number Publication date
CN113602478B (en) 2023-06-13

Similar Documents

Publication Publication Date Title
EP1786667B1 (en) Systems and methods for providing differential motion to wing high lift devices
EP2128020B1 (en) Aerospace vehicle yaw generating systems and associated methods
US5921506A (en) Extendible leading edge flap
US6634594B1 (en) Hypersonic waverider variable leading edge flaps
CN107472511B (en) Aerodynamic control surface of flying wing layout aircraft based on cooperation of spoiler and trailing edge control surface
US10683077B2 (en) Fluid systems that include a co-flow jet
US20050242234A1 (en) Lifters, methods of flight control and maneuver load alleviation
US5655737A (en) Split rudder control system aerodynamically configured to facilitate closure
US4736913A (en) Fluid flow control device
US20020014555A1 (en) Method for altitude control and/or pitch angle control of airships, and an airship having a device for altitude control and/or pitch angle trimming
US20040069906A1 (en) Geometric morphing wing with layers
CN113602478B (en) Fluid control surface based on circulation control and vertical micro-jet flow
CN111003160B (en) Self-adaptive high-speed aircraft layout structure based on wing tip deformation
US4387869A (en) Mono-element combined supercritical high lift airfoil
US4674716A (en) Blown crescent airfoil
US20070029403A1 (en) Dual point active flow control system for controlling air vehicle attitude during transonic flight
CN113942651A (en) Novel flight control device of SACCON type aircraft
CN211696097U (en) Carrier rocket and wing rudder thereof
CN113044205A (en) Variable wing leading edge camber
CN112173065A (en) Be applied to wing of wing aircraft that verts
CN109665090B (en) Annular quantity control deformation flap for supersonic wing
US4457480A (en) Mono-element combined supercritical high lift airfoil
US10967957B2 (en) Methods and apparatus to extend a leading-edge vortex of a highly-swept aircraft wing
CN113619772B (en) Jet-type second grade spout circulation control wing section in coordination
CN114919735A (en) Active flow control rudder

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant