CN113594271A - 基于二维材料/绝缘层/半导体结构的宽光谱光电探测器 - Google Patents

基于二维材料/绝缘层/半导体结构的宽光谱光电探测器 Download PDF

Info

Publication number
CN113594271A
CN113594271A CN202110829895.XA CN202110829895A CN113594271A CN 113594271 A CN113594271 A CN 113594271A CN 202110829895 A CN202110829895 A CN 202110829895A CN 113594271 A CN113594271 A CN 113594271A
Authority
CN
China
Prior art keywords
dimensional material
insulating layer
heterojunction
semiconductor substrate
broad spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110829895.XA
Other languages
English (en)
Inventor
徐杨
董云帆
吕建杭
刘亦伦
葛晓佳
杨伟伟
俞滨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZJU Hangzhou Global Scientific and Technological Innovation Center
Original Assignee
ZJU Hangzhou Global Scientific and Technological Innovation Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZJU Hangzhou Global Scientific and Technological Innovation Center filed Critical ZJU Hangzhou Global Scientific and Technological Innovation Center
Priority to CN202110829895.XA priority Critical patent/CN113594271A/zh
Publication of CN113594271A publication Critical patent/CN113594271A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1133Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a conductor-insulator-semiconductor diode or a CCD device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于二维材料/绝缘层/半导体结构的宽光谱光电探测器,包括栅极、半导体衬底、绝缘层、二维材料薄膜、源极与漏极,二维材料薄膜上表面水平间隔布置有漏极与源极;半导体衬底的底部设有异质结。入射光照射到器件表面时,被半导体衬底和异质结吸收,产生的少数载流子注入积累到由脉冲栅压形成的衬底深耗尽势阱中。由于二维材料的特殊性质,其通过电容耦合有效收集载流子,输出光电流的信号,实现随机、无损和高速读出;本发明可有效扩宽光电探测器的光谱响应范围,实现从紫外光、可见光到红外光的宽光谱探测,同时改变了传统电荷耦合器件的读出方式,提高系统的响应速度和可靠性。

Description

基于二维材料/绝缘层/半导体结构的宽光谱光电探测器
技术领域
本发明属于图像传感器技术领域,涉及图像传感器器件结构,尤其涉及一种基于二维材料/绝缘层/半导体结构的宽光谱光电探测器。
背景技术
电荷耦合器件(CCD)图像传感器可直接将光学信号转换为模拟电流信号,信号电流再经过放大和模数转换,就可以实现图像的获取、传输和处理。作为光电探测器,CCD图像阵列系统被应用于相机、扫描仪等设备的感光组件,具有良好的感光效率和成像品质,但受限于硅较宽的带隙,传统的CCD光谱探测范围被限制在可见光波段。
二维材料薄膜,是指电子仅可在两个维度的非纳米尺度(1-100nm)上自由运动(平面运动)的材料,如纳米薄膜、超晶格、量子阱等。二维材料薄膜是伴随着2004年曼切斯特大学Geim小组成功分离出单原子层的石墨烯而提出的,目前已成功分离、制备的二维材料薄膜有几十种,包括黑磷、过渡金属硫化物等。二维材料薄膜的发现为突破传统CCD局限带来了机会。
石墨烯是一种新型二维材料,由单层sp2杂化碳原子构成蜂窝状二维平面晶体薄膜,具有优异的力、热、光、电等性能。与普通金属不同,石墨烯是一种具有透明和柔性的新型二维导电材料。石墨烯覆盖在半导体氧化片上可以构成简单的石墨烯场效应晶体管(FET),制备工艺简单,易于转移到任何衬底上。
发明内容
本发明的目的在于针对现有技术的不足,提出一种基于二维材料/绝缘层/半导体结构的宽光谱光电探测器。
本发明的目的是通过以下技术方案来实现的:一种基于二维材料/绝缘层/半导体结构的宽光谱光电探测器,自下而上设有半导体衬底、绝缘层和二维材料薄膜,所述半导体衬底下表面设有栅极,所述二维材料薄膜上表面水平间隔布置有漏极与源极;所述半导体衬底的底部设有异质结;所述异质结由硅衬底与其他材料接触形成,用以增强红外吸收能力。
进一步地,所述异质结为红外吸收增强区,异质结的形成由硅衬底与多层石墨烯紧密接触形成肖特基结;或由硅与过渡金属形成金属硅化物后,硅衬底与金属硅化物接触形成异质结;或由硅材料与锗材料密切接触形成异质结。
进一步地,所述绝缘层为氧化硅、氮化硅或High-K材料中的一种,厚度为10nm~100nm。
进一步地,所述二维材料薄膜为石墨烯、黑磷、过渡金属硫化物或MXenes中的一种。
进一步地,所述半导体衬底为轻掺杂硅衬底,掺杂浓度为1011cm-3~1013cm-3
进一步地,所述栅极所用材料为镓铟合金,所述漏极和源极所用材料为铝、银、金、钛、铬或铜中的一种或合金。
进一步地,所述二维材料薄膜与绝缘层、半导体衬底形成MIS结构,二维材料薄膜作为读出层,半导体衬底与其底部的异质结共同作为吸光层。
进一步地,宽光谱探测在红外波段的性能提升,利用轻掺杂硅衬底与绝缘层之间的界面态和硅与其他材料形成的异质结共同实现;宽光谱探测在紫外波段的性能提升,通过设计绝缘层厚度减少紫外光的反射率,提高在紫外波段的透光率。
进一步地,当光电探测器工作时,在所述栅极及源极之间施加一个脉冲栅压Vgs,驱动所述半导体衬底进入深耗尽状态;同时在所述漏极及源极之间施加一个固定偏压Vds,通过读出源漏之间的电流判断入射光线的强度。
进一步地,光线进入光电探测器后,耗尽区吸收光子产生电子-空穴对,并在硅衬底的电场作用下分离,其中少数载流子被储存在深耗尽势阱中;同时异质结中产生的少数载流子在电场的作用下,从半导体衬底的底部注入到深耗尽势阱中;由吸光层产生的少子在深耗尽势阱中累积,与其等量相反的电荷被转移到读出层,引起读出层的载流子浓度发生变化。
本发明提出的宽光谱光电探测器工作原理如下:
(1)在探测器的栅极和源极之间施加一定频率的脉冲栅压,如使用的半导体衬底为n型,电压正极施加在栅极;使用的半导体衬底为p型,电压负极施加在栅极。二维材料薄膜、绝缘层与半导体衬底形成MIS结,随着栅电压逐渐增大,半导体衬底会进入耗尽状态。栅压足够大时,半导体衬底-绝缘层界面形成反型层。由于栅压为脉冲信号,而少数载流子的产生需要一定的寿命时间,此时不会立即出现反型层且仍保持为耗尽状态,即半导体衬底内形成深耗尽区。
(2)当入射光从顶部入射到器件上时:对于可见光的探测,可见光进入半导体衬底的耗尽区,耗尽区吸收光子产生电子-空穴对,并在硅衬底的电场作用下分离,其中少数载流子被储存在深耗尽势阱中;对于紫外光的探测,由于石墨烯等二维材料的透光性较好,通过使用厚度薄、紫外吸收系数低的绝缘层,减少紫外光的反射,使得紫外光被半导体衬底的耗尽区吸收;对于红外光的探测,一方面利用硅衬底与绝缘层之间的界面态进行吸光,另一方面,利用硅材料与其他半导体材料、金属材料或化合物材料形成的异质结进行吸光,形成光生电子-空穴对,其中少数载流子在电场作用下注入到硅衬底的深耗尽势阱中。
(3)电荷在深耗尽势阱中积累的同时,表面二维材料耦合出与势阱中电荷对应的极性相反的等量载流子,导致二维材料薄膜中载流子浓度发生变化,从而改变其电导率。在漏极与源极之间施加固定的偏置电压,通过监测二维材料薄膜上的电流变化,即可计算出深耗尽势阱中所积累的载流子数量,进而判断入射光的强度。
本发明具有以下有益效果:
1.本发明将一定频率的脉冲偏压加到CCD背栅电极,使半导体衬底进入深耗尽状态,实现光子吸收后产生的电子空穴对在电场作用下分离,少数载流子积累在深耗尽势阱中。
2.光线从本发明探测器件表面入射时,紫外光、可见光和红外光均可实现吸收响应,拓宽了光电探测器的响应光谱。利用轻掺杂硅衬底与绝缘层之间的界面态和硅与其他材料形成的异质结提升红外波段的性能,通过设计绝缘层厚度减少紫外光的反射率,提高在紫外波段的透光率。
3.二维材料作为透明电极,增强入射光吸收,相比传统的多晶硅电极,极大提高了在紫外和红外波段的量子效率。由于二维材料特殊的性质,可通过电容性耦合有效收集载流子,产生的电流信号直接从单个像素结构输出,实现随机、无损和高速读出,无需采用传统CCD像素之间横向转移电荷方式,提高了光电探测的响应速度、线性动态范围和可靠性。
4.本发明器件结构简单,易于大规模制造,且与CMOS工艺兼容。
5.本发明通过二维材料本身具有的增益,实现与传统CCD器件相似的积分功能,即使在弱光环境下也能得到较大的响应。
附图说明
图1为本发明基于二维材料/绝缘层/半导体结构的宽光谱光电探测器的结构图,图中:栅极1、半导体衬底2、绝缘层3、二维材料薄膜4、漏极5、源极6、异质结7;
图2为本发明实施例中光电探测器件工作在0~-30V的脉冲栅压下,源漏间固定偏压为1.5V,分别在紫外光、可见光和红外光下的单像素扫描成像结果。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,以下结合附图及实施例对本发明进行进一步的详细说明。此处所描述的具体实施方式仅仅用以解释本发明,并不限定本发明的保护范围。
如图1所示,本实施例提供的一种基于二维材料/绝缘层/半导体结构的宽光谱光电探测器,自下而上设有半导体衬底2、绝缘层3和二维材料薄膜4,所述半导体衬底2下表面设有栅极1,所述二维材料薄膜4上表面水平间隔布置有漏极5与源极6;所述半导体衬底2的底部设有异质结7。
其中,二维材料薄膜4材料为单层CVD石墨烯薄膜,尺寸为2mm×2mm,绝缘层3材料为氧化硅,厚度为100nm,半导体衬底2为n型轻掺杂硅衬底,厚度为500μm,电阻率为10KΩ·cm,异质结7为硅材料与多层石墨烯形成的肖特基结,多层石墨烯的尺寸为2mm×2mm,栅极1所用材料为镓铟合金,漏极5和源极6所用材料为铬/金合金。单层石墨烯薄膜与二氧化硅绝缘层、硅衬底形成MIS结构,多层石墨烯与硅衬底形成肖特基结。
对上述基于二维材料/绝缘层/半导体结构的宽光谱光电探测器加脉冲栅压,驱动硅衬底进入深耗尽工作状态,同时异质结进入正偏,共同实现光子吸收和电荷积累。对紫外光和可见光的探测,由硅衬底的耗尽区进行光子吸收;对红外光的探测,由硅-二氧化硅之间的界面态和硅-多层石墨烯形成的肖特基结进行光子吸收,红外光在多层石墨烯中激发出热载流子,其中热空穴在电场作用下被注入到硅的深耗尽势阱中。
在单层石墨烯薄膜两端施加固定偏压,通过监测单层石墨烯薄膜的电流变化,实现势阱内电荷的无损读出。由于使用n型硅衬底,栅电压的正极施加在器件栅极上,栅电压的负极施加器件源极上,同时在源极和漏极之间加固定偏压,如图1所示。该偏压恰好使肖特基结工作在正向偏压下,可以减弱空间电荷区的电场,维持异质结电荷注入。
图2为本发明实施例中光电探测器件工作在0~-30V的脉冲栅压下,源漏间固定偏压为1.5V,分别在紫外光、可见光和红外光下的单像素扫描成像结果。从图2可以看出,随着从左到右积分时间的增强,本发明器件在紫外光、可见光和红外光下均具备清晰的图像分辨能力,证实本发明器件能够被用于宽光谱光电探测,具有成像应用的潜力。
以上所述仅是本发明的优选实施方式,虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何的简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (10)

1.一种基于二维材料/绝缘层/半导体结构的宽光谱光电探测器,其特征在于,自下而上设有半导体衬底(2)、绝缘层(3)和二维材料薄膜(4),所述半导体衬底(2)下表面设有栅极(1),所述二维材料薄膜(4)上表面水平间隔布置有漏极(5)与源极(6);所述半导体衬底(2)的底部设有异质结(7);所述异质结(7)由硅衬底与其他材料接触形成,用以增强红外吸收能力。
2.根据权利要求1所述的基于二维材料/绝缘层/半导体结构的宽光谱光电探测器,其特征在于,所述异质结(7)为红外吸收增强区,异质结的形成由硅衬底与多层石墨烯紧密接触形成肖特基结;或由硅与过渡金属形成金属硅化物后,硅衬底与金属硅化物接触形成异质结;或由硅材料与锗材料密切接触形成异质结。
3.根据权利要求1所述的基于二维材料/绝缘层/半导体结构的宽光谱光电探测器,其特征在于,所述绝缘层(3)为氧化硅、氮化硅或High-K材料中的一种,厚度为10nm~100nm。
4.根据权利要求1所述的基于二维材料/绝缘层/半导体结构的宽光谱光电探测器,其特征在于,所述二维材料薄膜(4)为石墨烯、黑磷、过渡金属硫化物或MXenes中的一种。
5.根据权利要求1所述的基于二维材料/绝缘层/半导体结构的宽光谱光电探测器,其特征在于,所述半导体衬底(2)为轻掺杂硅衬底,掺杂浓度为1011cm-3~1013cm-3
6.根据权利要求1所述的基于二维材料/绝缘层/半导体结构的宽光谱光电探测器,其特征在于,所述栅极(1)所用材料为镓铟合金,所述漏极(5)和源极(6)所用材料为铝、银、金、钛、铬或铜中的一种或合金。
7.根据权利要求1所述的基于二维材料/绝缘层/半导体结构的宽光谱光电探测器,其特征在于,所述二维材料薄膜(4)与绝缘层(3)、半导体衬底(2)形成MIS结构,二维材料薄膜(4)作为读出层,半导体衬底(2)与其底部的异质结(7)共同作为吸光层。
8.根据权利要求1所述的基于二维材料/绝缘层/半导体结构的宽光谱光电探测器,其特征在于,宽光谱探测在红外波段的性能提升,利用轻掺杂硅衬底与绝缘层之间的界面态和硅与其他材料形成的异质结共同实现;宽光谱探测在紫外波段的性能提升,通过设计绝缘层厚度减少紫外光的反射率,提高在紫外波段的透光率。
9.根据权利要求1所述的基于二维材料/绝缘层/半导体结构的宽光谱光电探测器,其特征在于,当光电探测器工作时,在所述栅极(1)及源极(6)之间施加一个脉冲栅压Vgs,驱动所述半导体衬底(2)进入深耗尽状态;同时在所述漏极(5)及源极(6)之间施加一个固定偏压Vds,通过读出源漏之间的电流判断入射光线的强度。
10.根据权利要求1所述的基于二维材料/绝缘层/半导体结构的宽光谱光电探测器,其特征在于,光线进入光电探测器后,耗尽区吸收光子产生电子-空穴对,并在硅衬底的电场作用下分离,其中少数载流子被储存在深耗尽势阱中;同时异质结中产生的少数载流子在电场的作用下,从半导体衬底的底部注入到深耗尽势阱中;由吸光层产生的少子在深耗尽势阱中累积,与其等量相反的电荷被转移到读出层,引起读出层的载流子浓度发生变化。
CN202110829895.XA 2021-07-22 2021-07-22 基于二维材料/绝缘层/半导体结构的宽光谱光电探测器 Pending CN113594271A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110829895.XA CN113594271A (zh) 2021-07-22 2021-07-22 基于二维材料/绝缘层/半导体结构的宽光谱光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110829895.XA CN113594271A (zh) 2021-07-22 2021-07-22 基于二维材料/绝缘层/半导体结构的宽光谱光电探测器

Publications (1)

Publication Number Publication Date
CN113594271A true CN113594271A (zh) 2021-11-02

Family

ID=78248883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110829895.XA Pending CN113594271A (zh) 2021-07-22 2021-07-22 基于二维材料/绝缘层/半导体结构的宽光谱光电探测器

Country Status (1)

Country Link
CN (1) CN113594271A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114300578A (zh) * 2021-12-28 2022-04-08 华中科技大学 热载流子注入型单像素光电探测器件、制备方法及系统
CN114906795A (zh) * 2022-04-24 2022-08-16 电子科技大学 一种二维MXenes材料的原子尺度MEMS传感器及其制备方法与应用
CN114927586A (zh) * 2022-03-15 2022-08-19 中国民用航空飞行学院 一种基于新型三元材料的异质结光电探测器及制备方法
CN115290953A (zh) * 2022-06-24 2022-11-04 杭州格蓝丰纳米科技有限公司 一种基于动态二极管的自驱动机械信号传感器及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114300578A (zh) * 2021-12-28 2022-04-08 华中科技大学 热载流子注入型单像素光电探测器件、制备方法及系统
CN114300578B (zh) * 2021-12-28 2024-05-14 华中科技大学 热载流子注入型单像素光电探测器件、制备方法及系统
CN114927586A (zh) * 2022-03-15 2022-08-19 中国民用航空飞行学院 一种基于新型三元材料的异质结光电探测器及制备方法
CN114927586B (zh) * 2022-03-15 2024-03-22 中国民用航空飞行学院 一种基于新型三元材料的异质结光电探测器及制备方法
CN114906795A (zh) * 2022-04-24 2022-08-16 电子科技大学 一种二维MXenes材料的原子尺度MEMS传感器及其制备方法与应用
CN114906795B (zh) * 2022-04-24 2023-05-16 电子科技大学 一种二维MXenes材料的原子尺度MEMS传感器及其制备方法与应用
CN115290953A (zh) * 2022-06-24 2022-11-04 杭州格蓝丰纳米科技有限公司 一种基于动态二极管的自驱动机械信号传感器及其制备方法
CN115290953B (zh) * 2022-06-24 2024-05-17 杭州格蓝丰科技有限公司 一种基于动态二极管的自驱动机械信号传感器及其制备方法

Similar Documents

Publication Publication Date Title
CN113594271A (zh) 基于二维材料/绝缘层/半导体结构的宽光谱光电探测器
Hu et al. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band
Liu et al. Graphene charge-injection photodetectors
Wu et al. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared
Long et al. Progress, challenges, and opportunities for 2D material based photodetectors
Xu et al. Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity
Liang et al. Strategy of all-inorganic Cs3Cu2I5/Si-core/shell nanowire heterojunction for stable and ultraviolet-enhanced broadband photodetectors with imaging capability
Huang et al. Microstructured silicon photodetector
Ghosh et al. Recent advances in perovskite/2D materials based hybrid photodetectors
CN108281454B (zh) 一种基于二维材料薄膜/绝缘层/半导体结构的电荷耦合器件
Liu et al. Strain modulation on graphene/ZnO nanowire mixed-dimensional van der Waals heterostructure for high-performance photosensor
CN108231817A (zh) 一种基于二维材料/绝缘层/半导体结构的低功耗电荷耦合器件
KR20080020518A (ko) 고체 촬상 장치 및 촬상 장치
TWI731811B (zh) 半導體光檢測元件
CN114041210A (zh) 电磁波检测器
Mondal et al. A review on device architecture engineering on various 2-D materials toward high-performance photodetectors
US12040418B2 (en) Imaging device based on colloidal quantum dots
US20200006412A1 (en) Methods and apparatus for image sensor semiconductors
CN113658971A (zh) 基于石墨烯电荷耦合器件的辐射探测器
CN108281443B (zh) 一种基于soi衬底的石墨烯/硅异质结ccd像素阵列及其制备方法
KR20170095597A (ko) 전하 배리어층을 포함한 광전 소자
CN112420809A (zh) 含有金属硅化物红外吸收层的石墨烯场效应电荷耦合器件
Qasim et al. High‐performance self‐powered broadband Schottky junction photodetector based on graphene‐silicon van der Waals heterostructure
CN108054180A (zh) 一种基于石墨烯/绝缘层/半导体结构的电荷耦合器件
CN111599830B (zh) 一种基于单层石墨烯/绝缘层/硅/多层石墨烯结构的电荷注入器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination