CN113592957A - 一种多激光雷达和多相机联合标定方法及系统 - Google Patents

一种多激光雷达和多相机联合标定方法及系统 Download PDF

Info

Publication number
CN113592957A
CN113592957A CN202110901087.XA CN202110901087A CN113592957A CN 113592957 A CN113592957 A CN 113592957A CN 202110901087 A CN202110901087 A CN 202110901087A CN 113592957 A CN113592957 A CN 113592957A
Authority
CN
China
Prior art keywords
sensor
checkerboard
point
laser radar
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110901087.XA
Other languages
English (en)
Other versions
CN113592957B (zh
Inventor
陈禹行
刘立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Yihang Yuanzhi Technology Co Ltd
Original Assignee
Beijing Yihang Yuanzhi Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Yihang Yuanzhi Technology Co Ltd filed Critical Beijing Yihang Yuanzhi Technology Co Ltd
Priority to CN202110901087.XA priority Critical patent/CN113592957B/zh
Publication of CN113592957A publication Critical patent/CN113592957A/zh
Application granted granted Critical
Publication of CN113592957B publication Critical patent/CN113592957B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种多激光雷达和多相机联合标定方法及系统,该方法包括以下步骤:步骤S1、放置棋盘格靶标;步骤S2、提取棋盘格靶标角点;步骤S3、根据传感器类型选择不同传感器之间计算外参矩阵的方法,求解其中一个传感器和其他两个传感器的外参参数;步骤S4、计算基于多观测值的棋盘格靶标角点的坐标累积误差;步骤S5、移动棋盘格靶标,计算当前组观测值下棋盘格靶标角点的坐标累积误差;步骤S6、联合优化不同位置的棋盘格靶标角点的坐标累积误差,使得总的标定误差最小;同时,由于不同传感器组构成一个回环,回环的旋转矩阵应为单位阵,平移矩阵应为零矩阵。该方法可应用于多种场景,能够保证任意两个传感器之间的外参参数的精度。

Description

一种多激光雷达和多相机联合标定方法及系统
技术领域
本发明属于传感器标定技术领域,具体涉及一种多激光雷达和多相机联合标定方法及系统。
现有技术
激光雷达和相机的耦合需要对传感器进行精确的联合标定,保证不同传感器对同一物体的感知数据在同一坐标系中可以融合。
目前激光雷达和相机标定主要是对单激光雷达和单相机进行标定,很少工作研究多激光雷达和多相机的标定。单激光雷达和单相机标定主要通过激光雷达和相机同时拍摄一张平面棋盘格靶标,然后根据激光雷达和相机之间的相对位置关系作为几何约束,从而确定激光雷达和相机之间的外参参数。但是这种标定不适用于多激光雷达与多相机的标定,因为不能保证所有传感器可以同时观测到同一个棋盘格靶标。有学者分别标定激光雷达和不同相机,从而得到激光雷达和不同相机的外参参数,但是这种方法只能保证激光雷达和相机之间外参参数的精度,如果根据激光雷达和不同相机之间的外参来计算不同相机之间的外参参数,则会引起较大误差。此外,上述激光雷达和相机之间相互标定方法要求天气良好、视野清楚,对标定场景要求较高。
发明内容
鉴于上述问题和缺陷,本发明的目的在于提供一种多激光雷达和多相机联合标定方法,该方法能够实现对多激光雷达和多相机的标定;另外,该方法联合标定时加入回环约束,要求不同传感器组构成一个回环时,回环的旋转矩阵为单位阵,平移矩阵为零矩阵,从而保证任意两个传感器之间的外参参数的精度。
为实现上述目的,本发明采用如下技术方案:
一种多激光雷达和多相机联合标定方法,该方法包括以下步骤:
步骤S1、放置棋盘格靶标,通过调整棋盘格靶标角度及高度,使得棋盘格靶标可以完整出现在至少三个传感器视野中;
步骤S2、选择三个可同时观测到完整棋盘格靶标的传感器进行组合标定;启动传感器,提取棋盘格靶标角点;其中,三个传感器分别记为传感器Sa,传感器Sb以及传感器Sc;
步骤S3、对组合标定的三个传感器进行识别,根据传感器类型选择不同传感器之间计算外参矩阵的方法,以求解传感器Sb和其他两个传感器Sa、Sc的外参参数;
如传感器Sa为激光雷达传感器,传感器Sb为相机传感器,则非同源传感器之间的外参矩阵的计算公式如下:
Figure BDA0003199794740000011
式中:wi为棋盘格靶标角点i的误差权重,λ为比例系数,数值大小等于点在相机传感器Sb构成的相机空间直角坐标系下的Z轴坐标的倒数,
Figure BDA0003199794740000012
为激光雷达传感器Sa到相机传感器Sb的外参矩阵,
Figure BDA0003199794740000013
为激光雷达传感器Sa扫描得到的棋盘格靶标角点在相机传感器Sb构成的像素平面坐标系下的坐标,Xai为棋盘格靶标角点在激光雷达传感器Sa构成的激光雷达空间直角坐标系下的坐标;Xbi为棋盘格靶标角点在相机传感器Sb构成的像素平面坐标系下的坐标;
Figure BDA0003199794740000014
为相机传感器Sb相应的内参矩阵;
步骤S4、计算基于多观测值的棋盘格靶标角点的坐标累积误差
根据步骤S3得到的外参参数,通过矩阵相乘,得到传感器Sa到传感器Sc的外参参数;根据获取的外参参数计算传感器Sa获取的棋盘格靶标角点,通过转换在传感器Sc构成的像素平面坐标系下或激光雷达空间直角坐标系下的坐标,计算通过转换获取的坐标与传感器Sc获取的相应的棋盘格靶标角点的欧式距离的加权平方和,从而得到由传感器Sa与传感器Sb之间的标定误差,以及传感器Sb与传感器Sc之间标定误差,引起的传感器Sa与传感器Sc之间标定误差;
步骤S5、移动棋盘格靶标,按照步骤S1、步骤S2重新选择三个传感器进行组合标定,之后按照步骤S3、步骤S4计算当前组观测值下棋盘格靶标角点的坐标累积误差,直到完成所有传感器的标定;
步骤S6、联合优化不同位置的棋盘格靶标角点的坐标累积误差,使得总的标定误差最小;同时,由于不同传感器组构成一个回环,回环的旋转矩阵应为单位阵,平移矩阵应为零矩阵。
作为本发明的优选,当某一位置的棋盘格靶标可被三个以上的传感器同时观测到时,则不需要移动棋盘格靶标增加标定观测的位置,只需选择多个传感器组合进行联合标定,此时该位置的标定误差为多个传感器组合标定误差之和。
作为本发明的优选,当所述传感器为激光雷达传感器时,步骤S2提取棋盘格靶标角点的具体步骤如下:
步骤S2.1、同时启动所有激光雷达传感器,等到激光雷达传感器运行稳定后,获取各个激光雷达传感器得到的棋盘格靶标放置在指定位置的点云数据;
步骤S2.2、调整指定位置的棋盘格靶标的角度,再次启动所有激光雷达传感器,得到不同角度的棋盘格靶标的点云数据;
步骤S2.3、分别提取步骤S2.1和步骤S2.2中不同激光雷达传感器获取的点云数据中棋盘格角点在激光雷达空间直角坐标系下的坐标,具体步骤如下:
步骤S2.3.1、对组成点云数据的每条扫描线,逐点计算相邻两个点的距离和角度,将一条扫描线分割成不同聚类,数学公式如下:
Figure BDA0003199794740000021
公式中:i为点云的序号,[Xi-1,Yi-1,Zi-1],[Xi,Yi,Zi],[Xi+1,Yi+1,Zi+1]分别是激光点i-1,i,i+1在激光雷达空间直角坐标系下的坐标,di是激光点i与激光点i-1在激光雷达空间直角坐标系下的欧式距离,dT表示激光点i与激光点i-1在激光雷达空间直角坐标系下的欧式距离的阈值,δ表示激光点i与激光点i-1构成的向量与激光点i与激光点i+1构成的向量之间余弦值的阈值;dT,δ根据激光雷达的角度分辨率计算;
步骤S2.3.2、统计步骤S2.3.1得到的每个聚类中点云的个数,剔除点云个数小于阈值的聚类;
步骤S2.3.3、根据特征向量之间的余弦相似度,合并不同扫描线分割的结果;
步骤S2.3.4、根据步骤S2.3.3得到的点云聚类结果,检测点云聚类中是否存在棋盘格靶标;
步骤S2.3.5、如果步骤S2.3.4判断得到表示棋盘格靶标的点云聚类,求棋盘格靶标上角点在激光雷达空间直角坐标系下的坐标。
作为本发明的优选,当所述传感器为相机传感器时,步骤S2提取棋盘格靶标角点的具体步骤如下:
步骤S2.1、同时启动所有相机传感器,等到相机传感器运行稳定后,获取各个相机传感器得到的棋盘格靶标放置在指定位置的图像;
步骤S2.2、调整指定位置的棋盘格靶标的角度,再次启动所有相机传感器,得到不同角度的棋盘格靶标的图像;
步骤S2.3、分别提取步骤S2.1和步骤S2.2中不同相机传感器获取的图像中棋盘格靶标角点在像素平面坐标系下的坐标,具体步骤如下:
步骤S2.3.1、根据已知的畸变参数,对图像进行畸变校正,然后对畸变校正后的图像f(x,y)进行高斯平滑滤波处理,减少图像的噪声,得到平滑后的图像g(x,y),数学公式如下:
Figure BDA0003199794740000031
公式中:
Figure BDA0003199794740000032
表示卷积操作,σ2表示函数的宽度参数,控制函数的径向作用范围;h(x,y)表示高斯平滑滤波核函数;(x,y)表示点在像素平面坐标系下的像素坐标,其中x的值表示点在像素平面坐标系u轴方向上的投影距离,y的值表示点在像素平面坐标系v轴方向上的投影距离,exp表示以自然常数e为底的指数函数;
步骤S2.3.2、对步骤S2.3.1得到的平滑后的图像g(x,y)根据下述公式构建Hessian矩阵:
Figure BDA0003199794740000033
公式中:gxxgxy及gyy分别是图像g(x,y)相对于x,y的二阶偏导数;
步骤S2.3.3、分解步骤S2.3.2得到的Hessian矩阵,求取Hessian矩阵的特征值,数学公式如下:
Figure BDA0003199794740000034
公式中:λ1,λ2表示Hessian矩阵两个特征值,D为计算Hessian矩阵特征值的中间临时变量;
步骤S2.3.4、根据Hessian矩阵的性质,Hessian矩阵两个特征值λ1,λ2在数值上表示图像灰度的二阶导数的极大值和极小值,取形状算子S(x,y)=λ1×λ2,当S取极小值时的(x0,y0)坐标即为棋盘格靶标角点的坐标,数学公式如下:
Figure BDA0003199794740000035
公式中:
Figure BDA0003199794740000036
表示(x0,y0)坐标处的形状算子,min表示取最小值的操作,局部范围的最小值即为极小值;
步骤S2.3.5、对步骤S2.3.4得到的每一个棋盘格靶标角点c遍历周围局部区域的像素,求每个像素的图像梯度向量与该像素到角点的向量的乘积的平方和;利用梯度下降优化算法优化棋盘格靶标角点的像素坐标使得得到的乘积的和最小;数学公式如下:
Figure BDA0003199794740000037
公式中:c′为步骤S2.3.4得到的像素坐标,
Figure BDA0003199794740000038
表示像素坐标c′的局部邻域,
Figure BDA0003199794740000039
表示像素P属于像素坐标c′的局部邻域,
Figure BDA00031997947400000310
为像素P的图像梯度向量gP的转置矩阵,argmin为求最小的操作,c为优化后的棋盘格靶标角点的像素坐标;
步骤S2.3.6、步骤S2.3.5得到的棋盘格靶标角点坐标即为像素平面坐标系下的棋盘格靶标角点坐标。
作为本发明的优选,当组合标定的传感器中传感器Sa与传感器Sb为激光雷达传感器时,步骤S3在求解传感器Sb与传感器Sa的外参参数时,采用梯度下降算法迭代优化传感器Sb与传感器Sa的外参矩阵;
其中,激光雷达传感器Sa到激光雷达传感器Sb的外参矩阵的计算公式如下:
Figure BDA00031997947400000311
式中,wi为棋盘格靶标角点i的误差权重,
Figure BDA00031997947400000312
为激光雷达传感器Sa到激光雷达传感器Sb的外参矩阵,
Figure BDA00031997947400000313
为由激光雷达传感器Sa扫描得到的棋盘格靶标角点在激光雷达传感器Sb构成的激光雷达空间直角坐标系的坐标,Xai为棋盘格靶标角点在激光雷达传感器Sa构成的激光雷达空间直角坐标系下的坐标;Xbi为棋盘格靶标角点在激光雷达传感器Sb构成的激光雷达空间直角坐标系下的坐标。
作为本发明的优选,当组合标定的传感器中传感器Sa与传感器Sb为相机传感器时,步骤S3在求解传感器Sb与传感器Sa的外参参数时,采用梯度下降算法迭代优化传感器Sb与传感器Sa的外参矩阵;其中,相机传感器Sa以及Sb相应的内参矩阵
Figure BDA0003199794740000041
已知,相机传感器Sa的尺度因子λa可以根据棋盘格靶标正方形的尺寸以及相邻两个棋盘格靶标角点在相机传感器Sa构成的像素平面坐标系下的距离求得,相机传感器Sb的尺度因子λb可以根据棋盘格靶标正方形的尺寸以及相邻两个棋盘格靶标角点在相机传感器Sb构成的像素平面坐标系下的距离求得;
相机传感器Sb到相机传感器Sa的外参矩阵的计算公式如下:
Figure BDA0003199794740000042
式中,
Figure BDA0003199794740000043
Figure BDA0003199794740000044
的逆矩阵,wi为棋盘格靶标角点i的误差权重,
Figure BDA0003199794740000045
为相机传感器Sb到相机传感器Sa的外参矩阵;
Figure BDA0003199794740000046
为相机传感器Sb拍摄得到的棋盘格靶标角点在相机传感器Sa构成的像素平面坐标系下的坐标,
Figure BDA0003199794740000047
为相机传感器Sa获取的相应棋盘格靶角点坐标,
Figure BDA0003199794740000048
为相机传感器Sb获取的相应棋盘格靶角点坐标,λ为比例因子,等于λa与λb的比值。
作为本发明的优选,步骤S6联合优化时,计算总的标定误差的计算公式如下:
Etotal=min(W1Ep1+W2Ep2+W3Ep3+…+WnEpn)
式中,Wn为第n组传感器组合标定误差的权重,可以通过计算不同传感器组合的测距精度或分辨率设定,传感器的测距精度或分辨率越高,其所对应的标定误差权重越大;传感器的测距精度或分辨率越低,其所对应的标定误差权重越小;Epn为第n组传感器组合时由传感器Sa与传感器Sb之间的标定误差,以及传感器Sb与传感器Sc之间标定误差,引起的传感器Sa与传感器Sc之间标定误差。
作为本发明的进一步优选,步骤S2.3.5根据点云聚类计算棋盘格靶标的角点在激光雷达空间直角坐标系下的坐标时,具体步骤如下:
a)建立点云棋盘格坐标系及棋盘格靶标坐标系,将点云聚类的所有点投影到点云棋盘格坐标系XOY平面;此时,经处理得到的点云棋盘格坐标系XOY平面不能与棋盘格靶标坐标系重合;
b)根据点云聚类中每个点的灰度值,建立灰度值直方图;根据直方图最大的两个峰值RL和RH,求出用于判断某个点对应的颜色的阈值范围[τl,τh];即如果一个点的灰度值大于上边界τh,该点表示白色;如果一个点的灰度值小于下边界τl,该点表示黑色,数学公式如下:
Figure BDA0003199794740000049
公式中:Ii为点云i的灰度值,Ci为该点表示的颜色,其中0表示白色,1表示黑色;
Figure BDA00031997947400000410
公式中:εg为一个大于2的常数,通常取4;
c)根据已知的棋盘格的类型、每个正方形的尺寸LGrid以及棋盘格靶标左下角正方形的颜色C(0,0),计算每个正方形的颜色以及该正方形左下角及右上角在棋盘格靶标坐标系的坐标,数学公式如下:
Figure BDA00031997947400000411
公式中:i,j表示每个正方形的行列号,C(i,j)表示行列号分别为i,j的正方形的颜色,NC,NR分别为每行/每列正方形的个数;
d)计算点云聚类中每个点的损失值;
e)根据Powell共轭方向集方法对步骤d)计算得到的点云聚类中所有点的损失值Cm进行优化,使得总的损失值Cm最小,可以得到优化后点云棋盘格坐标系到棋盘格靶标坐标系的转换矩阵
Figure BDA0003199794740000051
f)计算棋盘格靶标的角点在激光雷达空间直角坐标系下的坐标,数学公式如下:
Figure BDA0003199794740000052
公式中:
Figure BDA0003199794740000053
为优化后点云棋盘格坐标系到棋盘格靶标坐标系的转换矩阵,可由步骤e)获得;
Figure BDA0003199794740000054
为激光雷达空间直角坐标系转换到点云棋盘格坐标系的转换矩阵,旋转分量为
Figure BDA0003199794740000055
平移分量为点云中心在激光雷达空间直角坐标系下的坐标,可由a)获得。
作为本发明的进一步优选,步骤d)计算点云聚类中每个点的损失值的规则如下:
首先判断点i的灰度值Ii是否在[τl,τh]内,如果在[τl,τh]之内,点i的损失值为0;然后判断点i在棋盘格靶标坐标系的坐标
Figure BDA0003199794740000056
是否落在棋盘格靶标坐标系下的棋盘格范围中,如果点i在棋盘格范围外,计算点i到棋盘格四个顶点G最小的曼哈顿距离,记为点i的损失值;如果点i在棋盘格范围内,找到距离点i的曼哈顿距离最小的棋盘格角点Vi,并判断点i的颜色ci与棋盘格角点Vi的颜色
Figure BDA0003199794740000057
是否一致;如果一致,则点i的损失值为0;如果不一致,点i的损失值为点i到棋盘格角点Vi的曼哈顿距离;数学公式如下:
Figure BDA0003199794740000058
式中:Cm表示点云聚类中所有点的损失值,fg为点i的损失系数函数,如果点i的灰度值在阈值范围[τl,τh]内,则损失系数fg为0,否则损失系数fg为1,ci表示点i的颜色,
Figure BDA0003199794740000059
表示点i所在正方形的四个顶点中,距离点i曼哈顿距离最近的顶点的颜色;fin为判断点i是否在棋盘格范围内的函数;G表示棋盘格的四个顶点,Vi表示点i所在正方形的顶点;
Figure BDA00031997947400000510
表示点i在棋盘格靶标坐标系下的坐标;fd表示计算曼哈顿距离的函数;Δx1,Δx2,Δy1,Δy2表示点i到所在正方形四条边的距离;min表示取最小的输入值的操作。
本发明的另一目的在于一种多激光雷达和多相机联合标定系统,该系统包括棋盘格靶标、至少四个传感器、第一数据处理模块、第二数据处理模块、传感器组选择模块、传感器识别模块、第一外参计算模块、第二外参计算模块、第三外参计算模块、累计误差计算模块、标定模块;其中,所述传感器包括激光雷达传感器和相机传感器,激光雷达传感器与第一数据处理模块连接,用于将检测的数据发送给第一数据处理模块;相机传感器与第二数据处理模块连接,用于将检测的数据发送给第二数据处理模块;
所述第一数据处理模块,用于对激光雷达传感器发送的数据进行处理,计算棋盘格靶标角点在不同激光雷达传感器构成的激光雷达空间直角坐标系下的坐标;
所述第二数据处理模块,用于对相机传感器发送的数据进行处理,计算棋盘格靶标角点在不同相机传感器构成的像素平面坐标系下的坐标;
所述传感器组选择模块,用于根据第一数据处理模块、第二数据处理模块发送的数据,选择对某一位置的棋盘格靶标进行组合标定的三个传感器,选择的三个传感器分别记为传感器Sa、传感器Sb以及传感器Sc;对传感器进行选择时,选择棋盘格靶标完整的出现在传感器视野中的传感器;
所述传感器识别模块,用于对组合标定的三个传感器的类型进行识别,根据传感器类型选择不同传感器之间计算外参矩阵的方法,当传感器Sa与传感器Sb均为激光雷达传感器时,则利用第一外参计算模块计算;当传感器Sa与传感器Sb均为相机传感器时,则利用第二外参计算模块计算,当传感器Sa为激光雷达传感器,传感器Sb为相机传感器时,则利用第三外参计算模块计算;
所述第一外参计算模块,用于计算激光雷达传感器Sa与激光雷达传感器Sb之间的外参参数,计算公式如下:
Figure BDA0003199794740000061
式中,wi为棋盘格靶标角点i的误差权重,
Figure BDA0003199794740000062
为激光雷达传感器Sa到激光雷达传感器Sb的外参矩阵,
Figure BDA0003199794740000063
为由激光雷达传感器Sa扫描得到的棋盘格靶标角点在激光雷达传感器Sb构成的激光雷达空间直角坐标系的坐标,Xai为棋盘格靶标角点在激光雷达传感器Sa构成的激光雷达空间直角坐标系下的坐标;Xbi为棋盘格靶标角点在激光雷达传感器Sb构成的激光雷达空间直角坐标系下的坐标;
所述第二外参计算模块,用于计算相机传感器Sb与相机传感器Sa之间的外参参数;计算公式如下:
Figure BDA0003199794740000064
式中,
Figure BDA0003199794740000065
Figure BDA0003199794740000066
的逆矩阵,wi为棋盘格靶标角点i的误差权重,
Figure BDA0003199794740000067
为相机传感器Sb到相机传感器Sa的外参矩阵;
Figure BDA0003199794740000068
为相机传感器Sb拍摄得到的棋盘格靶标角点在相机传感器Sa构成的像素平面坐标系下的坐标,
Figure BDA0003199794740000069
为相机传感器Sa获取的相应棋盘格靶角点坐标,
Figure BDA00031997947400000610
为相机传感器Sb获取的相应棋盘格靶角点坐标,λ为比例因子,等于λa与λb的比值;相机传感器Sa的尺度因子λa可以根据棋盘格靶标正方形的尺寸以及相邻两个棋盘格靶标角点在相机传感器Sa构成的像素平面坐标系下的距离求得;相机传感器Sb的尺度因子λb可以根据棋盘格靶标正方形的尺寸以及相邻两个棋盘格靶标角点在相机传感器Sb构成的像素平面坐标系下的距离求得;
所述第三外参计算模块,用于计算激光雷达传感器Sa与相机传感器Sb之间的外参参数,计算公式如下:
Figure BDA00031997947400000611
式中:wi为棋盘格靶标角点i的误差权重,λ为比例系数,数值大小等于点在相机传感器Sb构成的相机空间直角坐标系下的Z轴坐标的倒数,
Figure BDA00031997947400000612
为激光雷达传感器Sa到相机传感器Sb的外参矩阵,
Figure BDA00031997947400000613
为激光雷达传感器Sa扫描得到的棋盘格靶标角点在相机传感器Sb构成的像素平面坐标系下的坐标,Xai为棋盘格靶标角点在激光雷达传感器Sa构成的激光雷达空间直角坐标系下的坐标;Xbi为棋盘格靶标角点在相机传感器Sb构成的像素平面坐标系下的坐标;
Figure BDA00031997947400000614
为相机传感器Sb相应的内参矩阵;
所述累计误差计算模块,用于根据第一外参计算模块、第二外参计算模块、第三外参计算模块计算的数据计算由传感器Sa与传感器Sb之间的标定误差,以及传感器Sb与传感器Sc之间标定误差,引起的传感器Sa与传感器Sc之间标定误差;
所述标定模块,用于联合优化不同位置的棋盘格靶标角点的坐标累积误差,使得总的标定误差最小;同时,由于不同传感器组构成一个回环,回环的旋转矩阵应为单位阵,平移矩阵应为零矩阵,以此计算外参参数。
本发明的优点和技术效果是:
1、本发明提供的标定方法不要求所有传感器都有共同视野,不要求传感器的安装位置以及数目,该方法可根据棋盘格靶标是否完整出现在传感器视野中,选择进行组合标定的传感器,之后根据多个位置不同的组合标定,进行外参参数的优化。
2、本发明在多激光雷达和多相机联合标定时加入回环约束,要求不同传感器组构成一个回环时,回环的旋转矩阵为单位阵,平移矩阵为零矩阵,从而保证任意两个传感器之间的外参参数的精度。
3、本发明通过引入不同特征点的误差权重,降低低分辨率传感器引起的标定误差的权重,使其可以适用于多种标定场景,不必要求标定时天气良好、视野清楚;如果天气良好、视野清楚,可以得到高精度的特征点,则所有特征点的误差权重均设为1;如果视野不佳,对相机检测特征点造成影响,则降低相机检测的特征点的误差权重;如果天气环境不好,则降低距离传感器较远的特征点的误差权重。
4、本发明通过设置不同的误差权重,保证整体优化时惩罚引入误差较大的特征点,避免因为某些检测的特征点误差过大,造成得到的传感器之间的外参参数的误差过大。
附图说明
图1是多激光雷达和多相机在车辆上的安装示意图之一;
图2是多激光雷达和多相机在车辆上的安装示意图之二;
图3是本发明标定方法的整体流程图;
图4是点云棋盘格坐标系示意图;
图5是点云棋盘格坐标系XOY平面与棋盘格靶标坐标系误差示意图;
图6是判断直方图峰值的示意图;
图7a是点在格子内时,根据点与棋盘格的位置关系计算曼哈顿距离的示意图;
图7b是点在棋盘格外部时,根据点与棋盘格的位置关系计算曼哈顿距离的示意图;
图8是图1中的传感器S2与S5互换位置后的示意图;
图9是优化角点坐标的原理图;
图10是本发明标定系统的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述;显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
另外,在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其它方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
需要说明的是,在不冲突的情况下,本公开中的实施方式及实施方式中的特征可以相互组合。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。下面将参考附图并结合实施方式来详细说明本公开的技术方案。
本发明旨在提供一种多激光雷达和多相机联合标定方法,图1描述了本发明多激光雷达和多相机联合标定时采用2个相机传感器和3个激光雷达传感器时,相机传感器和激光雷达传感器的安装位置以及棋盘格靶标摆放位置的示意图;其中,S1、S4、S5代表激光雷达传感器,S2、S3代表相机传感器(实施例中所有相机的内参参数矩阵、畸变参数均为已知),P1至P4代表棋盘格靶标;图2描述了本发明多激光雷达和多相机联合标定时采用6个相机传感器或激光雷达传感器时,相机传感器或激光雷达传感器的安装位置以及棋盘格靶标摆放位置的示意图;图3描述了本发明多激光雷达和多相机联合标定方法的整体流程图。
实施例1一种多激光雷达和多相机联合标定方法
如图1至图3所示,本发明提供的一种多激光雷达和多相机联合标定方法,具体标定过程如下:
步骤S1、放置棋盘格靶标
将棋盘格靶标放置在S1、S2、S3三个传感器共同视野范围内,距离车前大致在5-10m的P1位置,调整棋盘格靶标角度及高度,使得棋盘格靶标在传感器中视野良好,棋盘格靶标可以完整出现在传感器视野中;
其中,所述棋盘格靶标中心的高度与激光雷达传感器S1的安装高度(S1重心到地面的垂直距离)大致相等;棋盘格靶标每行每列包含的正方形的个数(NC,NR)以及每个正方形的尺寸LGrid均是已知。
本发明对棋盘格靶标的放置顺序不做要求,可以先标定P2或者P3位置的棋盘格靶标,本实施例只举例最先标定放置在P1位置的棋盘格靶标这种情况。
步骤S2、提取棋盘格靶标角点
步骤S2.1、同时启动传感器S1、S2、S3,等到传感器运行稳定后,获取各个传感器得到的棋盘格靶标放置在P1位置的图像以及点云数据;
步骤S2.2、调整P1位置的棋盘格靶标的角度,再次启动传感器S1、S2、S3,得到不同角度的棋盘格靶标的图像和点云数据;
步骤S2.3、提取步骤S2.1和步骤S2.2中激光雷达传感器S1获取的点云数据中棋盘格角点在激光雷达空间直角坐标系下的坐标;其中,激光雷达空间直角坐标系是以激光雷达重心为原点,Y轴指向车前进的方向,Z轴垂直于车身,指向车顶,X轴与Y轴Z轴共同形成右手坐标系;激光雷达空间直角坐标系是局部坐标系,不同激光雷达可以构成不同激光雷达空间直角坐标系,同一激光雷达在不同位置构成不同的激光雷达空间直角坐标系;所述点云数据由多条扫描线组成,每一条扫描线由多个点组成;所述步骤S2.3的具体步骤如下:
步骤S2.3.1、对组成点云数据的每条扫描线,逐点计算相邻两个点的距离和角度,将一条扫描线分割成不同聚类,数学公式如下:
Figure BDA0003199794740000081
公式(1)中:i为点云的序号,[Xi-1,Yi-1,Zi-1],[Xi,Yi,Zi],[Xi+1,Yi+1,Zi+1]分别是激光点i-1,i,i+1在激光雷达空间直角坐标系下的坐标,di是激光点i与激光点i-1在激光雷达空间直角坐标系下的欧式距离,dT表示激光点i与激光点i-1在激光雷达空间直角坐标系下的欧式距离的阈值,δ表示激光点i与激光点i-1构成的向量与激光点i与激光点i+1构成的向量之间余弦值的阈值;dT,δ根据激光雷达的角度分辨率计算。
步骤S2.3.2、统计步骤S2.3.1得到的每个聚类中点云的个数,剔除点云个数小于阈值的聚类;点云个数的阈值根据聚类中心到激光雷达重心的欧式距离及激光雷达的角度分辨率计算。
步骤S2.3.3、合并不同扫描线分割的结果;计算每个类别的特征向量,并根据特征向量之间的余弦相似度,合并余弦相似度高的扫描线。
步骤S2.3.4、根据步骤S2.3.3得到的点云聚类结果,检测点云聚类中是否存在棋盘格靶标;判断标准有3个,如下所示:
a)对每个点云聚类进行主成分分析(Principle Component Analysis,PCA)分解,得到每个聚类的特征向量
Figure BDA0003199794740000082
和相应特征值(θ1,θ2,θ3),根据特征值(θ1,θ2,θ3)计算各聚类区域的形状描述子;其中,所述形状描述子包括线性描述子、平面描述子和球状描述子三类。如果一个点云聚类表示棋盘格靶标,该聚类应该满足计算得到的平面描述子的值大于线性描述子和球状描述子,数学公式如下:
Figure BDA0003199794740000091
公式(2):D1D为线性描述子,D2D为平面描述子,D3D为球状描述子,max表示取最大值的操作;
b)统计每个点云聚类包含的点云的数目Nn,如果一个点云聚类表示棋盘格靶标,则该聚类包含的点的个数应该满足数学公式,如下所示:
Figure BDA0003199794740000092
公式(3):Ntre表示激光雷达能扫描到的最多的点的个数,dW,dH分别是棋盘格靶标的宽和高,r为聚类中心到激光雷达重心的距离,Δh,Δv分别是激光雷达的水平和垂直分辨率,
Figure BDA0003199794740000093
表示将输入值向下取整的操作。
c)对每个聚类进行KS(Kolmogorov–Smirnov)检验,检查聚类的点是否满足均匀分布,如果满足均匀分布,KS检验得到的D值应该小于阈值;其中,D值表示样本所属总体的分布与均匀分布之间的最大距离;阈值可以通过查找KS单样本检验临界值表获得;KS单样本检验临界值表是一张列举不同显著性水平及不同样本数量下的D的临界值的表格,根据聚类中的点云的个数以及提前设定的显著性水平,可以在KS单样本检验临界值表找到对应的最大的临界值,如果KS检验得到的D值大于该临界值,表明聚类不满足均匀分布;
如果某个点云聚类同时满足上述三个条件,则认为该点云聚类表示棋盘格靶标。如果不满足上述任意一个条件,则剔除该点云聚类,不进行后续操作。
步骤S2.3.5、如果步骤S2.3.4判断得到表示棋盘格靶标的点云聚类,求棋盘格靶标上角点(两个正方形相交的顶点)在激光雷达空间直角坐标系下的坐标,具体步骤如下:
a)以点云聚类的中心为原点,
Figure BDA0003199794740000094
为X轴,
Figure BDA0003199794740000095
为Y轴,
Figure BDA0003199794740000096
为Z轴,旋转坐标轴,使得Z轴平行于点云法向量并指向激光雷达,X轴的指向与激光雷达空间直角坐标系下的X轴相同,以此得到的坐标系称为点云棋盘格坐标系(如图4所示)。之后以棋盘格靶标中心为原点,X轴平行棋盘格平面并且指向和点云棋盘格坐标系中X轴指向一致,Y轴平行棋盘格平面朝上,建立棋盘格靶标坐标系。
将点云聚类的所有点投影到点云棋盘格坐标系XOY平面,理想情况下投影后的点应该在棋盘格靶标范围内,但是由于激光雷达与棋盘格靶标之间不一定是垂直扫描,可能存在一定的角度,因而扫描得到的棋盘格点云可能存在坐标位置误差,使得计算得到的棋盘格点云特征向量
Figure BDA0003199794740000097
不准确,因此经过步骤S2.3.5)中a)处理得到的点云棋盘格坐标系XOY平面不能与棋盘格靶标坐标系重合(如图5所示)。
b)根据点云聚类中每个点的灰度值,建立灰度值直方图;根据直方图最大的两个峰值RL和RH(如图6所示),求出用于判断某个点对应的颜色的阈值范围[τl,τh]。即如果一个点的灰度值大于上边界τh,该点表示白色;如果一个点的灰度值小于下边界τl,该点表示黑色。数学公式如下:
Figure BDA0003199794740000098
公式(4)中:Ii为点云i的灰度值,Ci为该点表示的颜色,其中0表示白色,1表示黑色。
Figure BDA0003199794740000099
公式(5)中:εg为一个大于2的常数,通常取4;
c)根据已知的棋盘格的类型(即每行每列包含的正方形的个数)、每个正方形的尺寸LGrid以及棋盘格靶标左下角正方形的颜色C(0,0),计算每个正方形的颜色以及该正方形左下角及右上角在棋盘格靶标坐标系的坐标,数学公式如下:
Figure BDA0003199794740000101
公式(6)中:i,j表示每个正方形的行列号,C(i,j)表示行列号分别为i,j的正方形的颜色,NC,NR分别为每行/每列正方形的个数,(xi,yi)表示行列号分别为i,j的正方形左下角在棋盘格靶标坐标系的坐标,(xi+1,yi+1)表示行列号分别为i,j的正方形右上角在棋盘格靶标坐标系的坐标;
d)计算点云聚类中每个点的损失值,规则如下:首先判断点i的灰度值Ii是否在[τl,τh]内,如果在[τl,τh]之内,点i的损失值为0;然后判断点i在棋盘格靶标坐标系的坐标
Figure BDA0003199794740000102
是否落在棋盘格靶标坐标系下的棋盘格范围中,如果点i在棋盘格范围外,计算点i到棋盘格四个顶点G最小的曼哈顿距离,记为点i的损失值;如果点i在棋盘格范围内,找到距离点i的曼哈顿距离最小的棋盘格角点Vi,并判断点i的颜色ci与棋盘格角点Vi的颜色
Figure BDA0003199794740000103
是否一致;如果一致,则点i的损失值为0;如果不一致,点i的损失值为点i到棋盘格角点Vi的曼哈顿距离;数学公式如下:
Figure BDA0003199794740000104
公式(7)中:Cm表示点云聚类中所有点的损失值,fg为点i的损失系数函数,如果点i的灰度值在阈值范围[τl,τh]内,则损失系数fg为0,否则损失系数fg为1,ci表示点i的颜色,
Figure BDA0003199794740000105
表示点i所在正方形的四个顶点中,距离点i曼哈顿距离最近的顶点的颜色,fin为判断点i是否在棋盘格范围内的函数,G表示棋盘格的四个顶点,Vi表示点i所在正方形的顶点,
Figure BDA0003199794740000106
表示点i在棋盘格靶标坐标系下的坐标,fd表示计算曼哈顿距离的函数。Δx1,Δx2,Δy1,Δy2表示点i到所在正方形四条边的距离,min表示取最小的输入值的操作。
举例说明,点P的灰度值在[τl,τh]内,则点P对应的损失系数为0,即点P的损失值为0;否则判断点P是否在棋盘格内部,若点P在棋盘格内部,如图7(a)所示,因为点P距离顶点V4的曼哈顿距离最近,则点P的损失值为
Figure BDA0003199794740000107
如果点P表示的颜色与顶点V4的颜色相同,则P点的损失值为0,否则为(Δx1+Δy1);如点P在棋盘格外部,如图7(b)所示,因为点P距离棋盘格顶点G4的曼哈顿距离最近,则点P的损失值为(Δx1+Δy1)。
e)由步骤S2.3.5中b)可知棋盘格特征向量
Figure BDA0003199794740000108
不准确,因此经过步骤S2.3.5中a)处理得到的点云棋盘格坐标系XOY平面不能与棋盘格靶标坐标系重合,根据公式(7)计算得到的Cm不等于0;根据Powell共轭方向集方法对公式(7)进行优化,使得计算得到总的损失值Cm最小,可以得到优化后点云棋盘格坐标系到棋盘格靶标坐标系的转换矩阵
Figure BDA0003199794740000109
f)计算棋盘格靶标的角点在激光雷达空间直角坐标系下的坐标,数学公式如下:
Figure BDA0003199794740000111
公式(8)中:
Figure BDA0003199794740000112
为优化后点云棋盘格坐标系到棋盘格靶标坐标系的转换矩阵,可由步骤S2.3.5中e)获得;
Figure BDA0003199794740000113
为激光雷达空间直角坐标系转换到点云棋盘格坐标系的转换矩阵,旋转分量为
Figure BDA0003199794740000114
平移分量为点云中心在激光雷达空间直角坐标系下的坐标,可由步骤S2.3.5中a)获得。
步骤S2.4、分别提取步骤S2.1和步骤S2.2中相机传感器S2和S3获取的图像中棋盘格靶标角点在像素平面坐标系下的坐标,像素平面坐标系是以相片左上角为坐标系原点,横轴为u,指向右,对应相机空间直角坐标系中的X轴,纵轴为v,指向下,对应相机直角空间坐标系中的Y轴,像素平面坐标系是局部坐标系,不同相机拍摄的不同照片可以构成不同的像素平面坐标系,同一相机拍摄的不同照片可以构成不同的像素平面坐标系;相机空间直角坐标系是以相机重心为坐标原点,Y轴垂直与车辆,指向车底;X轴垂直于车辆行进的方向,指向右;Z轴指向车辆前进的方向;相机空间直角坐标系是局部坐标系,不同相机构成不同的相机空间直角坐标系,同一相机在不同位置构成不同的相机空间直角坐标系;具体步骤如下:
步骤S2.4.1、根据已知的畸变参数,对图像进行畸变校正,然后对畸变校正后的图像f(x,y)进行高斯平滑滤波处理,减少图像的噪声,得到平滑后的图像g(x,y),数学公式如下:
Figure BDA0003199794740000115
公式(18)中:
Figure BDA0003199794740000116
表示卷积操作,σ2表示函数的宽度参数,控制函数的径向作用范围;h(x,y)表示高斯平滑滤波核函数;(x,y)表示点在像素平面坐标系下的像素坐标,其中x的值表示点在像素平面坐标系u轴方向上的投影距离,y的值表示点在像素平面坐标系v轴方向上的投影距离,exp表示以自然常数e为底的指数函数。
步骤S2.4.2)对步骤S2.4.1得到的平滑后的图像g(x,y)根据数学公式(19)构建Hessian矩阵:
Figure BDA0003199794740000117
公式(19)中:gxxgxy及gyy分别是图像g(x,y)相对于x,y的二阶偏导数。
步骤S2.4.3、分解步骤S2.4.2得到的Hessian矩阵,求取Hessian矩阵的特征值,数学公式如下:
Figure BDA0003199794740000118
公式(20)中:λ1,λ2表示Hessian矩阵两个特征值,D为计算Hessian矩阵特征值的中间临时变量。
步骤S2.4.4、根据Hessian矩阵的性质,Hessian矩阵两个特征值λ1,λ2在数值上表示图像灰度的二阶导数的极大值和极小值,取形状算子S(x,y)=λ1×λ2,当S取极小值时的(x0,y0)坐标即为棋盘格靶标角点的坐标,数学公式如下:
Figure BDA0003199794740000119
公式(21)中:
Figure BDA00031997947400001110
表示(x0,y0)坐标处的形状算子,min表示取最小值的操作,局部范围的最小值即为极小值。
步骤S2.4.5、由于图像中的像素灰度值呈连续变化,因此步骤S2.4.4得到的像素坐标不一定是棋盘格靶标角点的像素坐标,为了得到真实的棋盘格靶标角点位置,需要对像素坐标进一步优化,原理如下,如图9所示,棋盘格靶标角点局部区域内的一个像素P的图像梯度向量gP与像素到棋盘格靶标角点的向量的乘积为0。因此对步骤S2.4.4得到的每一个棋盘格靶标角点c遍历周围局部区域的像素,求每个像素的图像梯度向量与该像素到角点的向量的乘积的平方和;利用梯度下降优化算法优化棋盘格靶标角点的像素坐标使得得到的乘积的和最小;梯度下降优化算法终止的条件是迭代的次数超过相应的阈值或者梯度下降的阈值小于相应的阈值;数学公式如下:
Figure BDA0003199794740000121
公式(22)中:c′为步骤S2.3.4得到的像素坐标,
Figure BDA0003199794740000122
表示像素坐标c′的局部邻域,
Figure BDA0003199794740000123
表示像素P属于像素坐标c′的局部邻域,
Figure BDA0003199794740000124
为像素P的图像梯度向量gP的转置矩阵,argmin为求最小的操作,c为优化后的棋盘格靶标角点的像素坐标。
步骤S2.4.6、步骤S2.4.5得到的棋盘格靶标角点坐标即为像素平面坐标系下的棋盘格靶标角点坐标。
步骤S3、根据传感器类型选择不同传感器之间计算外参矩阵的方法;
多激光雷达传感器和多相机传感器联合标定,根据传感器不同的类型,可以分成激光雷达传感器与激光雷达传感器标定,相机传感器与相机传感器标定,以及激光雷达传感器与相机传感器标定三种情况;
(1)以激光雷达传感器S1与相机传感器S2为例,激光雷达传感器与相机传感器的标定原理如下:
将棋盘格靶标角点在激光雷达传感器S1构成的激光雷达空间直角坐标系下的坐标X1通过外参矩阵
Figure BDA0003199794740000125
转换到相机传感器S2构成的相机空间直角坐标系中,并进行坐标归一化,即将其在相机空间直角坐标系下的坐标分别除以其在相机空间直角坐标系下的Z轴坐标,使得其在相机空间直角坐标系下Z轴方向的坐标为1,然后通过小孔成像模型,利用相机传感器S2已知内参参数
Figure BDA0003199794740000126
最终将棋盘格靶标角点投影到相机传感器S2构成的像素平面坐标系中,获取由激光雷达传感器S1扫描得到的棋盘格靶标角点在相机传感器S2构成的像素平面坐标系下的坐标
Figure BDA0003199794740000127
然后计算
Figure BDA0003199794740000128
与相机传感器S2获取的相应棋盘格靶角点坐标X2的欧式距离的加权平方和Eerr;通过梯度下降算法迭代优化激光雷达传感器S1到相机传感器S2的外参矩阵
Figure BDA0003199794740000129
使得误差最小,从而完成激光雷达传感器S1到相机传感器S2的标定,得到激光雷达传感器S1到相机传感器S2的外参矩阵
Figure BDA00031997947400001210
数学公式如下:
Figure BDA00031997947400001211
Figure BDA00031997947400001212
公式(14)中:wi为棋盘格靶标角点i的误差权重,λ为比例系数,数值大小等于点在相机传感器S2构成的相机空间直角坐标系下的Z轴坐标的倒数,wi有多种求解方法,公式(14)采用棋盘格靶标角点到某一传感器的距离的倒数,即棋盘格靶标角点到激光雷达传感器S1重心的距离的倒数作为权重。
(2)以相机传感器S2与相机传感器S3为例,相机传感器与相机传感器的标定原理如下:
将棋盘格靶标角点在相机传感器S3构成的像素平面坐标系下的坐标X3通过相机传感器S3的内参矩阵
Figure BDA00031997947400001213
的逆矩阵以及尺度因子γ3转换到相机传感器S3构成的相机空间直角坐标系下,尺度因子γ3可以根据正方形的尺寸LGrid以及相邻两个棋盘格靶标角点在相机传感器S3构成的像素平面坐标系下距离求得,然后通过相机传感器S3到相机传感器S2的外参矩阵
Figure BDA00031997947400001214
转换到相机传感器S2构成的相机空间直角坐标系下,最后通过相机传感器S2的内参矩阵
Figure BDA00031997947400001215
以及尺度因子γ2转换到相机S2构成的像素平面坐标系下,尺度因子γ2可以根据正方形的尺寸LGrid以及相邻两个棋盘格靶标角点在相机传感器S2构成的像素平面坐标系下距离求得,得到由相机传感器S3拍摄的棋盘格靶标角点在相机传感器S2构成的像素平面坐标系下的坐标
Figure BDA00031997947400001216
然后计算
Figure BDA00031997947400001217
与相机传感器S2获取的相应标定盘角点X2的欧式距离的加权平方和Eerr;通过梯度下降法迭代优化外参矩阵
Figure BDA00031997947400001218
使得误差Eerr最小,从而完成相机传感器S2到相机传感器S3的标定,得到相机传感器S2到相机传感器S3的外参矩阵
Figure BDA00031997947400001219
梯度下降算法迭代的终止条件是迭代的次数大于给定的相应阈值或者梯度下降的幅度小于相应的阈值,数学公式如下:
Figure BDA0003199794740000131
Figure BDA0003199794740000132
公式(15)中:
Figure BDA0003199794740000133
为相机传感器S3的内参矩阵
Figure BDA0003199794740000134
的逆矩阵,
Figure BDA0003199794740000135
以及
Figure BDA0003199794740000136
均为已知,γ为比例因子,等于γ2与γ3的比值。wi为棋盘格靶标角点i的误差权重,公式(15)选取棋盘格靶标角点到相机传感器S2重心的距离的倒数作为权重。
(3)以激光雷达传感器S1与激光雷达传感器S4为例,激光雷达传感器与激光雷达传感器的标定原理如下:
将棋盘格靶标角点在激光雷达传感器S1构成的激光雷达空间直角坐标系下的坐标X1通过外参矩阵
Figure BDA0003199794740000137
转换到激光雷达传感器S4构成的激光雷达空间直角坐标系中,获取由激光雷达传感器S1扫描得到的棋盘格靶标角点在激光雷达传感器S4构成的激光雷达空间直角坐标系的坐标
Figure BDA0003199794740000138
然后计算
Figure BDA0003199794740000139
与激光雷达传感器S4获取的相应棋盘格靶角点坐标X4的欧式距离的加权平方和Eerr;通过梯度下降算法迭代优化激光雷达传感器S1到激光雷达传感器S4的外参矩阵
Figure BDA00031997947400001310
使得误差最小,从而完成激光雷达传感器S1到激光雷达传感器S4的标定,得到激光雷达传感器S1到激光雷达传感器S4的外参矩阵
Figure BDA00031997947400001311
数学公式如下:
Figure BDA00031997947400001312
公式(16)中:wi为棋盘格靶标角点i的误差权重,wi有多种求解方法,公式(16)选取棋盘格靶标角点到激光雷达传感器S1重心的距离的倒数作为权重。
步骤S3.1、根据步骤S2.3及步骤S2.4得到的棋盘格靶标角点在激光雷达空间直角坐标系及像素平面坐标系下的坐标,以及激光雷达传感器与相机传感器的标定原理,求解激光雷达传感器S1到相机传感器S2的外参矩阵
Figure BDA00031997947400001313
步骤S3.2、根据步骤S2.3及步骤S2.4得到的棋盘格靶标角点在不同像素平面坐标系下的坐标,以及相机传感器与相机传感器的标定原理,求解传感器传感器S2到传感器传感器S3的外参矩阵
Figure BDA00031997947400001314
步骤S4、计算基于多观测值的棋盘格靶标角点的坐标累积误差
根据步骤S3得到的激光雷达传感器S1到相机传感器S2的外参矩阵
Figure BDA00031997947400001315
以及相机传感器S2到相机传感器S3的外参矩阵
Figure BDA00031997947400001316
通过矩阵相乘,得到激光雷达传感器S1到相机传感器S3的外参矩阵
Figure BDA00031997947400001317
将棋盘格靶标角点在激光雷达传感器S1激光雷达空间直角坐标系下的坐标X1通过求得的外参矩阵
Figure BDA00031997947400001318
转换到相机传感器S3构成的相机空间直角坐标系下,并完成坐标归一化,然后通过相机传感器S3的内参矩阵
Figure BDA00031997947400001319
转换到相机传感器S3像素平面坐标系中,得到激光雷达传感器S1获取的棋盘格靶标角点通过转换在相机传感器S3像素平面坐标系下的坐标
Figure BDA00031997947400001320
计算
Figure BDA00031997947400001321
与相机传感器S3获取的相应的棋盘格靶标角点X3的欧式距离的加权平方和Ep1,数学公式为:
Figure BDA00031997947400001322
Figure BDA00031997947400001323
公式(17)中:Ep1表示激光雷达传感器S1与相机传感器S2之间的标定误差以及相机传感器S2与相机传感器S3之间标定误差,引起的激光雷达传感器S1与相机传感器S3之间标定误差,wi表示P1位置的棋盘格靶标角点的误差权重,根据说明选取棋盘格靶标角点到激光雷达传感器S1重心的距离的倒数,λ为比例系数,数值大小等于点在相机传感器S3构成的相机空间直角坐标系下的Z轴坐标的倒数;
步骤S5、移动棋盘格靶标,计算不同位置棋盘格靶标角点的坐标累积误差
步骤S5.1、将棋盘格靶标放置在P2位置,到车身的距离大致为2~5m,调整棋盘格靶标的角度及高度,确保棋盘格靶标在传感器S1、S2、S5的共同视野范围内,棋盘格靶标可以完整出现在传感器视野中;重复上述步骤S2,提取不同传感器获取的数据中的棋盘格靶标的角点坐标,根据步骤S3中不同传感器之间标定的原理,分别获取激光雷达传感器S1到激光雷达传感器S5的外参矩阵
Figure BDA0003199794740000141
激光雷达传感器S5到相机传感器S2的外参矩阵
Figure BDA0003199794740000142
然后根据矩阵相乘,获得激光雷达传感器S1到相机传感器S2的外参矩阵
Figure BDA0003199794740000143
根据步骤S4中的原理,将P2位置的棋盘格靶标角点在激光雷达传感器S1构成的激光雷达空间直角坐标系下的坐标X’1通过求得的外参矩阵
Figure BDA0003199794740000144
转换到相机传感器S2构成的相机空间直角坐标系下,并完成坐标归一化,然后通过相机传感器S2的内参矩阵
Figure BDA0003199794740000145
转换到传感器传感器S2像素平面坐标系下,得到激光雷达传感器S1获取的P2位置的棋盘格靶标角点通过转换在相机传感器S2构成的像素平面坐标系下的坐标
Figure BDA0003199794740000146
计算
Figure BDA0003199794740000147
与相机传感器S2获取的相应的棋盘格靶标角点X’2的欧式距离的加权平方和Ep2,从而得到由激光雷达传感器S1与激光雷达传感器S5之间的标定误差以及激光雷达传感器S5与相机传感器S2之间标定误差,引起的激光雷达传感器S1与相机传感器S2之间标定误差,数学公式为:
Figure BDA0003199794740000148
Figure BDA0003199794740000149
公式(18)中:
Figure BDA00031997947400001410
表示P2位置的棋盘格靶标角点在激光雷达传感器S1构成的激光雷达空间直角坐标系下的坐标,
Figure BDA00031997947400001411
表示P2位置的棋盘格靶标角点在相机传感器S2构成的像素平面坐标系下的坐标,wi表示P2位置的棋盘格靶标角点的误差权重,公式(18)选取棋盘格靶标角点到激光雷达传感器S1重心的距离的倒数作为误差权重,λ为比例系数,数值大小等于点在相机传感器S2构成的相机空间直角坐标系下的Z轴坐标的倒数。
步骤S5.2、将棋盘格靶标放置在P3位置,距离车身大致为2m-5m,调整棋盘格靶标的高度和角度,确保棋盘格靶标在传感器S1、S4、S5的共同视野范围内,棋盘格靶标可以完整出现在传感器视野中;重复上述步骤S2,提取不同传感器获取的数据中的棋盘格靶标的角点坐标,根据步骤S3中不同传感器之间标定的原理,分别获取激光雷达传感器S1到激光雷达传感器S4的外参矩阵
Figure BDA00031997947400001412
激光雷达传感器S4到激光雷达传感器S5的外参矩阵
Figure BDA00031997947400001413
然后根据矩阵相乘,获得激光雷达传感器S1到激光雷达传感器S5的外参矩阵
Figure BDA00031997947400001414
将P3位置的棋盘格靶标角点在激光雷达传感器S1构成的激光雷达空间直角坐标系下的坐标X”1通过求得的外参矩阵
Figure BDA00031997947400001415
转换到激光雷达传感器S5构成的激光雷达空间直角坐标系下,得到激光雷达传感器S1获取的P3位置的棋盘格靶标角点通过转换在激光雷达传感器S5构成的激光雷达空间直角坐标系下的坐标
Figure BDA00031997947400001416
计算
Figure BDA00031997947400001417
与激光雷达传感器S5获取的相应的棋盘格靶标角点
Figure BDA00031997947400001418
的欧式距离的加权平方和Ep3,从而得到由激光雷达传感器S1与激光雷达传感器S4之间的标定误差以及激光雷达传感器S4与激光雷达传感器S5之间标定误差,引起的激光雷达传感器S1与激光雷达传感器S5之间标定误差,数学公式为:
Figure BDA00031997947400001419
Figure BDA00031997947400001420
公式(19)中:
Figure BDA00031997947400001421
表示P3位置的棋盘格靶标角点i在激光雷达传感器S1构成的激光雷达空间直角坐标系下的坐标,
Figure BDA00031997947400001422
表示P3位置的棋盘格靶标角点i在激光雷达传感器S5构成的激光雷达空间坐标系下的坐标,wi表示P3位置的棋盘格靶标角点的误差权重,公式(19)选取棋盘格靶标角点到激光雷达传感器S1重心的距离的倒数。
步骤S5.3、将棋盘格靶标放置在P4位置,距离车身大致为2m-5m,调整棋盘格靶标的高度和角度,确保棋盘格靶标在传感器S1、S3、S4的共同视野范围内,棋盘格靶标可以完整出现在传感器视野中;重复上述步骤S2,提取不同传感器获取的数据中的棋盘格靶标的角点坐标,根据步骤S3中不同传感器之间标定的原理,分别获取激光雷达传感器S1到相机传感器S3的外参矩阵
Figure BDA0003199794740000151
相机传感器S3到激光雷达传感器S4的外参矩阵
Figure BDA0003199794740000152
然后根据矩阵相乘,获得激光雷达传感器S1到激光雷达传感器S4的外参矩阵
Figure BDA0003199794740000153
将P4位置的棋盘格靶标角点在激光雷达传感器S1构成的激光雷达空间直角坐标系下的坐标X″′1通过求得的外参矩阵
Figure BDA0003199794740000154
转换到激光雷达传感器S4构成的激光雷达空间直角坐标系下,得到激光雷达传感器S1获取的P4位置的棋盘格靶标角点通过转换在传感器S4构成的激光雷达空间直角坐标系下的坐标
Figure BDA0003199794740000155
计算
Figure BDA0003199794740000156
与传感器S4获取的相应的棋盘格靶标角点X″′4的欧式距离的加权平方和Ep4,以此计算由激光雷达传感器S1与相机传感器S3之间的标定误差以及相机传感器S3与激光雷达传感器S4之间标定误差,引起的激光雷达传感器S1与激光雷达传感器S4之间标定误差,则数学公式为:
Figure BDA0003199794740000157
Figure BDA0003199794740000158
公式(20)中:
Figure BDA0003199794740000159
表示P4位置的棋盘格靶标角点i在激光雷达传感器S1构成的激光雷达空间直角坐标系下的坐标,
Figure BDA00031997947400001510
表示P4位置的棋盘格靶标角点i在激光雷达传感器S4构成的激光雷达空间直角坐标系下的坐标,wi表示P4位置的棋盘格靶标角点的误差权重,公式(20)选取棋盘格靶标角点到激光雷达传感器S1重心的距离的倒数。
步骤S6、联合优化不同位置的棋盘格靶标角点的坐标累积误差
联合优化Ep1,Ep2,Ep3,Ep4,使得总的标定误差Etotal最小,数学公式如下:
Figure BDA00031997947400001511
公式(21)中:
Figure BDA00031997947400001512
分别是
Figure BDA00031997947400001513
中的旋转分量和平移分量,
Figure BDA00031997947400001514
Figure BDA00031997947400001515
的逆矩阵;
Figure BDA00031997947400001516
分别是
Figure BDA00031997947400001517
中的旋转分量和平移分量,
Figure BDA00031997947400001518
分别是
Figure BDA00031997947400001519
中的旋转分量和平移分量;
Figure BDA00031997947400001520
分别是
Figure BDA00031997947400001521
中的旋转分量和平移分量;
Figure BDA00031997947400001522
分别是
Figure BDA00031997947400001523
中的旋转分量和平移分量;W1,W2,W3,W4为不同传感器组合标定误差的权重,可以通过计算不同传感器组合的测距精度或分辨率设定。设定规则如下:传感器的测距精度或分辨率越高,其所对应的标定误差权重越大;传感器的测距精度或分辨率越低,其所对应的标定误差权重越小。
步骤S6可以通过使用matlab中的fmincon函数迭代求解,迭代的终止条件可以是迭代次数超过阈值或者总的标定误差Etotal收敛。
需要说明:由于步骤S3传感器进行组合标定时不考虑传感器的位置,因此当图1中传感器S1~S5的安装位置发生变化时,本方法仍然成立。例如:S2与S5位置调换(如图8所示),步骤S4的联合求解公式仍然成立,此时Ep1表示为传感器S1与传感器S5之间的标定误差以及传感器S5与传感器S3之间标定误差,引起的传感器S1与传感器S3之间标定误差;Ep3表示为传感器S1与传感器S2之间的标定误差以及传感器S2与传感器S4之间标定误差,引起的传感器S1与传感器S4之间标定误差;根据步骤S3不同传感器之间的标定误差公式,重新计算Ep1,Ep3,并且根据回环约束,重新计算约束条件。公式如下:
Figure BDA0003199794740000161
公式(22)中
Figure BDA0003199794740000162
分别是
Figure BDA0003199794740000163
中的旋转分量和平移分量,
Figure BDA0003199794740000164
Figure BDA0003199794740000165
的逆矩阵;
Figure BDA0003199794740000166
分别是
Figure BDA0003199794740000167
中的旋转分量和平移分量,
Figure BDA0003199794740000168
即为传感器S3到传感器S5的外参矩阵,可以通过标定传感器S3与传感器S5获得,标定方法与步骤S3中标定传感器S1与传感器S2相同,
Figure BDA0003199794740000169
分别是
Figure BDA00031997947400001610
中的旋转分量和平移分量;
Figure BDA00031997947400001611
Figure BDA00031997947400001612
的逆矩阵;
Figure BDA00031997947400001613
分别是
Figure BDA00031997947400001614
中的旋转分量和平移分量,
Figure BDA00031997947400001615
即为传感器S2到传感器S4的外参矩阵,可以通过标定传感器S2与传感器S4获得,标定方法与步骤S3中标定传感器S1与传感器S2相同;
Figure BDA00031997947400001616
分别是
Figure BDA00031997947400001617
中的旋转分量和平移分量;W1,W2,W3,W4为不同传感器组合标定误差的权重,可以通过计算不同传感器组合的测距精度设定。
另外,本发明针对安装的传感器的个数大于5的情况(如图2所示),可以根据两两传感器之间的视野情况,适当增加标定观测的位置。例如,一辆无人驾驶车辆在图1中所示的5个传感器基础上又增加第6个相机传感器S6,S1~S5的安装位置同图1图中所示相同,S6安装在S2与S5一侧,如果S1、S2、S5、S6四个传感器可以同时观测到P2位置的棋盘格靶标,则不需要增加标定观测的位置,P2位置的标定误差为S1,S2,S6组成的标定误差与S1,S5,S6组成的标定误差之和。如果S1、S2、S5、S6四个传感器不能同时观测到P2位置的棋盘格靶标,则需要新增观测位置P5,保证S1,S2,S6可以同时观测到P2位置的棋盘格靶标,S1,S5,S6可以同时观测到P5位置的棋盘格靶标。
为使本领域技术人员清楚理解上述计算过程,下面针对S1、S2、S5、S6四个传感器可以同时观测到P2位置的棋盘格靶标这种情况,给出数学方程,如下所示。其他增加传感器的情况可根据实际情况,修改方程。
Figure BDA00031997947400001618
公式(23)中Ep2为传感器S1与传感器S6之间的标定误差以及传感器S6与传感器S2之间标定误差,引起的传感器S1与传感器S2之间标定误差;E′p2为传感器S1与传感器S5之间的标定误差以及传感器S6与传感器S5之间标定误差,引起的传感器S1与传感器S6之间标定误差,W1为传感器组合S1、S2、S3标定误差的权重,W2为传感器组合S1、S2、S6标定误差的权重,W′2为传感器组合S1、S5、S6标定误差的权重,W3为传感器组合S1、S4、S5标定误差的权重,W4为传感器组合S1、S3、S4标定误差的权重;W1~W4可以通过计算不同传感器组合的测距精度或分辨率设定;
Figure BDA00031997947400001619
分别是传感器S6与传感器S5之间外参矩阵
Figure BDA00031997947400001620
中的旋转分量和平移分量,
Figure BDA00031997947400001621
可以通过标定传感器S6与传感器S5获得,方法与步骤S3)中传感器S1与传感器S2之间的标定方法相同;
Figure BDA00031997947400001622
分别是传感器S6与传感器S1之间外参矩阵
Figure BDA00031997947400001623
中的旋转分量和平移分量,
Figure BDA00031997947400001624
Figure BDA00031997947400001625
的逆矩阵,
Figure BDA00031997947400001626
可以通过标定传感器S1与传感器S6获得,标定的方法与步骤S3中传感器S1与传感器S2之间的标定方法相同。
需要说明,本发明对传感器的安装个数和位置没有要求,本申请提供的上述传感器的安装形式并不用于限定本发明的保护范围,本发明还可以在车的其他位置增加传感器,如增加其他传感器,可根据传感器的安装位置及实际情况相应修改上述方程。
实施例2一种多激光雷达和多相机联合标定系统
如图1、图10所示,本发明提供的一种多激光雷达和多相机联合标定系统,包括棋盘格靶标、至少四个同源传感器、第一数据处理模块1、第二数据处理模块2、传感器组选择模块3、传感器识别模块4、第一外参计算模块5、第二外参计算模块6、第三外参计算模块7、累计误差计算模块8、标定模块9;其中,所述棋盘格靶标放置在车附近某一位置,棋盘格靶标是由多个大小相等的黑白相间的正方形组成的靶标;所述传感器安装在车上,标定系统对传感器的安装位置以及传感器的类型不做要求,传感器包括激光雷达传感器和相机传感器,激光雷达传感器与第一数据处理模块1连接,用于将检测的数据发送给第一数据处理模块1;相机传感器与第二数据处理模块2连接,用于将检测的数据发送给第二数据处理模块2;
所述数据处理模块1,用于对激光雷达传感器发送的数据进行处理,计算棋盘格靶标角点在不同激光雷达传感器构成的激光雷达空间直角坐标系下的坐标;
所述第二数据处理模块2,用于对相机传感器发送的数据进行处理,计算棋盘格靶标角点在不同相机传感器构成的像素平面坐标系下的坐标;
所述传感器组选择模块3,用于根据第一数据处理模块1、第二数据处理模块2发送的数据,选择对某一位置的棋盘格靶标进行组合标定的三个传感器,选择的三个传感器分别记为传感器Sa,传感器Sb以及传感器Sc;对传感器进行选择时,选择棋盘格靶标完整的出现在传感器视野中的传感器;
所述传感器识别模块4,用于对组合标定的三个传感器的类型进行识别,根据传感器类型选择不同传感器之间计算外参矩阵的方法,当传感器Sa与传感器Sb均为激光雷达传感器时,则利用第一外参计算模块5计算;当传感器Sa与传感器Sb均为相机传感器时,则利用第二外参计算模块6计算,当传感器Sa为激光雷达传感器,传感器Sb为相机传感器时,则利用第三外参计算模块7计算;
所述第一外参计算模块5,用于计算激光雷达传感器Sa与激光雷达传感器Sb之间的外参参数,计算公式如下:
Figure BDA0003199794740000171
式中,wi为棋盘格靶标角点i的误差权重,
Figure BDA0003199794740000172
为激光雷达传感器Sa到激光雷达传感器Sb的外参矩阵,
Figure BDA0003199794740000173
为由激光雷达传感器Sa扫描得到的棋盘格靶标角点在激光雷达传感器Sb构成的激光雷达空间直角坐标系的坐标,Xai为棋盘格靶标角点在激光雷达传感器Sa构成的激光雷达空间直角坐标系下的坐标;Xbi为棋盘格靶标角点在激光雷达传感器Sb构成的激光雷达空间直角坐标系下的坐标;
所述第二外参计算模块6,用于计算相机传感器Sb与相机传感器Sa之间的外参参数;计算公式如下:
Figure BDA0003199794740000174
式中,
Figure BDA0003199794740000175
Figure BDA0003199794740000176
的逆矩阵,wi为棋盘格靶标角点i的误差权重,
Figure BDA0003199794740000177
为相机传感器Sb到相机传感器Sa的外参矩阵;
Figure BDA0003199794740000178
为相机传感器Sb拍摄得到的棋盘格靶标角点在相机传感器Sa构成的像素平面坐标系下的坐标,
Figure BDA0003199794740000179
为相机传感器Sa获取的相应棋盘格靶角点坐标,
Figure BDA00031997947400001710
为相机传感器Sb获取的相应棋盘格靶角点坐标,λ为比例因子,等于λa与λb的比值;相机传感器Sa的尺度因子λa可以根据棋盘格靶标正方形的尺寸以及相邻两个棋盘格靶标角点在相机传感器Sa构成的像素平面坐标系下的距离求得;相机传感器Sb的尺度因子λb可以根据棋盘格靶标正方形的尺寸以及相邻两个棋盘格靶标角点在相机传感器Sb构成的像素平面坐标系下的距离求得;
所述第三外参计算模块7,用于计算激光雷达传感器Sa与相机传感器Sb之间的外参参数,计算公式如下:
Figure BDA00031997947400001711
式中:wi为棋盘格靶标角点i的误差权重,λ为比例系数,数值大小等于点在相机传感器Sb构成的相机空间直角坐标系下的Z轴坐标的倒数,
Figure BDA00031997947400001712
为激光雷达传感器Sa到相机传感器Sb的外参矩阵,
Figure BDA00031997947400001713
为激光雷达传感器Sa扫描得到的棋盘格靶标角点在相机传感器Sb构成的像素平面坐标系下的坐标,Xai为棋盘格靶标角点在激光雷达传感器Sa构成的激光雷达空间直角坐标系下的坐标;Xbi为棋盘格靶标角点在相机传感器Sb构成的像素平面坐标系下的坐标;
Figure BDA0003199794740000181
为相机传感器Sb相应的内参矩阵;
所述累计误差计算模块8,用于根据第一外参计算模块5、第二外参计算模块6、第三外参计算模块7计算的数据,计算由传感器Sa与传感器Sb之间的标定误差,以及传感器Sb与传感器Sc之间标定误差,引起的传感器Sa与传感器Sc之间标定误差;
所述标定模块9,用于联合优化不同位置的棋盘格靶标角点的坐标累积误差,使得总的标定误差最小;同时,由于不同传感器组构成一个回环,回环的旋转矩阵应为单位阵,平移矩阵应为零矩阵,以此计算外参参数。
本领域技术人员可以理解,上述实施方式中各种方法/模块的全部或部分功能可以通过硬件的方式实现,也可以通过计算机程序的方式实现。当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存储器、磁盘、光盘、硬盘等,通过计算机执行该程序以实现上述功能。例如,将程序存储在设备的存储器中,当通过处理器执行存储器中程序,即可实现上述全部或部分功能。
另外,当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序也可以存储在服务器、另一计算机、磁盘、光盘、闪存盘或移动硬盘等存储介质中,通过下载或复制保存到本地设备的存储器中,或对本地设备的系统进行版本更新,当通过处理器执行存储器中的程序时,即可实现上述实施方式中全部或部分功能。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。

Claims (10)

1.一种多激光雷达和多相机联合标定方法,其特征在于,该方法包括以下步骤:
步骤S1、放置棋盘格靶标,通过调整棋盘格靶标角度及高度,使得棋盘格靶标可以完整出现在至少三个传感器视野中;
步骤S2、选择三个可同时观测到完整棋盘格靶标的传感器进行组合标定;启动传感器,提取棋盘格靶标角点;其中,三个传感器分别记为传感器Sa,传感器Sb以及传感器Sc;
步骤S3、对组合标定的三个传感器进行识别,根据传感器类型选择不同传感器之间计算外参矩阵的方法,以求解传感器Sb和其他两个传感器Sa、Sc的外参参数;
如传感器Sa为激光雷达传感器,传感器Sb为相机传感器,则非同源传感器之间的外参矩阵的计算公式如下:
Figure FDA0003199794730000011
式中:wi为棋盘格靶标角点i的误差权重,λ为比例系数,数值大小等于点在相机传感器Sb构成的相机空间直角坐标系下的Z轴坐标的倒数,
Figure FDA0003199794730000012
为激光雷达传感器Sa到相机传感器Sb的外参矩阵,
Figure FDA0003199794730000013
为激光雷达传感器Sa扫描得到的棋盘格靶标角点在相机传感器Sb构成的像素平面坐标系下的坐标,Xai为棋盘格靶标角点在激光雷达传感器Sa构成的激光雷达空间直角坐标系下的坐标;Xbi为棋盘格靶标角点在相机传感器Sb构成的像素平面坐标系下的坐标;
Figure FDA0003199794730000014
为相机传感器Sb相应的内参矩阵;
步骤S4、计算基于多观测值的棋盘格靶标角点的坐标累积误差
根据步骤S3得到的外参参数,通过矩阵相乘,得到传感器Sa到传感器Sc的外参参数;根据获取的外参参数计算传感器Sa获取的棋盘格靶标角点,通过转换在传感器Sc构成的像素平面坐标系下或激光雷达空间直角坐标系下的坐标,计算通过转换获取的坐标与传感器Sc获取的相应的棋盘格靶标角点的欧式距离的加权平方和,从而得到由传感器Sa与传感器Sb之间的标定误差,以及传感器Sb与传感器Sc之间标定误差,引起的传感器Sa与传感器Sc之间标定误差;
步骤S5、移动棋盘格靶标,按照步骤S1、步骤S2重新选择三个传感器进行组合标定,之后按照步骤S3、步骤S4计算当前组观测值下棋盘格靶标角点的坐标累积误差,直到完成所有传感器的标定;
步骤S6、联合优化不同位置的棋盘格靶标角点的坐标累积误差,使得总的标定误差最小;同时,由于不同传感器组构成一个回环,回环的旋转矩阵应为单位阵,平移矩阵应为零矩阵。
2.根据权利要求1所述的一种多激光雷达和多相机联合标定方法,其特征在于,当某一位置的棋盘格靶标可被三个以上的传感器同时观测到时,则不需要移动棋盘格靶标增加标定观测的位置,只需选择多个传感器组合进行联合标定,此时该位置的标定误差为多个传感器组合标定误差之和。
3.根据权利要求1或2所述的一种多激光雷达和多相机联合标定方法,其特征在于,当所述传感器为激光雷达传感器时,步骤S2提取棋盘格靶标角点的具体步骤如下:
步骤S2.1、同时启动所有激光雷达传感器,等到激光雷达传感器运行稳定后,获取各个激光雷达传感器得到的棋盘格靶标放置在指定位置的点云数据;
步骤S2.2、调整指定位置的棋盘格靶标的角度,再次启动所有激光雷达传感器,得到不同角度的棋盘格靶标的点云数据;
步骤S2.3、分别提取步骤S2.1和步骤S2.2中不同激光雷达传感器获取的点云数据中棋盘格角点在激光雷达空间直角坐标系下的坐标,具体步骤如下:
步骤S2.3.1、对组成点云数据的每条扫描线,逐点计算相邻两个点的距离和角度,将一条扫描线分割成不同聚类,数学公式如下:
Figure FDA0003199794730000021
公式中:i为点云的序号,[Xi-1,Yi-1,Zi-1],[Xi,Yi,Zi],[Xi+1,Yi+1,Zi+1]分别是激光点i-1,i,i+1在激光雷达空间直角坐标系下的坐标,di是激光点i与激光点i-1在激光雷达空间直角坐标系下的欧式距离,dT表示激光点i与激光点i-1在激光雷达空间直角坐标系下的欧式距离的阈值,δ表示激光点i与激光点i-1构成的向量与激光点i与激光点i+1构成的向量之间余弦值的阈值;dT,δ根据激光雷达的角度分辨率计算;
步骤S2.3.2、统计步骤S2.3.1得到的每个聚类中点云的个数,剔除点云个数小于阈值的聚类;
步骤S2.3.3、根据特征向量之间的余弦相似度,合并不同扫描线分割的结果;
步骤S2.3.4、根据步骤S2.3.3得到的点云聚类结果,检测点云聚类中是否存在棋盘格靶标;
步骤S2.3.5、如果步骤S2.3.4判断得到表示棋盘格靶标的点云聚类,求棋盘格靶标上角点在激光雷达空间直角坐标系下的坐标。
4.根据权利要求1或2所述的一种多激光雷达和多相机联合标定方法,其特征在于,当所述传感器为相机传感器时,步骤S2提取棋盘格靶标角点的具体步骤如下:
步骤S2.1、同时启动所有相机传感器,等到相机传感器运行稳定后,获取各个相机传感器得到的棋盘格靶标放置在指定位置的图像;
步骤S2.2、调整指定位置的棋盘格靶标的角度,再次启动所有相机传感器,得到不同角度的棋盘格靶标的图像;
步骤S2.3、分别提取步骤S2.1和步骤S2.2中不同相机传感器获取的图像中棋盘格靶标角点在像素平面坐标系下的坐标,具体步骤如下:
步骤S2.3.1、根据已知的畸变参数,对图像进行畸变校正,然后对畸变校正后的图像f(x,y)进行高斯平滑滤波处理,减少图像的噪声,得到平滑后的图像g(x,y),数学公式如下:
Figure FDA0003199794730000031
公式中:
Figure FDA0003199794730000032
表示卷积操作,σ2表示函数的宽度参数,控制函数的径向作用范围;h(x,y)表示高斯平滑滤波核函数;(x,y)表示点在像素平面坐标系下的像素坐标,其中x的值表示点在像素平面坐标系u轴方向上的投影距离,y的值表示点在像素平面坐标系v轴方向上的投影距离,exp表示以自然常数e为底的指数函数;
步骤S2.3.2、对步骤S2.3.1得到的平滑后的图像g(x,y)根据下述公式构建Hessian矩阵:
Figure FDA0003199794730000041
公式中:gxx gxy及gyy分别是图像g(x,y)相对于x,y的二阶偏导数;
步骤S2.3.3、分解步骤S2.3.2得到的Hessian矩阵,求取Hessian矩阵的特征值,数学公式如下:
Figure FDA0003199794730000042
公式中:λ1,λ2表示Hessian矩阵两个特征值,D为计算Hessian矩阵特征值的中间临时变量;
步骤S2.3.4、根据Hessian矩阵的性质,Hessian矩阵两个特征值λ1,λ2在数值上表示图像灰度的二阶导数的极大值和极小值,取形状算子S(x,y)=λ1×λ2,当S取极小值时的(x0,y0)坐标即为棋盘格靶标角点的坐标,数学公式如下:
Figure FDA0003199794730000043
公式中:
Figure FDA0003199794730000044
表示(x0,y0)坐标处的形状算子,min表示取最小值的操作,局部范围的最小值即为极小值;
步骤S2.3.5、对步骤S2.3.4得到的每一个棋盘格靶标角点c遍历周围局部区域的像素,求每个像素的图像梯度向量与该像素到角点的向量的乘积的平方和;利用梯度下降优化算法优化棋盘格靶标角点的像素坐标使得得到的乘积的和最小;数学公式如下:
Figure FDA0003199794730000045
公式中:c′为步骤S2.3.4得到的像素坐标,
Figure FDA0003199794730000046
表示像素坐标c′的局部邻域,
Figure FDA0003199794730000047
表示像素P属于像素坐标c′的局部邻域,
Figure FDA0003199794730000048
为像素P的图像梯度向量gP的转置矩阵,argmin为求最小的操作,c为优化后的棋盘格靶标角点的像素坐标;
步骤S2.3.6、步骤S2.3.5得到的棋盘格靶标角点坐标即为像素平面坐标系下的棋盘格靶标角点坐标。
5.根据权利要求1或2所述的一种多激光雷达和多相机联合标定方法,其特征在于,当组合标定的传感器中传感器Sa与传感器Sb为激光雷达传感器时,步骤S3在求解传感器Sb与传感器Sa的外参参数时,采用梯度下降算法迭代优化传感器Sb与传感器Sa的外参矩阵;
其中,激光雷达传感器Sa到激光雷达传感器Sb的外参矩阵的计算公式如下:
Figure FDA0003199794730000051
式中,wi为棋盘格靶标角点i的误差权重,
Figure FDA0003199794730000052
为激光雷达传感器Sa到激光雷达传感器Sb的外参矩阵,
Figure FDA0003199794730000053
为由激光雷达传感器Sa扫描得到的棋盘格靶标角点在激光雷达传感器Sb构成的激光雷达空间直角坐标系的坐标,Xai为棋盘格靶标角点在激光雷达传感器Sa构成的激光雷达空间直角坐标系下的坐标;Xbi为棋盘格靶标角点在激光雷达传感器Sb构成的激光雷达空间直角坐标系下的坐标。
6.根据权利要求1或2所述的一种多激光雷达和多相机联合标定方法,其特征在于,当组合标定的传感器中传感器Sa与传感器Sb为相机传感器时,步骤S3在求解传感器Sb与传感器Sa的外参参数时,采用梯度下降算法迭代优化传感器Sb与传感器Sa的外参矩阵;其中,相机传感器Sa以及Sb相应的内参矩阵
Figure FDA0003199794730000054
已知,相机传感器Sa的尺度因子λa可以根据棋盘格靶标正方形的尺寸以及相邻两个棋盘格靶标角点在相机传感器Sa构成的像素平面坐标系下的距离求得,相机传感器Sb的尺度因子λb可以根据棋盘格靶标正方形的尺寸以及相邻两个棋盘格靶标角点在相机传感器Sb构成的像素平面坐标系下的距离求得;
相机传感器Sb到相机传感器Sa的外参矩阵的计算公式如下:
Figure FDA0003199794730000055
式中,
Figure FDA0003199794730000056
Figure FDA0003199794730000057
的逆矩阵,wi为棋盘格靶标角点i的误差权重,
Figure FDA0003199794730000058
为相机传感器Sb到相机传感器Sa的外参矩阵;
Figure FDA0003199794730000059
为相机传感器Sb拍摄得到的棋盘格靶标角点在相机传感器Sa构成的像素平面坐标系下的坐标,
Figure FDA00031997947300000510
为相机传感器Sa获取的相应棋盘格靶角点坐标,
Figure FDA00031997947300000511
为相机传感器Sb获取的相应棋盘格靶角点坐标,λ为比例因子,等于λa与λb的比值。
7.根据权利要求1或2所述的一种多激光雷达和多相机联合标定方法,其特征在于,步骤S6联合优化时,计算总的标定误差的计算公式如下:
Etotal=min(W1Ep1+W2Ep2+W3Ep3+…+WnEpn)
式中,Wn为第n组传感器组合标定误差的权重,可以通过计算不同传感器组合的测距精度或分辨率设定,传感器的测距精度或分辨率越高,其所对应的标定误差权重越大;传感器的测距精度或分辨率越低,其所对应的标定误差权重越小;Epn为第n组传感器组合时由传感器Sa与传感器Sb之间的标定误差,以及传感器Sb与传感器Sc之间标定误差,引起的传感器Sa与传感器Sc之间标定误差。
8.根据权利要求3所述的一种多激光雷达和多相机联合标定方法,其特征在于,步骤S2.3.5根据点云聚类计算棋盘格靶标的角点在激光雷达空间直角坐标系下的坐标时,具体步骤如下:
a)建立点云棋盘格坐标系及棋盘格靶标坐标系,将点云聚类的所有点投影到点云棋盘格坐标系XOY平面;此时,经处理得到的点云棋盘格坐标系XOY平面不能与棋盘格靶标坐标系重合;
b)根据点云聚类中每个点的灰度值,建立灰度值直方图;根据直方图最大的两个峰值RL和RH,求出用于判断某个点对应的颜色的阈值范围[τl,τh];即如果一个点的灰度值大于上边界τh,该点表示白色;如果一个点的灰度值小于下边界τl,该点表示黑色,数学公式如下:
Figure FDA0003199794730000061
公式中:Ii为点云i的灰度值,Ci为该点表示的颜色,其中0表示白色,1表示黑色;
Figure FDA0003199794730000062
公式中:εg为一个大于2的常数,通常取4;
c)根据已知的棋盘格的类型、每个正方形的尺寸LGrid以及棋盘格靶标左下角正方形的颜色C(0,0),计算每个正方形的颜色以及该正方形左下角及右上角在棋盘格靶标坐标系的坐标,数学公式如下:
Figure FDA0003199794730000071
公式中:i,j表示每个正方形的行列号,C(i,j)表示行列号分别为i,j的正方形的颜色,NC,NR分别为每行/每列正方形的个数;
d)计算点云聚类中每个点的损失值;
e)根据Powell共轭方向集方法对步骤d)计算得到的点云聚类中所有点的损失值Cm进行优化,使得总的损失值Cm最小,可以得到优化后点云棋盘格坐标系到棋盘格靶标坐标系的转换矩阵
Figure FDA0003199794730000072
f)计算棋盘格靶标的角点在激光雷达空间直角坐标系下的坐标,数学公式如下:
Figure FDA0003199794730000073
公式中:
Figure FDA0003199794730000074
为优化后点云棋盘格坐标系到棋盘格靶标坐标系的转换矩阵,可由步骤e)获得;
Figure FDA0003199794730000075
为激光雷达空间直角坐标系转换到点云棋盘格坐标系的转换矩阵,旋转分量为
Figure FDA0003199794730000076
平移分量为点云中心在激光雷达空间直角坐标系下的坐标,可由a)获得。
9.根据权利要求8所述的一种多激光雷达和多相机联合标定方法,其特征在于,步骤d)计算点云聚类中每个点的损失值的规则如下:
首先判断点i的灰度值Ii是否在[τl,τh]内,如果在[τl,τh]之内,点i的损失值为0;然后判断点i在棋盘格靶标坐标系的坐标
Figure FDA0003199794730000077
是否落在棋盘格靶标坐标系下的棋盘格范围中,如果点i在棋盘格范围外,计算点i到棋盘格四个顶点G最小的曼哈顿距离,记为点i的损失值;如果点i在棋盘格范围内,找到距离点i的曼哈顿距离最小的棋盘格角点Vi,并判断点i的颜色ci与棋盘格角点Vi的颜色
Figure FDA0003199794730000078
是否一致;如果一致,则点i的损失值为0;如果不一致,点i的损失值为点i到棋盘格角点Vi的曼哈顿距离;数学公式如下:
Figure FDA0003199794730000081
式中:Cm表示点云聚类中所有点的损失值,fg为点i的损失系数函数,如果点i的灰度值在阈值范围[τl,τh]内,则损失系数fg为0,否则损失系数fg为1,ci表示点i的颜色,
Figure FDA0003199794730000082
表示点i所在正方形的四个顶点中,距离点i曼哈顿距离最近的顶点的颜色;fin为判断点i是否在棋盘格范围内的函数;G表示棋盘格的四个顶点,Vi表示点i所在正方形的顶点;
Figure FDA0003199794730000083
表示点i在棋盘格靶标坐标系下的坐标;fd表示计算曼哈顿距离的函数;Δx1,Δx2,Δy1,Δy2表示点i到所在正方形四条边的距离;min表示取最小的输入值的操作。
10.一种多激光雷达和多相机联合标定系统,其特征在于,该系统包括棋盘格靶标、至少四个传感器、第一数据处理模块、第二数据处理模块、传感器组选择模块、传感器识别模块、第一外参计算模块、第二外参计算模块、第三外参计算模块、累计误差计算模块、标定模块;其中,所述传感器包括激光雷达传感器和相机传感器,激光雷达传感器与第一数据处理模块连接,用于将检测的数据发送给第一数据处理模块;相机传感器与第二数据处理模块连接,用于将检测的数据发送给第二数据处理模块;
所述第一数据处理模块,用于对激光雷达传感器发送的数据进行处理,计算棋盘格靶标角点在不同激光雷达传感器构成的激光雷达空间直角坐标系下的坐标;
所述第二数据处理模块,用于对相机传感器发送的数据进行处理,计算棋盘格靶标角点在不同相机传感器构成的像素平面坐标系下的坐标;
所述传感器组选择模块,用于根据第一数据处理模块、第二数据处理模块发送的数据,选择对某一位置的棋盘格靶标进行组合标定的三个传感器,选择的三个传感器分别记为传感器Sa、传感器Sb以及传感器Sc;对传感器进行选择时,选择棋盘格靶标完整的出现在传感器视野中的传感器;
所述传感器识别模块,用于对组合标定的三个传感器的类型进行识别,根据传感器类型选择不同传感器之间计算外参矩阵的方法,当传感器Sa与传感器Sb均为激光雷达传感器时,则利用第一外参计算模块计算;当传感器Sa与传感器Sb均为相机传感器时,则利用第二外参计算模块计算,当传感器Sa为激光雷达传感器,传感器Sb为相机传感器时,则利用第三外参计算模块计算;
所述第一外参计算模块,用于计算激光雷达传感器Sa与激光雷达传感器Sb之间的外参参数,计算公式如下:
Figure FDA0003199794730000091
式中,wi为棋盘格靶标角点i的误差权重,
Figure FDA0003199794730000092
为激光雷达传感器Sa到激光雷达传感器Sb的外参矩阵,
Figure FDA0003199794730000093
为由激光雷达传感器Sa扫描得到的棋盘格靶标角点在激光雷达传感器Sb构成的激光雷达空间直角坐标系的坐标,Xai为棋盘格靶标角点在激光雷达传感器Sa构成的激光雷达空间直角坐标系下的坐标;Xbi为棋盘格靶标角点在激光雷达传感器Sb构成的激光雷达空间直角坐标系下的坐标;
所述第二外参计算模块,用于计算相机传感器Sb与相机传感器Sa之间的外参参数;计算公式如下:
Figure FDA0003199794730000094
式中,
Figure FDA0003199794730000095
Figure FDA0003199794730000096
的逆矩阵,wi为棋盘格靶标角点i的误差权重,
Figure FDA0003199794730000097
为相机传感器Sb到相机传感器Sa的外参矩阵;
Figure FDA0003199794730000098
为相机传感器Sb拍摄得到的棋盘格靶标角点在相机传感器Sa构成的像素平面坐标系下的坐标,
Figure FDA0003199794730000099
为相机传感器Sa获取的相应棋盘格靶角点坐标,
Figure FDA00031997947300000910
为相机传感器Sb获取的相应棋盘格靶角点坐标,λ为比例因子,等于λa与λb的比值;相机传感器Sa的尺度因子λa可以根据棋盘格靶标正方形的尺寸以及相邻两个棋盘格靶标角点在相机传感器Sa构成的像素平面坐标系下的距离求得;相机传感器Sb的尺度因子λb可以根据棋盘格靶标正方形的尺寸以及相邻两个棋盘格靶标角点在相机传感器Sb构成的像素平面坐标系下的距离求得;
所述第三外参计算模块,用于计算激光雷达传感器Sa与相机传感器Sb之间的外参参数,计算公式如下:
Figure FDA0003199794730000101
式中:wi为棋盘格靶标角点i的误差权重,λ为比例系数,数值大小等于点在相机传感器Sb构成的相机空间直角坐标系下的Z轴坐标的倒数,
Figure FDA0003199794730000102
为激光雷达传感器Sa到相机传感器Sb的外参矩阵,
Figure FDA0003199794730000103
为激光雷达传感器Sa扫描得到的棋盘格靶标角点在相机传感器Sb构成的像素平面坐标系下的坐标,Xai为棋盘格靶标角点在激光雷达传感器Sa构成的激光雷达空间直角坐标系下的坐标;Xbi为棋盘格靶标角点在相机传感器Sb构成的像素平面坐标系下的坐标;
Figure FDA0003199794730000104
为相机传感器Sb相应的内参矩阵;
所述累计误差计算模块,用于根据第一外参计算模块、第二外参计算模块、第三外参计算模块计算的数据计算由传感器Sa与传感器Sb之间的标定误差,以及传感器Sb与传感器Sc之间标定误差,引起的传感器Sa与传感器Sc之间标定误差;
所述标定模块,用于联合优化不同位置的棋盘格靶标角点的坐标累积误差,使得总的标定误差最小;同时,由于不同传感器组构成一个回环,回环的旋转矩阵应为单位阵,平移矩阵应为零矩阵,以此计算外参参数。
CN202110901087.XA 2021-08-06 2021-08-06 一种多激光雷达和多相机联合标定方法及系统 Active CN113592957B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110901087.XA CN113592957B (zh) 2021-08-06 2021-08-06 一种多激光雷达和多相机联合标定方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110901087.XA CN113592957B (zh) 2021-08-06 2021-08-06 一种多激光雷达和多相机联合标定方法及系统

Publications (2)

Publication Number Publication Date
CN113592957A true CN113592957A (zh) 2021-11-02
CN113592957B CN113592957B (zh) 2023-07-11

Family

ID=78255786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110901087.XA Active CN113592957B (zh) 2021-08-06 2021-08-06 一种多激光雷达和多相机联合标定方法及系统

Country Status (1)

Country Link
CN (1) CN113592957B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114519747A (zh) * 2022-02-28 2022-05-20 嘉兴市像景智能装备有限公司 一种泛电子领域自动光学检测设备的标定方法
CN114578328A (zh) * 2022-02-24 2022-06-03 苏州驾驶宝智能科技有限公司 一种多激光雷达和多相机传感器空间位置自动标定方法
CN116182702A (zh) * 2023-01-31 2023-05-30 桂林电子科技大学 一种基于主成分分析的线结构光传感器标定方法及系统
CN116595399A (zh) * 2023-06-14 2023-08-15 中国矿业大学(北京) 一种煤中元素相关性不一致问题的分析方法
WO2023249807A1 (en) * 2022-06-21 2023-12-28 Deepen AI, Inc. Sensor calibration optimization system and method
CN117789486A (zh) * 2024-02-28 2024-03-29 南京莱斯信息技术股份有限公司 一种大型车交叉路口右转必停监管系统及方法
CN115166701B (zh) * 2022-06-17 2024-04-09 清华大学 一种rgb-d相机和激光雷达的系统标定方法及装置
CN117789486B (zh) * 2024-02-28 2024-05-10 南京莱斯信息技术股份有限公司 一种大型车交叉路口右转必停监管系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111325801A (zh) * 2020-01-23 2020-06-23 天津大学 一种激光雷达和相机的联合标定方法
WO2021138995A1 (zh) * 2020-01-10 2021-07-15 大连理工大学 一种棋盘格角点全自动检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138995A1 (zh) * 2020-01-10 2021-07-15 大连理工大学 一种棋盘格角点全自动检测方法
CN111325801A (zh) * 2020-01-23 2020-06-23 天津大学 一种激光雷达和相机的联合标定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
许小徐;黄影平;胡兴;: "智能汽车激光雷达和相机数据融合系统标定", 光学仪器, no. 06 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114578328A (zh) * 2022-02-24 2022-06-03 苏州驾驶宝智能科技有限公司 一种多激光雷达和多相机传感器空间位置自动标定方法
CN114519747A (zh) * 2022-02-28 2022-05-20 嘉兴市像景智能装备有限公司 一种泛电子领域自动光学检测设备的标定方法
CN114519747B (zh) * 2022-02-28 2024-02-09 嘉兴市像景智能装备有限公司 一种泛电子领域自动光学检测设备的标定方法
CN115166701B (zh) * 2022-06-17 2024-04-09 清华大学 一种rgb-d相机和激光雷达的系统标定方法及装置
WO2023249807A1 (en) * 2022-06-21 2023-12-28 Deepen AI, Inc. Sensor calibration optimization system and method
CN116182702A (zh) * 2023-01-31 2023-05-30 桂林电子科技大学 一种基于主成分分析的线结构光传感器标定方法及系统
CN116182702B (zh) * 2023-01-31 2023-10-03 桂林电子科技大学 一种基于主成分分析的线结构光传感器标定方法及系统
CN116595399A (zh) * 2023-06-14 2023-08-15 中国矿业大学(北京) 一种煤中元素相关性不一致问题的分析方法
CN116595399B (zh) * 2023-06-14 2024-01-05 中国矿业大学(北京) 一种煤中元素相关性不一致问题的分析方法
CN117789486A (zh) * 2024-02-28 2024-03-29 南京莱斯信息技术股份有限公司 一种大型车交叉路口右转必停监管系统及方法
CN117789486B (zh) * 2024-02-28 2024-05-10 南京莱斯信息技术股份有限公司 一种大型车交叉路口右转必停监管系统及方法

Also Published As

Publication number Publication date
CN113592957B (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
CN113592957A (zh) 一种多激光雷达和多相机联合标定方法及系统
CN109146980B (zh) 基于单目视觉的优化的深度提取和被动测距方法
CN110021046B (zh) 相机与激光雷达组合传感器的外参数标定方法及系统
CN109211198B (zh) 一种基于三目视觉的智能目标检测和测量系统和方法
CN107977996B (zh) 基于靶标标定定位模型的空间目标定位方法
CN109801333B (zh) 体积测量方法、装置、系统及计算设备
CN109255818B (zh) 一种新型标靶及其亚像素级角点的提取方法
CN108759788B (zh) 无人机影像定位定姿方法及无人机
CN111123242B (zh) 一种基于激光雷达和相机的联合标定方法及计算机可读存储介质
CN113470090A (zh) 基于sift-shot特征的多固态激光雷达外参标定方法
CN109272555B (zh) 一种rgb-d相机的外部参数获得及标定方法
CN112700552A (zh) 三维物体检测方法、装置、电子设备及介质
CN110533774B (zh) 一种基于智能手机的三维模型重建方法
CN112489137A (zh) 一种rgbd相机标定方法及系统
CN115359130B (zh) 雷达和相机的联合标定方法、装置、电子设备及存储介质
CN115685160A (zh) 基于标靶的激光雷达与相机标定方法、系统、电子设备
CN114998448A (zh) 一种多约束双目鱼眼相机标定与空间点定位的方法
CN113589263B (zh) 一种多个同源传感器联合标定方法及系统
CN111260735B (zh) 一种单次拍摄的lidar与全景相机的外参数标定方法
CN111383264A (zh) 一种定位方法、装置、终端及计算机存储介质
CN114782556B (zh) 相机与激光雷达的配准方法、系统及存储介质
WO2023077827A1 (zh) 一种用于多传感器标定的三维塔式棋盘格以及基于该棋盘格的雷达与相机的联合标定方法
Wan et al. A performance comparison of feature detectors for planetary rover mapping and localization
CN112927276B (zh) 图像配准方法、装置、电子设备及存储介质
CN117523009B (zh) 一种双目相机标定方法、系统、装置及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant