CN113592750A - 一种基于梯度直方图的红外增强方法 - Google Patents

一种基于梯度直方图的红外增强方法 Download PDF

Info

Publication number
CN113592750A
CN113592750A CN202110870929.XA CN202110870929A CN113592750A CN 113592750 A CN113592750 A CN 113592750A CN 202110870929 A CN202110870929 A CN 202110870929A CN 113592750 A CN113592750 A CN 113592750A
Authority
CN
China
Prior art keywords
gradient
histogram
image
infrared
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110870929.XA
Other languages
English (en)
Other versions
CN113592750B (zh
Inventor
朱裕莎
赵勋
姜立涛
万鹏
曾衡东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Jinglin Science and Technology Co Ltd
Original Assignee
Chengdu Jinglin Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Jinglin Science and Technology Co Ltd filed Critical Chengdu Jinglin Science and Technology Co Ltd
Priority to CN202110870929.XA priority Critical patent/CN113592750B/zh
Publication of CN113592750A publication Critical patent/CN113592750A/zh
Application granted granted Critical
Publication of CN113592750B publication Critical patent/CN113592750B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration using histogram techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于梯度直方图的红外增强方法,包括以下步骤:S1:获取原始红外数据DI,对所述原始红外数据做智能滤波处理,得到滤波后的数据BI;S2:根据梯度的定义,建立滤波后的图像数据BI的二维梯度图GI;S3:计算二维梯度图GI的平均梯度MeanG和最大梯度MaxG,并由平均梯度计算平台阈值ThresP;S4:根据二维梯度图GI统计小于平均梯度MeanG的梯度直方图H;S5:根据平台阈值对梯度直方图进行平台限制,然后对梯度直方图进行均衡化处理。本发明充分考虑人眼视觉系统对梯度强度更加敏感的特性,能够有效改善红外图像的质量,尤其体现在对比度增加、噪声抑制、防止过度增强方面。

Description

一种基于梯度直方图的红外增强方法
技术领域
本发明涉及红外图像处理领域,尤其涉及一种基于梯度直方图的红外增强方法。
背景技术
红外图像增强在夜视图像视觉理解方法中起着重要的作用,它也在机器视觉、人工智能等领域中发挥重要的作用。现代红外成像系统的输出图像通常具有较高的动态范围,而常用的显示设备只能显示256级灰度。高动态图像在常用显示设备上线性显示时,会出现对比度低,信息丢失和细节模糊等问题。红外设备通过热成像技术,能够获取高动态范围的红外数据,位宽达14位以上。但人眼只能分辨128级的灰度范围,而多数显示设备的灰度动态范围为256级,即8位位宽,为了改善高动态图像的显示效果,需要对高动态的红外数据图像的动态范围进行压缩,同时保留并增强图像中的细节信息。针对图像的动态压缩与细节增强问题,该领域的研究者进行了大量的探索和研究,提出了许多具有良好效果的解决方法。常用的压缩方法有自动增益控制(AGC)、自适应gamma变换、空间域图像增强以及直方图均衡。在红外图像处理领域,直方图均衡化技术应用最为广泛,也以此延伸了各种改进技术,如局部直方图均衡、平台直方图均衡、双直方图均衡等。目前各类算法都是在一定条件下改善图像质量,但对比度低、噪声大、自适应性差、边缘毛刺的问题并未完全解决。
在文献一(PERONA P,MALIK J.Scale-Space and edgedetection usinganisotropic diffusion[J].IEEE Transaction on Pattern Analysisand MachineIntelligence,1990,12(7):629-639.)的研究中,利用偏微分理论提出了各向异性扩散模型,这是最为经典的基于偏微分理论的图像增强模型之一。文献二(S.Kartic,M.Aditi,I.Sandy,et al.Greedy algorithm for local contrastenhancement of images[C].Cagliari,Italy:International conference on imageanalysis and processing,2005,3617:171-179.)等人利用偏微分理论,将图像的灰度、对比度以及纹理信息转化成量化的梯度值,在图像的梯度域内实现图像的对比度的增强。文献三(R.Fattal,D.Lischinski,M.Werman.Gradient Domain High Dynamic RangeCompression[C].SanAntonio,Texas:Proceedings of the 29th annual conference onComputer graphicsand interactive techniques,2002:249-256.)等人提出了一种直接梯度域增强方法,该方法通过改变梯度值的大小来提高图像的对比度,并且在该方法中通过减小图像梯度域的变换范围在增强图像低对比度区域的信息。但这几种经典的梯度域增强算法不具有普适性,其增强效果的好坏直接取决于目标函数的选择。对于复杂的红外图像场景,噪声干扰相对严重,视觉质量相对较低。
在专利申请CN201911194310.0中公开了一种基于偏微分理论的红外图像梯度域增强方法,将待处理红外图像变换到梯度域,有效避免了空间域图像增强方法分辨力差以及频域增强方法计算量大实时性差的缺点。设计出一个新型的自然因子,运算速度快,有效实现梯度域图像的增强。利用能量泛函来还原图像,能够有效地提高红外图像的对比度,实现弱边界的增强,并保留了更多的细节信息。但是该方案仍然对比度低、噪声大、自适应性差、边缘毛刺的问题并未完全解决。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于梯度直方图的红外增强方法。
本发明的目的是通过以下技术方案来实现的:
一种基于梯度直方图的红外增强方法,包括以下步骤:
S1:获取原始红外数据DI,对所述原始红外数据做智能滤波处理,得到滤波后的数据BI;
S2:根据梯度的定义,建立滤波后的图像数据BI的二维梯度图GI;
S3:计算二维梯度图GI的平均梯度MeanG和最大梯度MaxG,并由平均梯度计算平台阈值ThresP;
S4:根据二维梯度图GI统计小于平均梯度MeanG的梯度直方图H;
S5:根据平台阈值对梯度直方图进行平台限制,然后对梯度直方图进行均衡化处理。
进一步,所述步骤S1具体包括以下子步骤:
S11:获取原始红外数据DI,然后遍历原始红外数据DI的所有像素点,统计每个像素点邻域范围内,与当前像素点相似的像素点个数numS,以及这些相似点的像素值总和sumS;
S12:计算所述相似点的像素值总和与像素点个数的比值,即为所述滤波数据BI的对应像素点像素值。
进一步的,所述原始红外数据DI通过红外器采集得到,位宽为14位。
进一步的,所述步骤S3具体包括以下子步骤:
S31:遍历所述二维梯度图GI的所有像素点,判断出最大梯度MaxG,并统计出梯度总和TotalG;
判断公式为:
Figure BDA0003189112330000031
统计出梯度总和TotalG的计算公式为:
Figure BDA0003189112330000032
其中,x、y表示像素点位置坐标,GIxy表示在坐标(x,y)处的二维梯度图,w表示图像宽度,h表示图像高度;
S32:根据所述S31统计出的梯度总和TotalG,计算平均梯度MeanG;
平均梯度计算公式为:
MeanG=TotalG/(w*h)
其中,w表示图像宽度,h表示图像高度。
S33:根据所述S32计算的平均梯度MeanG计算平台阈值ThresP,计算公式为:
ThresP=MeanG/3
进一步的,所述步骤S4包括以下子步骤:
S41:遍历所述二维梯度图GI的所有像素点,根据每个像素点处的梯度GIx,y是否大于上述平均梯度MeanG,建立二维标志图像Flag;
Figure BDA0003189112330000033
S42:遍历所述二维标志图像Flag的所有像素点,对值为1二维标志图像Flag,建立梯度直方图H,公式为:
Figure BDA0003189112330000034
其中,BIx,y表示滤波数据在x、y像素点位置的像素值,GIx,y表示滤波数据在x、y像素点位置的梯度。
进一步的,所述步骤S5包括以下子步骤:
S51:遍历所述梯度直方图H,大于平台阈值ThresP的直方图,限制到最大值ThresP,同时建立概率密度函数Pk,所述概率密度函数Pk表示为:
Figure BDA0003189112330000041
其中,k表示,取值范围为1~16384;Hk表示灰度级数k的个数。
S52:遍历所述概率密度函数P,统计累计分布函数CDFk,所述累计分布函数CDFk表示为:
Figure BDA0003189112330000042
其中,q表示图像灰度级数,取值范围为1~k;Pq表示灰度级数q在直方图H中的占比;
S53:将所述原始红外数据DI中的所有像素点对应像素值替换为所述累计分布函数CDF中对应的值,做一一映射,得到增强后的8位图像数据DO;公式为:
DOx,y=CDF(DIx,y)
其中,DOx,y表示在坐标(x,y)增强后的8位图像数据,DIx,y表示在坐标(x,y)处的原始红外数据。
本发明的有益效果:本发明通过统计14位红外数据的梯度信息,建立梯度直方图,充分考虑了时间域与空间域的关系,能够根据梯度自适应增强,并有效避免高梯度值带来的过度增强,同时抑制低梯度值处的噪声过度增强。本发明充分考虑人眼视觉系统对梯度强度更加敏感的特性,能够有效改善红外图像的质量,尤其体现在对比度增加、噪声抑制、防止过度增强方面。
附图说明
图1是本发明的方法流程图。
具体实施方式
应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本实施例中,如图1所示,一种基于梯度直方图的红外增强方法,包括以下步骤:
S1:获取原始14位红外数据DI,对所述原始红外数据做智能滤波处理,得到滤波后的数据BI;
S2:根据梯度的定义,建立滤波后的图像数据BI的二维梯度图GI;
S3:计算二维梯度图GI的平均梯度MeanG和最大梯度MaxG,并由平均梯度计算平台阈值ThresP;
S4:根据二维梯度图GI统计小于平均梯度MeanG的梯度直方图H;
S5:根据平台阈值对梯度直方图进行平台限制,然后对梯度直方图进行均衡化处理。
在本实施例中,所述步骤S1具体包括以下子步骤:
S11:获取原始红外数据DI,然后遍历原始红外数据DI的所有像素点,统计每个像素点邻域范围内,与当前像素点相似的像素点个数numS,以及这些相似点的像素值总和sumS;
numSx,y=numSx,y+1,DIx+m,y+n-DIx,y>Tin
sumSx,y=|DIx+m,y+n-DIx,y|,DIx+m,y+n-DIx,y>Tin
其中,x,y表示像素点位置,x+m,y+n表示邻域像素点位置,此例m=1,0,-1,n=1,0,-1,表示3*3邻域,Tin代表对应探测器的噪声水平,此例取值30。
S12:计算所述相似点的像素值总和与像素点个数的比值,即为所述滤波数据BI的对应像素点像素值。
BIx,y=sumSx,y/numSx,y
其中,x、y表示像素点位置。
在本实施例中,建立二维梯度图GI,具体包括:遍历所述滤波数据BI的所有像素点,根据梯度的定义,建立二维梯度图GI;所述梯度的定义为:
Figure BDA0003189112330000051
其中,x、y表示像素点位置,x+m,y+n表示邻域像素点位置,此例m=1、0、-1,n=1、0、-1,表示3*3邻域。
在本实施例中,所述步骤S3具体包括以下子步骤:
S31:遍历所述二维梯度图GI的所有像素点,判断出最大梯度MaxG,并统计出梯度总和TotalG;
判断公式为:
Figure BDA0003189112330000061
统计出梯度总和TotalG的计算公式为:
Figure BDA0003189112330000062
其中,x、y表示像素点位置坐标,GIxy表示在坐标(x,y)处的二维梯度图,w表示图像宽度,h表示图像高度;MaxG取值6400,ToTalG取值19595749。
S32:根据所述S31统计出的梯度总和TotalG,计算平均梯度MeanG;
平均梯度计算公式为:
MeanG=TotalG/(w*h)
其中,w表示图像宽度,h表示图像高度,求得MeanG值为177。
S33:根据所述S32计算的平均梯度MeanG计算平台阈值ThresP,计算公式为:
ThresP=MeanG/3
此时,求得ThresP为59。
进一步的,所述步骤S4包括以下子步骤:
S41:遍历所述二维梯度图GI的所有像素点,根据每个像素点处的梯度GIx,y是否大于上述平均梯度MeanG,建立二维标志图像Flag;
Figure BDA0003189112330000063
S42:遍历所述二维标志图像Flag的所有像素点,对值为1二维标志图像Flag,建立梯度直方图H,公式为:
Figure BDA0003189112330000064
其中,BIx,y表示滤波数据在x、y像素点位置的像素值,GIx,y表示滤波数据在x、y像素点位置的梯度。
进一步的,所述步骤S5包括以下子步骤:
S51:遍历所述梯度直方图H,大于平台阈值ThresP的直方图,限制到最大值ThresP,同时建立概率密度函数Pk,所述概率密度函数Pk表示为:
Figure BDA0003189112330000071
其中,k表示,取值范围为1~16384;Hk表示灰度级数k的个数;
S52:遍历所述概率密度函数P,统计累计分布函数CDFk,所述累计分布函数CDFk表示为:
Figure BDA0003189112330000072
其中,q表示图像灰度级数,取值范围为1~k;Pq表示灰度级数q在直方图H中的占比;
S53:将所述原始红外数据DI中的所有像素点对应像素值替换为所述累计分布函数CDF中对应的值,做一一映射,得到增强后的8位图像数据DO;公式为:
DOx,y=CDF(DIx,y)
其中,DOx,y表示在坐标(x,y)增强后的8位图像数据,DIx,y表示在坐标(x,y)处的原始红外数据。
本发明通过统计14位红外数据的梯度信息,建立梯度直方图,充分考虑了时间域与空间域的关系,能够根据梯度自适应增强,并有效避免高梯度值带来的过度增强,同时抑制低梯度值处的噪声过度增强。本发明充分考虑人眼视觉系统对梯度强度更加敏感的特性,能够有效改善红外图像的质量,尤其体现在对比度增加、噪声抑制、防止过度增强方面。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护的范围由所附的权利要求书及其等效物界定。

Claims (6)

1.一种基于梯度直方图的红外增强方法,其特征在于,包括以下步骤:
S1:获取原始红外数据DI,对所述原始红外数据做智能滤波处理,得到滤波后的数据BI;
S2:根据梯度的定义,建立滤波后的图像数据BI的二维梯度图GI;
S3:计算二维梯度图GI的平均梯度MeanG和最大梯度MaxG,并由平均梯度计算平台阈值ThresP;
S4:根据二维梯度图GI统计小于平均梯度MeanG的梯度直方图H;
S5:根据平台阈值对梯度直方图进行平台限制,然后对梯度直方图进行均衡化处理。
2.根据权利要求1所述的一种基于梯度直方图的红外增强方法,其特征在于,所述步骤S1具体包括以下子步骤:
S11:获取原始红外数据DI,然后遍历原始红外数据DI的所有像素点,统计每个像素点邻域范围内,与当前像素点相似的像素点个数numS,以及这些相似点的像素值总和sumS;
S12:计算所述相似点的像素值总和与像素点个数的比值,即为所述滤波数据BI的对应像素点像素值。
3.根据权利要求1所述的一种基于梯度直方图的红外增强方法,其特征在于,所述原始红外数据DI通过红外器采集得到,位宽为14位。
4.根据权利要求1所述的一种基于梯度直方图的红外增强方法,其特征在于,所述步骤S3具体包括以下子步骤:
S31:遍历所述二维梯度图GI的所有像素点,判断出最大梯度MaxG,并统计出梯度总和TotalG;
判断公式为:
Figure FDA0003189112320000011
统计出梯度总和TotalG的计算公式为:
Figure FDA0003189112320000012
其中,x、y表示像素点位置坐标,GIx,y表示在坐标(x,y)处的二维梯度图,w表示图像宽度,h表示图像高度;
S32:根据所述S31统计出的梯度总和TotalG,计算平均梯度MeanG;
平均梯度计算公式为:
MeanG=TotalG/(w*h)
其中,w表示图像宽度,h表示图像高度。
S33:根据所述S32计算的平均梯度MeanG计算平台阈值ThresP,计算公式为:
ThresP=MeanG/3
5.根据权利要求1所述的一种基于梯度直方图的红外增强方法,其特征在于,所述步骤S4包括以下子步骤:
S41:遍历所述二维梯度图GI的所有像素点,根据每个像素点处的梯度GIx,y是否大于上述平均梯度MeanG,建立二维标志图像Flag;
Figure FDA0003189112320000021
S42:遍历所述二维标志图像Flag的所有像素点,对值为1二维标志图像Flag,建立梯度直方图H,公式为:
Figure FDA0003189112320000022
其中,BIx,y表示滤波数据在x、y像素点位置的像素值,GIx,y表示滤波数据在x、y像素点位置的梯度。
6.根据权利要求1所述的一种基于梯度直方图的红外增强方法,其特征在于,所述步骤S5包括以下子步骤:
S51:遍历所述梯度直方图H,大于平台阈值ThresP的直方图,限制到最大值ThresP,同时建立概率密度函数Pk,所述概率密度函数Pk表示为:
Figure FDA0003189112320000023
其中,k表示图像灰度级数;Hk表示灰度级数k的个数。
S52:遍历所述概率密度函数P,统计累计分布函数CDFk,所述累计分布函数CDFk表示为:
Figure FDA0003189112320000024
其中,q表示图像灰度级数,取值范围为1~k;Pq表示灰度级数q在直方图H中的占比;
S53:将所述原始红外数据DI中的所有像素点对应像素值替换为所述累计分布函数CDF中对应的值,做一一映射,得到增强后的8位图像数据DO;公式为:
DOx,y=CDF(DIx,y)
其中,DOx,y表示在坐标(x,y)增强后的8位图像数据,DIx,y表示在坐标(x,y)处的原始红外数据。
CN202110870929.XA 2021-07-30 2021-07-30 一种基于梯度直方图的红外增强方法 Active CN113592750B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110870929.XA CN113592750B (zh) 2021-07-30 2021-07-30 一种基于梯度直方图的红外增强方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110870929.XA CN113592750B (zh) 2021-07-30 2021-07-30 一种基于梯度直方图的红外增强方法

Publications (2)

Publication Number Publication Date
CN113592750A true CN113592750A (zh) 2021-11-02
CN113592750B CN113592750B (zh) 2023-10-20

Family

ID=78252608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110870929.XA Active CN113592750B (zh) 2021-07-30 2021-07-30 一种基于梯度直方图的红外增强方法

Country Status (1)

Country Link
CN (1) CN113592750B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114782289A (zh) * 2022-06-23 2022-07-22 四川三思德科技有限公司 红外图像增强方法、装置、设备和介质
CN117078568A (zh) * 2023-10-12 2023-11-17 成都智明达电子股份有限公司 一种红外图像增强的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080281895A1 (en) * 2005-10-17 2008-11-13 Koninklijke Philips Electronics, N.V. Method and Device for Calculating a Similarity Metric Between a First Feature Vector and a Second Feature Vector
CN104700421A (zh) * 2015-03-27 2015-06-10 中国科学院光电技术研究所 一种基于canny的自适应阈值的边缘检测算法
US20160180504A1 (en) * 2014-12-19 2016-06-23 Intel Corporation Image de-noising using an equalized gradient space
CN107369159A (zh) * 2017-06-29 2017-11-21 大连理工大学 基于多因素二维灰度直方图的阈值分割方法
CN107590512A (zh) * 2017-08-30 2018-01-16 深圳市华汉伟业科技有限公司 一种模板匹配中参数的自适应方法和系统
CN107908996A (zh) * 2017-10-25 2018-04-13 福建联迪商用设备有限公司 一种提取一维条码信息的方法及终端
CN109146900A (zh) * 2017-06-28 2019-01-04 北京微美云息软件有限公司 应用于全息投影显示的Blob区域改进提取方法
CN110033458A (zh) * 2019-03-12 2019-07-19 中国矿业大学 一种基于像素梯度分布的图像阈值确定方法
CN111311525A (zh) * 2019-11-20 2020-06-19 重庆邮电大学 一种基于直方图概率修正的图像梯度场双区间均衡化算法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080281895A1 (en) * 2005-10-17 2008-11-13 Koninklijke Philips Electronics, N.V. Method and Device for Calculating a Similarity Metric Between a First Feature Vector and a Second Feature Vector
US20160180504A1 (en) * 2014-12-19 2016-06-23 Intel Corporation Image de-noising using an equalized gradient space
CN104700421A (zh) * 2015-03-27 2015-06-10 中国科学院光电技术研究所 一种基于canny的自适应阈值的边缘检测算法
CN109146900A (zh) * 2017-06-28 2019-01-04 北京微美云息软件有限公司 应用于全息投影显示的Blob区域改进提取方法
CN107369159A (zh) * 2017-06-29 2017-11-21 大连理工大学 基于多因素二维灰度直方图的阈值分割方法
CN107590512A (zh) * 2017-08-30 2018-01-16 深圳市华汉伟业科技有限公司 一种模板匹配中参数的自适应方法和系统
CN107908996A (zh) * 2017-10-25 2018-04-13 福建联迪商用设备有限公司 一种提取一维条码信息的方法及终端
CN110033458A (zh) * 2019-03-12 2019-07-19 中国矿业大学 一种基于像素梯度分布的图像阈值确定方法
CN111311525A (zh) * 2019-11-20 2020-06-19 重庆邮电大学 一种基于直方图概率修正的图像梯度场双区间均衡化算法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张小琳等: "高能闪光照相中Sobel算子的边缘检测方法", 《强激光与粒子束》, vol. 21, no. 11 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114782289A (zh) * 2022-06-23 2022-07-22 四川三思德科技有限公司 红外图像增强方法、装置、设备和介质
CN117078568A (zh) * 2023-10-12 2023-11-17 成都智明达电子股份有限公司 一种红外图像增强的方法
CN117078568B (zh) * 2023-10-12 2024-02-23 成都智明达电子股份有限公司 一种红外图像增强的方法

Also Published As

Publication number Publication date
CN113592750B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
Shi et al. Normalised gamma transformation‐based contrast‐limited adaptive histogram equalisation with colour correction for sand–dust image enhancement
Kim et al. Optimized contrast enhancement for real-time image and video dehazing
CN105046677B (zh) 一种用于交通视频图像的增强处理方法和装置
Ma et al. An effective fusion defogging approach for single sea fog image
CN108564597B (zh) 一种融合高斯混合模型和h-s光流法的视频前景目标提取方法
Lin et al. Dehazing for image and video using guided filter
CN111105371B (zh) 一种低对比度红外图像的增强方法
CN111598791B (zh) 一种基于改进动态大气散射系数函数的图像去雾方法
CN113592750B (zh) 一种基于梯度直方图的红外增强方法
WO2020124873A1 (zh) 图像处理方法
Ling et al. Single image dehazing using saturation line prior
CN112991197B (zh) 一种基于暗通道的细节保留的低照度视频增强方法及装置
CN111210393A (zh) 一种基于边缘提取的彩色图像增强方法、系统及存储介质
CN108711160B (zh) 一种基于hsi增强性模型的目标分割方法
Zhang et al. Single image dehazing based on fast wavelet transform with weighted image fusion
CN110298796B (zh) 基于改进Retinex与对数图像处理的低照度图像增强方法
Mu et al. Low and non-uniform illumination color image enhancement using weighted guided image filtering
CN115587945A (zh) 高动态红外图像细节增强方法、系统及计算机存储介质
CN116309152A (zh) 一种低照度图像的细节增强方法、系统、设备和存储介质
Chen et al. Improve transmission by designing filters for image dehazing
CN109345479B (zh) 一种视频监控数据的实时预处理方法及存储介质
CN111311503A (zh) 一种夜晚低亮度图像增强系统
CN117422631A (zh) 基于自适应滤波分层的红外图像增强方法
CN112435184A (zh) 一种基于Retinex和四元数的雾霾天图像识别方法
CN109741276B (zh) 一种基于滤波分层框架的红外图像基本层处理方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant