CN113592295A - 产品可靠性综合评估方法与系统、设备、介质 - Google Patents

产品可靠性综合评估方法与系统、设备、介质 Download PDF

Info

Publication number
CN113592295A
CN113592295A CN202110865532.1A CN202110865532A CN113592295A CN 113592295 A CN113592295 A CN 113592295A CN 202110865532 A CN202110865532 A CN 202110865532A CN 113592295 A CN113592295 A CN 113592295A
Authority
CN
China
Prior art keywords
data
type
distribution
product
reliability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110865532.1A
Other languages
English (en)
Inventor
赵建印
孙媛
单鑫
洪亮
尹延涛
刘涛
李志成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coastal Defense College Of Naval Aviation University Of Chinese Pla
Original Assignee
Coastal Defense College Of Naval Aviation University Of Chinese Pla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coastal Defense College Of Naval Aviation University Of Chinese Pla filed Critical Coastal Defense College Of Naval Aviation University Of Chinese Pla
Priority to CN202110865532.1A priority Critical patent/CN113592295A/zh
Publication of CN113592295A publication Critical patent/CN113592295A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Complex Calculations (AREA)

Abstract

本发明提供了一种产品可靠性综合评估方法,包括如下步骤:步骤S1:将多阶段多类型数据进行分类与预处理;步骤S2:将分类与预处理之后的多阶段多类型数据进行一致性检验;步骤S3:一致性检验后对多阶段多类型数据进行折算和综合;步骤S4:针对折算和综合后的数据,根据数据类型确定先验分布和超参数;步骤S5:确定先验分布和超参数之后,根据Bayes理论及相关模型,进行数据融合和可靠性评估。本发明从各阶段各类型数据的特点入手,对实际工程中存在的可靠性数据进行分类,给出了一种多阶段多类型数据的分类和预处理方法,结合Bayes及其相关模型,提出了一套融合多阶段多类型数据的产品可靠性综合评估流程。

Description

产品可靠性综合评估方法与系统、设备、介质
技术领域
本发明涉及数据分析与评估技术领域,具体地,涉及一种产品可靠性综合评估方法与系统、设备、介质,尤其涉及一种融合多阶段多类型的产品可靠性综合评估方法与系统、设备、介质。
背景技术
根据经典的可靠性理论,评估产品在实际使用环境下的可靠性水平,须依据产品在现场环境下采集到的数据进行统计推断,这意味着我们需要大量的现场数据。然而,很多产品并不具备大量现场数据,因此,充分利用产品寿命周期各阶段收集到的各类型可靠性信息并加以融合评估,是可靠性分析的一个重要的研究方向。
Bayes理论是解决小样本统计推断的有效手段,可以融合多种数据进行可靠性评估。目前,国内外文献在利用Bayes理论进行可靠度评估时,往往只是对产品的两种或少量几种数据进行融合,例如加速寿命试验数据与现场故障数据的融合、专家信息与现场成败型数据的融合等。然而,实际工程中存在着大量不同阶段不同类型的可靠性数据,这些数据从不同侧面不同角度反映了产品的可靠性水平。如何将现场信息进行融合也是亟需解决的问题。
经过检索,专利文献CN110874502A公开了一种基于多阶段试验数据折合的航天产品可靠性评估方法,包括如下步骤:进行航天产品的两阶段可靠性试验,获取航天产品第一阶段以及第二阶段的产品试验寿命数据;对第一阶段的产品试验寿命数据进行折合;确定第二阶段Weibull寿命分布参数的验前分布,并得到联合分布数据下的Bayes验后分布核函数;采用基于Bayes的M-H抽样方法进行可靠度的区间估计。该现有技术的不足之处在于需要有现场数据的情况下才能得到可靠性数据的分析,虽然也用到了Bayes理论进行可靠度的评估,但是仅针对寿命数据进行分析,并不全面。
因此,亟需设计一套简便有效的处理方法在尽可能保留多阶段多类型信息所包含内容的前提下,将多阶段多类型可靠性数据进行融合,给出产品可靠性水平的精确估计。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种产品可靠性综合评估方法与系统、设备、介质,是在缺乏足够的现场数据的情况下,充分利用产品在设计、制造、使用过程中各阶段产生的各类可靠性数据,在确保数据一致性的前提下,对各阶段各类型可靠性数据进行分类、预处理、融合和评估,以提高可靠性评估的精度。解决了在尽可能保留多阶段多类型信息所包含内容的前提下,将多阶段多类型可靠性数据进行融合,给出产品可靠性水平的精确估计。
根据本发明提供的一种产品可靠性综合评估方法,包括如下步骤:
步骤S1:将多阶段多类型数据进行分类与预处理;
步骤S2:将分类与预处理之后的多阶段多类型数据进行一致性检验;
步骤S3:一致性检验后对多阶段多类型数据进行折算和综合;
步骤S4:多阶段多类型数据进行折算和综合之后根据数据类型确定先验分布和超参数;
步骤S5:确定先验分布和超参数之后,根据Bayes理论及相关模型,进行数据融合和可靠性评估。
优选地,步骤S1包括将多阶段多类型数据进行分类,数据类型如下:
产品现场类数据:产品实际使用或服役环境条件下的寿命型、成败型和退化型数据;
产品异环境类数据:产品在寿命周期各阶段开展的不同试验条件下不同于现场使用环境条件下的寿命型、成败型和退化型数据;
相似产品数据:又称为异总体数据,包括相似产品现场类数据和相似产品异环境类数据,相似产品现场类数据是指相似产品实际使用或服役环境条件下的寿命型、成败型和退化型数据,相似产品异环境类数据是指相似产品在寿命周期各阶段开展的不同试验条件下不同于现场使用环境条件下的寿命型、成败型和退化型数据;
部件级数据:产品各组成部件的现场类数据和异环境类数据,部件级现场类数据是指产品各组成部件实际使用或服役环境条件下的寿命型、成败型和退化型数据,部件级异环境类数据是指产品各组成部件在寿命周期各阶段开展的不同试验条件下不同于现场使用环境条件下的寿命型、成败型和退化型数据;
专家型数据:利用专家对产品可靠度的经验估计值来表示的数据。
优选地,步骤S1包括对多阶段多类型数据进行预处理:
针对寿命型数据的预处理:利用寿命分布类型检验和参数评估方法进行预处理,得到寿命类型及其参数估计;
针对异环境类数据的预处理:利用环境因子估算方法进行预处理,给出异环境类数据相对于现场数据的“环境因子”;
针对部件级数据的预处理:利用系统可靠性综合方法进行预处理,将部件级数据折合成产品数据;
针对退化型数据的预处理:利用退化建模方法进行预处理,将退化型数据转换成伪寿命型数据;
针对相似产品数据的预处理:利用相似因子估算方法进行预处理,给出相似产品数据的“相似因子”。
优选地,步骤S2包括:
步骤S2.1:对寿命分布类型进行一致性检验,对于寿命型数据,根据寿命类型,判断多阶段多类型寿命数据与产品现场类数据是否服从同一种寿命分布;
步骤S2.2:对失效机理进行一致性检验,判断异环境寿命数据是否满足失效机理不变条件,即环境因子不变原则。
优选地,步骤S3中对多阶段多类型数据的折算和综合包括:
对异环境数据的折算和综合:对于环境因子Ki0≠1的异环境数据,根据数据类型将异环境数据折算成现场数据,再将折算后的现场数据进行综合;
对相似产品数据的折算和综合:对于相似因子Fi0≠1的相似产品数据,根据数据类型将相似产品数据折算成被评估产品数据,再将折算后的被评估产品数据进行综合。
优选地,步骤S4包括:
步骤S4.1:根据总体分布中未知参数的取值范围选取先验分布,基本方法如下:
对于[0,1]取值的参数,选用贝塔分布Be(a,b)作为先验分布,
对于(-∞,+∞)取值的参数,选用正态分布N(μ,σ2)作为先验分布,
对于(0,+∞)取值的参数,选用伽马分布Ga(z,η)或倒伽马分布IGa(z,η)作为先验分布;
步骤S4.2:根据验前数据,确定验前分布的超参数,基本方法为利用验前信息,产生自助样本,得到各样本对应分布的参数的极大似然估计值样本,计算出参数的均值和方差,该均值和方差应等于对应参数的验前分布的均值和方差,联立方程组,得到寿命分布参数的验前分布的超参数。
优选地,步骤S5包括:
步骤S5.1:在已知总体分布类型和现场数据的情况下,确定各分布的似然函数;
步骤S5.2:根据Bayes理论,确定验后分布的核或分布密度函数;
步骤S5.3:根据验后分布的核,判断验后分布的类型,得到参数的后验分布密度函数
步骤S5.4:在已知参数的后验分布密度函数的情况下,根据总体分布,计算各可靠性评估指标的后验期望估计值,作为其贝叶斯估计值。
根据本发明提供的一种产品可靠性综合评估系统,包括:
模块M1:将多阶段多类型数据进行分类与预处理;
模块M2:将分类与预处理之后的多阶段多类型数据进行一致性检验;
模块M3:一致性检验后对多阶段多类型数据进行折算和综合;
模块M4:多阶段多类型数据进行折算和综合之后根据数据类型确定先验分布和超参数;
模块M5:确定先验分布和超参数之后,根据Bayes理论及相关模型,进行数据融合和可靠性评估。
根据本发明提供的一种存储有计算机程序的计算机可读存储介质,计算机程序被处理器执行时实现上述方法的步骤。
根据本发明提供的一种产品可靠性综合评估设备,包括上述的产品可靠性综合评估系统或者上述的存储有计算机程序的计算机可读存储介质。
与现有技术相比,本发明具有如下的有益效果:
1、本发明通过从各阶段各类型数据的特点入手,对实际工程中存在的可靠性数据进行分类,对多阶段多类型数据进行分类和预处理,结合Bayes及其相关模型,实现了多阶段多类型数据的产品可靠性综合评估。
2、本发明能够充分利用产品在设计、制造、使用过程中的各类可靠性信息,特别是在缺乏足够的现场信息的情况下,可以提高可靠性评估的精度。
3、本发明通过充分利用产品在设计、制造、使用过程中各阶段产生的各类可靠性数据,在确保数据一致性的前提下,对各阶段各类型可靠性数据进行分类、预处理、融合和评估,进一步提高了可靠性评估的精度。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明中的产品可靠性综合评估方法的基本流程图;
图2为本发明中的多阶段多类型数据分类情况的示意图;
图3为本发明中部件级异环境类成败型数据的预处理流程示意图;
图4为本发明中部件级异环境类寿命型数据的预处理流程示意图;
图5为本发明中部件级异环境类退化型数据的预处理流程示意图;
图6为本发明中相似产品异环境类成败型数据的预处理流程示意图;
图7为本发明中相似产品异环境类寿命型数据的预处理流程示意图;
图8为本发明中相似产品异环境类退化型数据的预处理流程示意图;
图9为本发明中产品现场类寿命型数据的预处理流程示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
如图1-图2所示,本发明提供了一种产品可靠性综合评估方法,从各阶段各类型数据的特点入手,对实际工程中存在的可靠性数据进行分类,给出了一种多阶段多类型数据的分类和预处理方法,结合Bayes及其相关模型,提出了一套融合多阶段多类型数据的产品可靠性综合评估流程。包括如下步骤:
步骤S1:将多阶段多类型数据进行分类与预处理,具体包括以下步骤:
步骤S1.1:多阶段多类型数据进行分类,数据类型如下:
产品现场类数据:产品实际使用或服役环境条件下的寿命型、成败型和退化型数据;
产品异环境类数据:产品在寿命周期各阶段开展的不同试验条件下不同于现场使用环境条件下的寿命型、成败型和退化型数据;各阶段包括可靠性试验、寿命试验、加速寿命试验、功能试验、环境试验、定期试验等阶段。
相似产品数据:又称为异总体数据,包括相似产品现场类数据和相似产品异环境类数据,相似产品现场类数据是指相似产品实际使用或服役环境条件下的寿命型、成败型和退化型数据,相似产品异环境类数据是指相似产品在寿命周期各阶段开展的不同试验条件下不同于现场使用环境条件下的寿命型、成败型和退化型数据;
部件级数据:产品各组成部件的现场类数据和异环境类数据,部件级现场类数据是指产品各组成部件实际使用或服役环境条件下的寿命型、成败型和退化型数据,部件级异环境类数据是指产品各组成部件在寿命周期各阶段开展的不同试验条件下不同于现场使用环境条件下的寿命型、成败型和退化型数据。
专家型数据:利用专家对产品可靠度的经验估计值来表示的数据。
步骤S1.2:对多阶段多类型数据进行预处理,为了便于数据的表达和预处理,对上述数据进一步归类,多阶段多类型数据可分为四类基本数据,即寿命型数据、成败型数据、退化型数据和专家型数据。四类基本数据类型的统一格式分别见表1至4:
表1寿命型数据的统一格式
样品编号 寿命类型 故障时间 截尾时间 相似因子 环境因子
表2成败型数据的统一格式
样品编号 试验次数 失败次数 相似因子 环境因子
表3退化型数据的统一格式
样品编号 观测时刻 性能退化量 相似因子 环境因子
表4专家型数据的统一格式
Figure BDA0003187182750000061
表1中“寿命类型”由寿命分布类型检验预处理模块确定,“故障时间”和“截尾时间”用于记录不同截尾方式(包括定时、定数、定总、随机截尾)对应的样品故障时间和截尾时间。表2中的“试验次数”和“失败次数”用于记录样品成败型数据的总试验次数和失败次数。表3中的“观测时刻”和“性能退化量”用于记录样品退化型数据的观测时间点和性能退化量。表4中的可靠度的“点估计”和“置信下限估计”(给定置信度)为专家对可靠度给出的主观估计值。
表1、表2和表3中的“相似因子”用于反映被评估产品与样品之间的相似程度,由相似产品数据预处理模块确定。当相似因子=1时,表示样品技术状态与被评估产品完全相同;当0<相似因子<1时,表示样品的可靠性较被评估产品低;当相似因子>1时,表示样品的可靠性较被评估产品高。
表1、表2和表3中的“环境因子”是异环境数据与现场数据的环境折算因子或加速系数。当环境因子=1时,表示该数据为现场数据;当环境编号>0且≠1时,则表示该数据为异环境数据。
进一步明确分类之后,分别针对寿命型数据、异环境类数据、部件级数据、退化型数据、相似产品数据进行预处理。
针对寿命型数据的预处理:利用寿命分布类型检验和参数评估方法进行预处理,得到寿命类型及其参数估计;寿命类型包括指数寿命型、威布尔寿命型、正态寿命型、对数正态型等。
针对异环境类数据的预处理:利用环境因子估算方法进行预处理,给出异环境类数据相对于现场数据的“环境因子”;异环境类数据包括产品异环境类数据、部件级异环境类数据、相似产品异环境类数据,环境因子估算方法是对不同分布类型的环境因子进行估算。
针对部件级数据的预处理:利用系统可靠性综合方法进行预处理,将部件级数据折合成产品数据;部件级数据包括部件级现场类数据和异环境数据,系统可靠性综合方法包括MML、SR、L-M、CMSR、Bayes法等。
针对退化型数据的预处理:利用退化建模方法进行预处理,将退化型数据转换成伪寿命型数据;退化型数据包括产品现场类退化型数据、部件级现场类退化型数据、部件级异环境类退化型数据,退化建模方法包括基于退化量分布、基于Wiener、Gamma等随机过程进行退化量分布。
针对相似产品数据的预处理:利用相似因子估算方法进行预处理,给出相似产品数据的“相似因子”;相似产品数据包括相似产品寿命型数据、相似产品成败型数据、相似产品异环境类寿命型数据和相似产品异环境类成败型数据,相似因子估算方法包括综合评判法、专家打分法等。
各类数据的处理流程如图3至图9所示。
步骤S2:将分类与预处理之后的多阶段多类型数据进行一致性检验;由于现场数据能够真实地反映产品的可靠性水平,因此在一致性检验时,以产品现场数据为一致性检验基准,将其他多阶段多类型数据与现场数据进行寿命分布类型和失效机理一致性检验。只有通过一致性检验的数据才能用于产品的可靠性综合评估。基本方法如下:
步骤S2.1:对于寿命型数据,根据寿命类型,判断多阶段多类型寿命数据(包括异环境寿命数据、相似产品寿命数据、伪寿命数据)与产品现场数据是否服从同一种寿命分布。
步骤S2.2:对失效机理进行一致性检验,对于异环境寿命数据(环境因子≠1),还需要进行失效机理的一致性检验。根据寿命分布的类型及其失效机理不变条件,见表5,判断异环境寿命数据是否满足失效机理不变条件,即环境因子不变原则。只有满足失效机理不变条件,才能将异环境数据和现场数据进行融合。
表5常见寿命分布的环境因子与失效机理不变的条件
Figure BDA0003187182750000081
步骤S3:一致性检验后对多阶段多类型数据进行折算和综合。具体包括如下步骤:
步骤S3.1:对异环境数据的折算和综合:对于环境因子Ki0≠1的异环境数据,根据数据类型将异环境数据折算成现场数据,再将折算后的现场数据进行综合。基本方法如下:
①指数寿命型数据
保持故障数z不变,试验总时间τ乘以加速因子Ki0或其置信下限
Figure BDA0003187182750000082
Figure BDA0003187182750000083
将所有异环境折算后的数据进行综合,其办法是:
(z′0,τ′0)=(z11·K10)+(z22·K20)+…+(zqq·Kq0) (2)
②其他寿命型数据(包括威布尔、正态、对数正态寿命型)
所有故障时间数据和截尾数据乘以加速因子Ki0或其置信下限
Figure BDA0003187182750000084
Figure BDA0003187182750000085
其中:ti为环境Si下的试验数据,包括每个样本的故障时间或截尾时间。
对所有异环境折算后的数据进行综合,其办法是:
t′0=(t′10,t′20,…,t′q0) (4)
③成败型数据
保持失败数fi不变,试验次数ni乘以加速因子Ki0
Figure BDA0003187182750000091
对所有异环境折算后的数据进行综合,其办法是:
(f′0,n′0)=(f′1,n′1)+(f′2,n′2)+…+(f′q,n′q) (6)
步骤S3.2:对相似产品数据的折算和综合:对于相似因子Fi0≠1的相似产品数据,根据数据类型将相似产品数据折算成被评估产品数据,再将折算后的被评估产品数据进行综合。基本方法与异环境数据的折算和综合方法相似,区别在于将环境因子换成相似因子。
步骤S3.3:根据数据类型,将折算和综合后的异环境数据和相似产品数据再进行综合,得到寿命型数据和成败型数据的验前信息。
步骤S4:多阶段多类型数据进行折算和综合之后根据数据类型确定先验分布和超参数。具体包括如下步骤:
步骤S4.1:根据总体分布中未知参数的取值范围选取先验分布π(θ),基本方法如下:
对于[0,1]取值的参数,选用贝塔分布B(a,b)作为先验分布,超参数为(a,b);对于(-∞,+∞)取值的参数,选用正态分布N(μ,σ2)作为先验分布,超参数为(μ,σ2);对于(0,+∞)取值的参数,选用伽马分布Γ(z,τ)或倒伽马分布IΓ(z,τ)作为先验分布,超参数为(z,τ)。
各类验前分布的密度函数、期望和方差如表6所示。
表6常见验前分布的概率密度函数、核、期望和方差
Figure BDA0003187182750000092
步骤S4.2:根据验前数据,确定验前分布的超参数,基本方法为利用验前信息,产生自助样本,得到各样本对应分布的参数的极大似然估计值样本,计算出参数的均值和方差,该均值和方差应等于对应参数的验前分布的均值和方差,联立方程组,得到寿命分布参数的验前分布的超参数。
具体地,①对指数寿命型数据选取先验分布和超参数:
指数分布的参数失效率λ,λ∈(0,+∞)的共轭验前分布为伽马分布,即π(λ)~Γ(z,τ),超参数(z,τ)分别表示指数型验前试验的故障数和试验总时间,其值由验前信息确定。
确定超参数(z,τ)的方法如下:
利用先验信息和Bootstrap法获得失效率的若干估计值,记为
Figure BDA0003187182750000101
计算先验均值
Figure BDA0003187182750000102
和先验方差
Figure BDA0003187182750000103
并令它们等于伽马分布Γ(z,τ)的期望和方差,联立方程组解之,得到超参数的估计值:
Figure BDA0003187182750000104
②对正态或对数正态型数据选取先验分布和超参数:
正态或对数正态分布的参数μ和σ2未知且相关时,其参数(μ,σ2)的联合共轭分布是正态—逆伽马分布,即
Figure BDA0003187182750000105
v00,
Figure BDA0003187182750000106
k0为超参数,由验前数据确定。
确定超参数
Figure BDA0003187182750000107
的方法如下:
对于均值,先利用验前信息和Bootstrap法得到均值μ的验前均值
Figure BDA0003187182750000108
和验前方差
Figure BDA0003187182750000109
分别令其等于μ的验前分布
Figure BDA00031871827500001010
的期望和方差
Figure BDA00031871827500001011
同理,对于方差,利用验前信息和Bootstrap法得到方差σ2的验前均值
Figure BDA00031871827500001012
和验前方差
Figure BDA00031871827500001013
分别令其等于σ2的验前分布
Figure BDA00031871827500001014
的期望和方差,即
Figure BDA00031871827500001015
联立上面两个方程组,解得
Figure BDA0003187182750000111
③对威布尔寿命型数据选取先验分布和超参数:
威布尔分布的参数有(m,η)。根据m的取值范围,分两种情况讨论:
情况一:若已知失效率是递减的,则0<m<1,选取贝塔分布为m的先验分布,即取m~β(a,b),λ=(1/η)m~Γ(z,τ),则在m和λ是相互独立的假设下,它们的先验分布为:
π(λ,m)∝λz-1e-τλma-1(1-m)b-1 (10)
超参数(a,b)和(z,τ)的确定方法如下:
对于参数m,利用验前信息和Bootstrap法得到m的验前均值
Figure BDA0003187182750000112
和方差
Figure BDA0003187182750000113
分别令其等于m的验前分布m~β(a,b)的期望和方差,即
Figure BDA0003187182750000114
求上述方程组,得到超参数(a,b):
Figure BDA0003187182750000115
同样,对于参数λ,利用验前信息和Bootstrap法的λ的验前均值
Figure BDA0003187182750000116
和方差
Figure BDA0003187182750000117
分别令其等于λ的验前分布λ=(1/η)m~Γ(z,τ)的期望和方差,即
Figure BDA0003187182750000118
求上述方程组,得到超参数(z,τ):
Figure BDA0003187182750000119
情况二:已知失效率是递增的,则m>1,则可选取如下先验分布,使m′=m-1服从伽马分布。由于m>1,则令m′=m-1的先验分布为伽马分布,即取m′=m-1~Γ(a,b),λ=(1/η)m~Γ(d,τ),则在m和λ是相互独立的假设下,它们的先验分布为
π(λ,m)∝λz-1e-τλ(m-1)a-1e-b(m-1) (14)
超参数(a,b)和(z,τ)的确定方法与情况一相同。
④对成败型数据选取先验分布和超参数:
二项分布的参数为成功率或可靠度R:共轭验前分布为贝塔分布,即π(R)~B(a0,b0),超参数a0,b0分别表示验前试验的成功次数和失败次数,其值由验前信息确定。验前分布密度函数:
Figure BDA0003187182750000121
确定超参数(a0,b0)的方法如下:
利用先验信息和Bootstrap法获得成功概率(可靠度)的若干估计值,记为
Figure BDA0003187182750000122
计算先验均值
Figure BDA0003187182750000123
和先验方差
Figure BDA0003187182750000124
并令它们等于贝塔分布B(α,β)的期望和方差,利用如下方程组得到超参数(a0,b0):
Figure BDA0003187182750000125
⑤当验前信息为专家信息时,选取先验分布方法如下:
当现场数据为成败型时,选取贝塔分布为先验分布;
当现场数据为寿命型时,选取负对数伽马分布为先验分布。
确定超参数的方法:
已知专家对可靠度的点估计
Figure BDA0003187182750000126
和置信下限R0L(置信度1-β),当R的先验分布为贝塔分布时,由下列方程组确定超参数(a,b)
Figure BDA0003187182750000127
当R的先验分布为负对数伽马分布时,令任务时间t0,τ为试验总时间,则等效任务数为η=τ/t0。由下列方程组确定超参数(z,η)
Figure BDA0003187182750000131
步骤S5:确定先验分布π(θ)和超参数之后,根据Bayes理论及相关模型,进行数据融合和可靠性评估。具体包括如下步骤:
步骤S5.1:在已知总体分布类型和现场数据的情况下,确定各分布的似然函数p(x|θ)。
各类总体分布的似然函数如表7所示。
表7常见总体分布的似然函数
Figure BDA0003187182750000132
步骤S5.2:根据Bayes理论,确定验后分布的核或分布密度函数。
验后分布密度函数为:
Figure BDA0003187182750000133
其中,c=1/∫Θp(x|θ)π(θ)dθ为一个与θ无关的正则常数,p(x|θ)π(θ)为验后分布的核,即
π(θ|x)∝p(x|θ)π(θ)
步骤S5.3:根据验后分布的核,判断验后分布的类型,得到参数的后验分布密度函数。
具体地,①对于二项分布,试验数据:(n,s),n为试验次数,s为成功次数。
参数:可靠度R,R∈[0,1],其共轭验前分布为贝塔分布,即π(R)~Be(s0,f0),超参数s0,f0分别表示验前试验的成功次数和失败次数,其值由验前信息确定。
验前分布密度函数
Figure BDA0003187182750000141
似然函数为
Figure BDA0003187182750000142
验后分布的核
π(R|n,s)∝p(n,s|R)π(R)
R的验后分布:也为贝塔分布,即π(R|n,s)~Be(s0+s,f0+f),其pdf为
Figure BDA0003187182750000143
②指数分布
试验数据:(z,τ),z=r为失效数,τ=Tr为试验总时间
参数:失效率λ,λ∈(0,+∞),其共轭验前分布为伽马分布,即π(λ)~Ga(z00),超参数z00分别表示指数型验前试验的失效数和试验总时间,其值由验前信息确定。
似然函数为:
p(z,τ|λ)=
λ验后分布:也为伽马分布,即,其pdf为
Figure BDA0003187182750000144
③正态分布和对数正态分布
试验数据:
正态x(1)≤x(2)≤…≤x(n)
对数正态lnx(1)≤lnx(2)≤…≤lnx(n)
若为寿命数据,则均应大于0。这里只考虑完全样本的情况。
参数:存在以下三种情况:
情况(一):μ未知(σ2已知)
μ的验前共轭分布为正态分布,即
Figure BDA0003187182750000151
超参数μ0,
Figure BDA0003187182750000152
分别表示验前数据的均值和方差,由验前数据估计得到。
验前分布的核为:
Figure BDA0003187182750000153
似然函数为:
Figure BDA0003187182750000154
μ的共轭验后分布仍为正态分布,即
Figure BDA0003187182750000155
其中:
Figure BDA0003187182750000156
Figure BDA0003187182750000157
Figure BDA0003187182750000158
情况(二):σ2未知(μ已知)
σ2的验前共轭分布为逆伽马分布,即π(σ2)~IGa(a,b),超参数a,b由验前数据估计得到。
验前分布密度函数:
Figure BDA0003187182750000159
似然函数:
Figure BDA00031871827500001510
σ2的共轭验后分布仍为逆伽马分布
Figure BDA0003187182750000161
Figure BDA0003187182750000162
情况(三):μ和σ2未知且相关
参数(μ,σ2)的联合共轭分布是正态—逆伽马分布,即
Figure BDA0003187182750000163
v00,
Figure BDA0003187182750000164
k0为超参数,由验前数据确定。
其中:
Figure BDA0003187182750000165
Figure BDA0003187182750000166
Figure BDA0003187182750000167
则联合验前分布
Figure BDA0003187182750000168
似然函数为
Figure BDA0003187182750000169
则联合后验分布也为正态-逆伽马分布
Figure BDA00031871827500001610
其中:
Figure BDA00031871827500001611
μ的后验分布为自由度为vn的学生t分布,即
Figure BDA00031871827500001612
σ2的后验分布为逆伽马分布,即
Figure BDA0003187182750000171
④威布尔分布
试验数据:
t1≤t2≤…≤tr,即n个样本的前r个故障时间
两参数威布尔分布的分布函数:
Figure BDA0003187182750000172
参数:分以下三种情况讨论:
情况(一):形状参数m已知,η未知
试验数据可以表示成
Figure BDA0003187182750000173
则这些数据为来自指数分布Exp(λ),λ=(1/η)m的前r个次序统计量,则参数λ的验后分布可以按照指数分布给出。
情况(二):失效率是递减的,即0<m<1,选取贝塔分布为m的先验分布。
取m~β(a,b),λ=(1/η)m~Γ(d,τ),则在m和λ是相互独立的假设下,先验分布为
π(λ,m)∝λd-1e-τλma-1(1-m)b-1
给定试验样本数据条件下,似然函数为
Figure BDA0003187182750000174
其中:
Figure BDA0003187182750000175
表示以
Figure BDA0003187182750000176
为失效时间的总试验时间。
则m和λ的联合后验分布为
Figure BDA0003187182750000177
Figure BDA0003187182750000178
其中:C1为与m和λ无关的常数,其值为
Figure BDA0003187182750000179
由此可得,m的后验分布为
Figure BDA0003187182750000181
λ的后验分布为
Figure BDA0003187182750000182
情况(三):失效率是递增的,即m>1,则可选取如下先验分布,使m′=m-1服从伽马分布,即m′=m-1~Γ(a,b),选取λ=(1/η)m~Γ(d,τ),则在m和λ是相互独立的假设下,先验分布为
π(λ,m)∝λd-1e-τλ(m-1)a-1e-b(m-1)
给定试验样本数据条件下,似然函数为
Figure BDA0003187182750000183
其中:
Figure BDA0003187182750000184
表示以
Figure BDA0003187182750000185
为失效时间的总试验时间。
则m和λ的联合后验分布为
Figure BDA0003187182750000186
Figure BDA0003187182750000187
其中:C2为与m和λ无关的常数,其值为
Figure BDA0003187182750000188
由此可得,m的后验分布为
Figure BDA0003187182750000189
λ的后验分布为
Figure BDA0003187182750000191
步骤S5.4:在已知参数的后验分布密度函数的情况下,根据总体分布,计算各可靠性评估指标的后验期望估计值,作为其贝叶斯估计值。
具体地,①对于二项分布,R的贝叶斯估计(后验期望):
Figure BDA0003187182750000192
②指数分布
λ的贝叶斯估计(后验期望):
Figure BDA0003187182750000193
平均寿命的贝叶斯估计(后验期望):
Figure BDA0003187182750000194
任务时间t0时的可靠度的贝叶斯估计(后验期望):
Figure BDA0003187182750000195
③正态分布和对数正态分布
情况(一)
μ的贝叶斯估计:
Figure BDA0003187182750000196
任务时间t0时的可靠度的点估计:
Figure BDA0003187182750000197
情况(二)
σ2的贝叶斯估计:
Figure BDA0003187182750000201
任务时间t0时的可靠度的贝叶斯估计(后验期望):
Figure BDA0003187182750000202
其中:c1为与
Figure BDA0003187182750000203
s2有关的归一化常数。
情况(三)
μ的期望后验估计:
Figure BDA0003187182750000204
σ2的期望后验估计:
Figure BDA0003187182750000205
R的Bayes估计:
Figure BDA0003187182750000206
其中:c2为一个与
Figure BDA0003187182750000207
s2有关的常数。
④威布尔分布
情况(一)
同指数分布。
情况(二)
m的贝叶斯估计:
Figure BDA0003187182750000208
λ的贝叶斯估计:
Figure BDA0003187182750000211
可靠度的贝叶斯估计:
Figure BDA0003187182750000212
情况(三)
m的贝叶斯估计:
Figure BDA0003187182750000213
λ的贝叶斯估计:
Figure BDA0003187182750000214
可靠度的贝叶斯估计:
Figure BDA0003187182750000215
本发明还提供了一种产品可靠性综合评估系统,包括:
模块M1:将多阶段多类型数据进行分类与预处理;
模块M2:将分类与预处理之后的多阶段多类型数据进行一致性检验;
模块M3:一致性检验后对多阶段多类型数据进行折算和综合;
模块M4:多阶段多类型数据进行折算和综合之后根据数据类型确定先验分布和超参数;
模块M5:确定先验分布和超参数之后,根据Bayes理论及相关模型,进行数据融合和可靠性评估。
本发明又提供了一种存储有计算机程序的计算机可读存储介质,计算机程序被处理器执行时实现上述方法的步骤。
本发明继续提供的一种产品可靠性综合评估设备,包括上述的产品可靠性综合评估系统或者上述的存储有计算机程序的计算机可读存储介质。
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统及其各个装置、模块、单元以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统及其各个装置、模块、单元以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同功能。所以,本发明提供的系统及其各项装置、模块、单元可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置、模块、单元也可以视为硬件部件内的结构;也可以将用于实现各种功能的装置、模块、单元视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (10)

1.一种产品可靠性综合评估方法,其特征在于,包括如下步骤:
步骤S1:将多阶段多类型数据进行分类与预处理;
步骤S2:将分类与预处理之后的多阶段多类型数据进行一致性检验;
步骤S3:一致性检验后对多阶段多类型数据进行折算和综合;
步骤S4:针对折算和综合后的数据,根据数据类型确定先验分布和超参数;
步骤S5:确定先验分布和超参数之后,根据Bayes理论及相关模型,进行数据融合和可靠性评估。
2.根据权利要求1所述的产品可靠性综合评估方法,其特征在于,所述步骤S1包括将多阶段多类型数据进行分类,数据类型如下:
产品现场类数据:产品实际使用或服役环境条件下的寿命型、成败型和退化型数据;
产品异环境类数据:产品在寿命周期各阶段开展的不同试验条件下不同于现场使用环境条件下的寿命型、成败型和退化型数据;
相似产品数据:又称为异总体数据,包括相似产品现场类数据和相似产品异环境类数据,相似产品现场类数据是指相似产品实际使用或服役环境条件下的寿命型、成败型和退化型数据,相似产品异环境类数据是指相似产品在寿命周期各阶段开展的不同试验条件下不同于现场使用环境条件下的寿命型、成败型和退化型数据;
部件级数据:产品各组成部件的现场类数据和异环境类数据,部件级现场类数据是指产品各组成部件实际使用或服役环境条件下的寿命型、成败型和退化型数据,部件级异环境类数据是指产品各组成部件在寿命周期各阶段开展的不同试验条件下不同于现场使用环境条件下的寿命型、成败型和退化型数据;
专家型数据:利用专家对产品可靠度的经验估计值来表示的数据。
3.根据权利要求2所述的产品可靠性综合评估方法,其特征在于,所述步骤S1包括对多阶段多类型数据进行预处理:
针对寿命型数据的预处理:利用寿命分布类型检验和参数评估方法进行预处理,得到寿命类型及其参数估计;
针对异环境类数据的预处理:利用环境因子估算方法进行预处理,给出异环境类数据相对于现场数据的“环境因子”;
针对部件级数据的预处理:利用系统可靠性综合方法进行预处理,将部件级数据折合成产品数据;
针对退化型数据的预处理:利用退化建模方法进行预处理,将退化型数据转换成伪寿命型数据;
针对相似产品数据的预处理:利用相似因子估算方法进行预处理,给出相似产品数据的“相似因子”。
4.根据权利要求1所述的产品可靠性综合评估方法,其特征在于,所述步骤S2包括:
步骤S2.1:对寿命分布类型进行一致性检验,对于寿命型数据,根据寿命类型,判断多阶段多类型寿命数据与产品现场类数据是否服从同一种寿命分布;
步骤S2.2:对失效机理进行一致性检验,判断异环境寿命数据是否满足失效机理不变条件,即环境因子不变原则。
5.根据权利要求1所述的产品可靠性综合评估方法,其特征在于,所述步骤S3中对多阶段多类型数据的折算和综合包括:
对异环境数据的折算和综合:对于环境因子Ki0≠1的异环境数据,根据数据类型将异环境数据折算成现场数据,再将折算后的现场数据进行综合;
对相似产品数据的折算和综合:对于相似因子Fi0≠1的相似产品数据,根据数据类型将相似产品数据折算成被评估产品数据,再将折算后的被评估产品数据进行综合。
6.根据权利要求1所述的产品可靠性综合评估方法,其特征在于,所述步骤S4包括:
步骤S4.1:根据总体分布中未知参数的取值范围选取先验分布,基本方法如下:
对于[0,1]取值的参数,选用贝塔分布Be(a,b)作为先验分布,
对于(-∞,+∞)取值的参数,选用正态分布N(μ,σ2)作为先验分布,
对于(0,+∞)取值的参数,选用伽马分布Ga(z,η)或倒伽马分布IGa(z,η)作为先验分布;
步骤S4.2:根据验前数据,确定验前分布的超参数,基本方法为利用验前信息,产生自助样本,得到各样本对应分布的参数的极大似然估计值样本,计算出参数的均值和方差,该均值和方差应等于对应参数的验前分布的均值和方差,联立方程组,得到寿命分布参数的验前分布的超参数。
7.根据权利要求1所述的产品可靠性综合评估方法,其特征在于,所述步骤S5包括:
步骤S5.1:在已知总体分布类型和现场数据的情况下,确定各分布的似然函数;
步骤S5.2:根据Bayes理论,确定验后分布的核或分布密度函数;
步骤S5.3:根据验后分布的核,判断验后分布的类型,得到参数的后验分布密度函数
步骤S5.4:在已知参数的后验分布密度函数的情况下,根据总体分布,计算各可靠性评估指标的后验期望估计值,作为其贝叶斯估计值。
8.一种产品可靠性综合评估系统,其特征在于,包括:
模块M1:将多阶段多类型数据进行分类与预处理;
模块M2:将分类与预处理之后的多阶段多类型数据进行一致性检验;
模块M3:一致性检验后对多阶段多类型数据进行折算和综合;
模块M4:多阶段多类型数据进行折算和综合之后根据数据类型确定先验分布和超参数;
模块M5:确定先验分布和超参数之后,根据Bayes理论及相关模型,进行数据融合和可靠性评估。
9.一种存储有计算机程序的计算机可读存储介质,其特征在于,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的方法的步骤。
10.一种产品可靠性综合评估设备,其特征在于,包括权利要求8所述的产品可靠性综合评估系统或者权利要求9所述的存储有计算机程序的计算机可读存储介质。
CN202110865532.1A 2021-07-29 2021-07-29 产品可靠性综合评估方法与系统、设备、介质 Pending CN113592295A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110865532.1A CN113592295A (zh) 2021-07-29 2021-07-29 产品可靠性综合评估方法与系统、设备、介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110865532.1A CN113592295A (zh) 2021-07-29 2021-07-29 产品可靠性综合评估方法与系统、设备、介质

Publications (1)

Publication Number Publication Date
CN113592295A true CN113592295A (zh) 2021-11-02

Family

ID=78251965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110865532.1A Pending CN113592295A (zh) 2021-07-29 2021-07-29 产品可靠性综合评估方法与系统、设备、介质

Country Status (1)

Country Link
CN (1) CN113592295A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116307859A (zh) * 2023-02-27 2023-06-23 中国人民解放军92942部队 一种综合利用普通概率法和cmsr法的可靠性分配方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107766628A (zh) * 2017-09-29 2018-03-06 北京航空航天大学 一种基于寿命信息融合的动态退化可靠性评估方法
JP2019207730A (ja) * 2017-01-09 2019-12-05 株式会社東芝 行動データを用いた一般化されたスキル評価のためのシステム及び方法
CN112098600A (zh) * 2020-09-14 2020-12-18 哈尔滨工业大学 一种化学传感器阵列的故障检测及诊断方法
CN112883497A (zh) * 2021-03-22 2021-06-01 中国人民解放军国防科技大学 基于多源信息融合的航天阀门可靠性评估方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207730A (ja) * 2017-01-09 2019-12-05 株式会社東芝 行動データを用いた一般化されたスキル評価のためのシステム及び方法
CN107766628A (zh) * 2017-09-29 2018-03-06 北京航空航天大学 一种基于寿命信息融合的动态退化可靠性评估方法
CN112098600A (zh) * 2020-09-14 2020-12-18 哈尔滨工业大学 一种化学传感器阵列的故障检测及诊断方法
CN112883497A (zh) * 2021-03-22 2021-06-01 中国人民解放军国防科技大学 基于多源信息融合的航天阀门可靠性评估方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张西山;黄考利;闫鹏程;连光耀;李志宇;: "基于不确定性测度与支持度的测试性验前信息融合方法", 航空动力学报, vol. 30, no. 11, 11 November 2015 (2015-11-11), pages 2779 - 2786 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116307859A (zh) * 2023-02-27 2023-06-23 中国人民解放军92942部队 一种综合利用普通概率法和cmsr法的可靠性分配方法
CN116307859B (zh) * 2023-02-27 2023-12-29 中国人民解放军92942部队 一种综合利用普通概率法和cmsr法的可靠性分配方法

Similar Documents

Publication Publication Date Title
Pastor et al. A statistical test for nested radial DEA models
RU2522037C2 (ru) Идентификация отказов в авиационном двигателе
CN106570281B (zh) 基于相似产品信息的小子样产品贝叶斯可靠性评估方法
CN108664700B (zh) 基于不确定数据包络分析的加速退化信息融合建模方法
US7485548B2 (en) Die loss estimation using universal in-line metric (UILM)
CN110414553B (zh) 一种融合多源信息的备件可靠性评估方法及系统
Rao et al. Reliability test plans for Marshall-Olkin extended exponential distribution
Weichwald et al. Causal structure learning from time series: Large regression coefficients may predict causal links better in practice than small p-values
CN112288192A (zh) 一种环保监测预警方法及系统
WO2014168883A1 (en) System and method for the automatic determination of critical parametric electrical test parameters for inline yield monitoring
Li et al. Design and risk evaluation of reliability demonstration test for hierarchical systems with multilevel information aggregation
CN113592295A (zh) 产品可靠性综合评估方法与系统、设备、介质
CN111242170B (zh) 食品检验检测项目预知方法及装置
CN112199559A (zh) 数据特征的筛选方法、装置及计算机设备
WO2022262247A1 (zh) 代码缺陷状态确定方法、装置、设备、介质及程序
CN115795920A (zh) 基于多应力耦合加速模型的产品可靠性评价方法和装置
CN114519519A (zh) 基于gbdt算法与逻辑回归模型的企业违约风险评估方法设备及介质
US20110184702A1 (en) Identifying the Defective Layer of a Yield Excursion Through the Statistical Analysis of Scan Diagnosis Results
US20120239347A1 (en) Failure diagnosis support technique
CN111783883A (zh) 一种异常数据的检测方法及装置
RU2632124C1 (ru) Способ прогнозной оценки эффективности многоэтапных процессов
GAZELOGLU et al. Comparison of weighted least squares and robust estimation in structural equation modeling of ordinal categorical data with larger sample sizes
Rana et al. Analysing defect inflow distribution of automotive software projects
Kiani et al. Simulation of interval censored data in medical and biological studies
DE112022000915T5 (de) Erstellen eines statistischen modells und auswerten der modellleistung

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination