CN113591227B - 一种弹子加压机构优化设计方法 - Google Patents

一种弹子加压机构优化设计方法 Download PDF

Info

Publication number
CN113591227B
CN113591227B CN202111001618.6A CN202111001618A CN113591227B CN 113591227 B CN113591227 B CN 113591227B CN 202111001618 A CN202111001618 A CN 202111001618A CN 113591227 B CN113591227 B CN 113591227B
Authority
CN
China
Prior art keywords
marble
disc
force
transfer function
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111001618.6A
Other languages
English (en)
Other versions
CN113591227A (zh
Inventor
任毅如
刘守河
向剑辉
金其多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202111001618.6A priority Critical patent/CN113591227B/zh
Publication of CN113591227A publication Critical patent/CN113591227A/zh
Application granted granted Critical
Publication of CN113591227B publication Critical patent/CN113591227B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Abstract

本发明公开了一种弹子加压机构优化设计方法,包括如下步骤:建立弹子加压机构的进程力传递函数模型和回程力传递函数模型;选定不同的弹子槽倾斜角度和摩擦系数形成组合,每个组合对应一种初步设计方案;计算多组所述初步设计方案的进程增力系数及回程增力系数;根据操纵力的设计要求,确定回程增力系数的取值范围;选择同时满足回程增力系数的取值范围且进程增力系数最大的初步设计方案为最优设计方案;对弹子加压机构进行动力学仿真分析,计算仿真分析结果与函数计算结果的误差,评估所述最优设计方案的可行性。本发明提供的制动器弹子加压机构优化设计方法可以通过优化设计参数提高弹子加压机构力传递性能。

Description

一种弹子加压机构优化设计方法
【技术领域】
本发明涉及车辆制动器技术领域,尤其具体涉及一种弹子加压机构优化设计方法。
【背景技术】
坦克、重型车辆、履带车辆、装甲车辆和高铁等车辆均具有重量大的特点,某些车辆还要求具有较高的车速和较高的机动性其等要求,使得车辆结构设计和制造面临巨大的调整。制动器是车辆实现加减速和各种机动动作的核心部件,对车辆的整体性能起到关键的作用。对于履带式车辆,通常采用多盘式弹子加压制动结构,存在卡滞、传力效率低等问题。因此,实有必要提供一种弹子加压机构优化设计方法以解决上述问题。
【发明内容】
本发明提供一种弹子加压机构优化设计方法,通过建立合理的制动器作动加压结构力传递函数模型,进而分析影响弹子加压机构力传递性能的参数,改善履带车辆制动中制动器力传递性能。
为实现上述目的,本发明的技术方案为:
一种弹子加压机构优化设计方法,所述弹子加压机构包括转动盘、移动盘及弹子,所述转动盘与所述移动盘之间设置有具有倾斜角的弹子槽,所述弹子收容并限位于所述弹子槽内,所述优化设计方法包括如下步骤:
S1:建立弹子加压机构的进程力传递函数模型和回程力传递函数模型,其中:
所述进程力传递函数模型为:
Figure BDA0003235598650000011
所述回程力传递函数模型为:
Figure BDA0003235598650000012
式中,Ka表示进程增力系数,Kb表示回程增力系数,μ为弹子与转动盘和移动盘之间的摩擦系数;α表示弹子槽倾斜角度;F表示进程中作动机构作用在转动盘上的操纵力,F0′表示进程中移动盘作用在摩擦片上的制动压力;P为回程中摩擦片回位作用在移动盘上的制动压力;FC为回程中转动盘作用在作动机构上的操纵力;
S2:针对任意弹子加压机构设计,选定不同的弹子槽倾斜角度和摩擦系数形成组合(α,μ),每个组合对应一种初步设计方案;
S3:根据所述进程力传递函数模型及回程力传递函数分别计算多组所述初步设计方案的进程增力系数及回程增力系数;
S4:根据操纵力FC的设计要求,确定回程增力系数的取值范围;
S5:在回程增力系数符合取值范围的初步设计方案中选择进程增力系数最大的一组为最优设计方案;
S6:基于ADAMS数值计算软件,对弹子加压机构进行动力学仿真分析,得到所述最优设计方案增力系数的仿真分析结果,计算所述仿真分析结果与函数计算结果的误差,评估所述最优设计方案的可行性。
优选的,在弹子滚动情况下,所述进程力传递函数模型为:
Figure BDA0003235598650000021
其中μ1为滚动情况下弹子与转动盘和移动盘之间的摩擦系数。
优选的,在弹子滚动情况下,所述进程力传递函数模型的建立过程为:
S11:以所述转动盘为分析对象,建立受力平衡方程:
F=(fS1′cosα+N1′sinα)
S12:以所述移动盘为分析对象,建立受力平衡方程:
F0′=(N2′cosα-fS2′sinα)
S13:以所述弹子为分析对象,建立受力平衡方程:
fS1·r+fS2·r=Mf1+Mf2
fS1=fS2
N1=N2
Mf1=δN1
Mf2=δN2
μ1=δ/r
式中,fS1表示弹子与转动盘之间的滚动摩擦力,fS1′表示转动盘受到的反作用力;fS2表示弹子与移动盘之间的滚动摩擦力,fS2′表示移动盘受到的反作用力;N1表示转动盘对弹子的正压力,N1′表示转动盘受到的反作用力;N2表示移动盘对弹子的正压力,N2′表示移动盘受到的反作用力;Mf1表示转动盘对弹子的摩擦力偶,Mf2表示移动盘对弹子的摩擦阻力偶;r表示弹子的半径;δ表示弹子与转动盘和移动盘之间的滚动摩阻系数;
S14:联立上述各式,得到滚动状态下,弹子加压机构的进程力传递函数模型为:
Figure BDA0003235598650000031
优选的,在弹子滑动情况下,所述进程力传递函数模型为:
Figure BDA0003235598650000032
其中μ2为滑动情况下弹子与转动盘和移动盘之间的摩擦系数。
优选的,在弹子滑动情况下,所述进程力传递函数模型的建立过程为:
S21:以所述转动盘为分析对象,建立受力平衡方程:
F-(f1′cosα+N1′sinα)=m1a1
S22:以所述移动盘为分析对象,建立受力平衡方程:
(N2′cosα-f2′sinα)-F0′=m2a2
S23:以所述弹子为分析对象,建立受力平衡方程:
(N1-N2)cosα+(f2-f1)sinα=ma
f1=μ2N1
f2=μ2N2
式中,a1表示转动盘的切向加速度;a2表示移动盘沿轴向加速度;a表示弹子沿轴向加速度;m1、m2分别表示转动盘和移动盘质量;m表示单个弹子的质量;f1表示弹子转动盘之间的滑动摩擦力,f1′表示转动盘受到的反作用力;f2表示弹子与移动盘之间的滑动摩擦力,f2′表示移动盘受到的反作用力;
S24:联立上述各式,得到滑动状态下弹子加压机构的进程力传递函数模型为:
Figure BDA0003235598650000041
式中,n表示弹子个数;
S25:忽略弹子的加速度,则a=a1=a2=0,联立上式可以得到滑动情况下,弹子加压机构进程力传递函数模型为:
Figure BDA0003235598650000042
优选的,所述回程力传递函数模型的建立过程为:
S31:以所述移动盘为分析对象,建立受力平衡方程:
FDYcosα+fDYsinα=P;
fDY=FDYμ;
S32:以所述转动盘为分析对象,建立受力平衡方程:
FDZsinα-fDZcosα=FC
fDZ=FDZμ
S33:以所述弹子为分析对象,建立受力平衡方程:
FYDsinα-fYDcosα=FZDsinα-fZDcosα
FYDcosα+fYDsinα=FZDcosα+fZDsinα
式中,P为回程中摩擦片回位作用在移动盘上的制动压力;FC为回程中转动盘作用在作动机构上的操纵力,FDY表示弹子对移动盘的正压力;fDY表示弹子与移动盘之间的滑动摩擦力,FDZ表示弹子对转动盘的正压力;fDZ表示弹子与转动盘之间的滑动摩擦力,FYD表示FDY的反作用力;FZD表示FDZ的反作用力;fYD表示fDY的反作用力;fZD表示fDZ的反作用力。
S34:联立上述各式,得到弹子加压机构回程力传递函数模型为:
Figure BDA0003235598650000043
与相关技术相比,本发明提供的一种制动器的弹子加压机构优化设计方法通过建立弹子加压机构的进程力传递函数和回程力传递函数对弹子加压机构的全行程进行分析,可以在弹子槽倾斜角度和摩擦系数的组合中选择最优的设计方案,提高弹子加压机构力传递性能,同时能够避免弹子加压机构在回程中出现自锁卡滞,提高制动器加压机构的承载能力和使用寿命。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明提供的弹子加压机构的结构示意图;
图2是进程中弹子加压机构在弹子滚动状态下的受力分析图;
图3是进程中弹子加压机构在弹子滑动状态下的受力分析图;
图4是回程中弹子加压机构的受力分析图;
图5是摩擦系数为0.06,弹子槽倾斜角度分别为15°、20°及25°时弹子加压机构全行程受力曲线;
图6是弹子槽倾斜角度为16°,摩擦系数分别0.05、0.07及0.1时弹子加压机构全行程受力曲线;
图7是不同制动力矩下的增力系数的函数计算结果和仿真分析结果的对比曲线。
【具体实施方式】
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明的上述目的、特征和优点能够更加明显易懂,下面对本发明的具体实施方式作进一步的说明。
请结合参阅图1-7,本发明提供一种弹子加压机构优化设计方法,所述弹子加压机构包括转动盘1、移动盘2及弹子3,所述转动盘1与所述移动盘3之间设置有具有倾斜角的弹子槽,所述弹子3收容并限位于所述弹子槽内,且所述弹子3可以在所述弹子槽内自由移动。当车辆制动时,制动器的制动力通过作动机构作用于与转动盘相连的力臂上,拉臂带动转动盘1转动,促使弹子3沿弹子槽移动,促使转动盘1与所述移动盘2的间隙减小,转动盘1沿其轴线方向上移动,进而推动制动器中的静摩擦片和动摩擦片接触,产生相互作用的摩擦力,形成制动效果。弹子加压机构在作动中,将转动盘的切向力转换为了移动盘的轴向力,实现了增力效果。
所述优化设计方法包括如下步骤:
S1:建立弹子加压机构的进程力传递函数模型和回程力传递函数模型,其中:
所述进程力传递函数模型为:
Figure BDA0003235598650000061
所述回程力传递函数模型为:
Figure BDA0003235598650000062
式中,Ka表示进程增力系数,Kb表示回程增力系数,μ为弹子与转动盘和移动盘之间的摩擦系数;α表示弹子槽倾斜角度;F表示进程中作动机构作用在转动盘上的操纵力,F0′表示进程中移动盘作用在摩擦片上的制动压力;P为回程中摩擦片回位作用在移动盘上的制动压力;FC为回程中转动盘作用在作动机构上的操纵力。
弹子3的全程运动过程可以分别进程和回程两部分:进程过程中,作动机构将作动力F传导至所述转动盘1,经过弹子3的传导及增力作用,摩擦片受到的制动力为F0′;在回程过程中,弹性件复位形成制动压力,并将制动压力作用于所述移动盘2,然后再传导至所述弹子3上,驱动弹子3回位并挤压所述转动盘1,驱所述转动盘1转动,并将作用力传导至作动机构上。
进程中,弹子3在所述弹子槽中运动状态可以为滚动、滑动及二者的混合状态,因此需要分别进行研究。
(1)请参阅图2,在滚动情况下,忽略转动盘1和支撑体、移动盘2和支撑体之间的摩擦力;以及加压过程中的结构弹性变形,假设弹子加压机构的各个部件处于匀速运动状态,分析转动盘1、移动盘2和弹子3的受力情况。
S11:以所述转动盘为分析对象,建立受力平衡方程:
F=(fS1′cosα+N1′sinα)
S12:以所述移动盘为分析对象,建立受力平衡方程:
F0′=(N2′cosα-fS2′sinα)
S13:以所述弹子为分析对象,建立受力平衡方程:
fS1·r+fS2·r=Mf1+Mf2
fS1=fS2
N1=N2
Mf1=δN1
Mf2=δN2
μ1=δ/r
式中,fS1表示弹子与转动盘之间的滚动摩擦力,fS1′表示转动盘受到的反作用力;fS2表示弹子与移动盘之间的滚动摩擦力,fS2′表示移动盘受到的反作用力;N1表示转动盘对弹子的正压力,N1′表示转动盘受到的反作用力;N2表示移动盘对弹子的正压力,N2′表示移动盘受到的反作用力;Mf1表示转动盘对弹子的摩擦力偶,Mf2表示移动盘对弹子的摩擦阻力偶;r表示弹子的半径;δ表示弹子与转动盘和移动盘之间的滚动摩阻系数。
S14:联立上述各式,得到滚动状态下,弹子加压机构的进程力传递函数模型为:
Figure BDA0003235598650000071
(2)请参阅图3,在滑动情况下,弹子3、转动盘1和移动盘2具有一定大小的加速度,分析转动盘1、移动盘2和弹子3的受力情况。
S21:以所述转动盘为分析对象,建立受力平衡方程:
F-(f1′cosα+N1′sinα)=m1a1
S22:以所述移动盘为分析对象,建立受力平衡方程:
(N2′cosα-f2′sinα)-F0′=m2a2
S23:以所述弹子为分析对象,建立受力平衡方程:
(N1-N2)cosα+(f2-f1)sinα=ma
f1=μ2N1
f2=μ2N2
式中,a1表示转动盘的切向加速度;a2表示移动盘沿轴向加速度;a表示弹子沿轴向加速度;m1、m2分别表示转动盘和移动盘质量;m表示单个弹子的质量;f1表示弹子转动盘之间的滑动摩擦力,f1′表示转动盘受到的反作用力;f2表示弹子与移动盘之间的滑动摩擦力,f2′表示移动盘受到的反作用力;
S24:联立上述各式,得到滑动状态下,弹子加压机构的进程力传递函数模型为:
Figure BDA0003235598650000081
式中,n表示弹子个数。
S25:转动盘1、移动盘2和弹子3处于较低的速度和加速度,忽略弹子的加速度,暨a=a1=a2=0,联立上式可以得到滑动情况下,弹子加压机构进程力传递函数模型为:
Figure BDA0003235598650000082
(3)在滚动与滑动的混合情况下,可以看作是情况(1)与情况(2)的组合情况,同样可以分解为滚动和滑动两种情况进行研究,由于两种情况下分析得到的进程力传递函数模型相同(μ1和μ2只是为了作区分,二者实质相同,均表示转动盘与移动盘之间的摩擦系数),因此滚动与滑动的混合情况下,弹子加压机构进程力传递函数模型为:
Figure BDA0003235598650000083
式中,μ3为滚动与滑动组合情况下,弹子与转动盘和移动盘之间的摩擦系数。
综合上述分析,弹子加压机构进程力传递函数模型为:
Figure BDA0003235598650000084
请参阅图4,回程中,对弹子加压机构进行受力平衡分析:
S31:以所述移动盘为分析对象,建立受力平衡方程:
FDYcosα+fDYsinα=P;
fDY=FDYμ;
S32:以所述转动盘为分析对象,建立受力平衡方程:
FDZsinα-fDZcosα=FC
fDZ=FDZμ
S33:以所述弹子为分析对象,建立受力平衡方程:
FYDsinα-fYDcosα=FZDsinα-fZDcosα
FYDcosα+fYDsinα=FZDcosα+fZDsinα
式中,P为回程中摩擦片回位作用在移动盘上的制动压力;FC为回程中转动盘作用在作动机构上的操纵力,FDY表示弹子对移动盘的正压力;fDY表示弹子与移动盘之间的滑动摩擦力,FDZ表示弹子对转动盘的正压力;fDZ表示弹子与转动盘之间的滑动摩擦力,FYD表示FDY的反作用力;FZD表示FDZ的反作用力;fYD表示fDY的反作用力;fZD表示fDZ的反作用力。
S34:联立上述各式,得到弹子加压机构回程力传递函数模型为:
Figure BDA0003235598650000091
S2:针对任意弹子加压机构设计,选定不同的弹子槽倾斜角度和摩擦系数形成组合(α,μ),每个组合对应一种初步设计方案。
弹子槽倾斜角度和摩擦系数作为弹子加压机构中影响力传递性能的核心参数,本发明选择弹子槽倾斜角度和摩擦系数作为优化对象。
S3:根据所述进程力传递函数模型及回程力传递函数分别计算多组所述初步设计方案的进程增力系数及回程增力系数。
S4:根据操纵力FC的设计要求,确定回程增力系数的取值范围。
在回程过程中,所述制动压力P由弹性件的弹性势能转换而来,其属于固定值,基于所述回程力传递模型可以得到操纵力FC与回程增力系数Kb的关系,操纵力FC与回程增力系数Kb的关系呈正相关。在实际使用中,为了保证作动机构的顺利回位,回程中操纵力FC需要小于预设的阈值,由此可以得到所述回程增力系数Kb的取值范围。
S5:在回程增力系数符合取值范围的初步设计方案中选择进程增力系数最大的一组为最优设计方案。
在满足回程增力系数Kb的取值范围的条件下,可以保证作动机构的顺利回位,同时选择进程增力系数最大的初步设计方案,可以提供更大的制动压力,提高制动效果。
S6:基于ADAMS数值计算软件,对弹子加压机构进行动力学仿真分析,得到所述最优设计方案增力系数的仿真分析结果,计算所述仿真分析结果与函数计算结果的误差,评估所述最优设计方案的可行性。
实施例一
采用本发明提供的一种制动器的弹子加压机构优化设计方法进行弹子加压机构优化设计。具体的,选定的三组初步设计方案中,控制弹子槽倾斜角度为16°,调整摩擦系数分别为0.05、0.07、0.1,弹子加压机构在一个行程中操纵力与制动压力的关系如图5所示;选定的另外三组初步设计方案中,控制摩擦系数为0.06,调整弹子槽倾斜角度分别为15°、20°、25°,弹子加压机构在一个行程中操纵力与制动压力的关系如图6所示。计算上述六组初步设计方案的进程增力系数及回程增力系数,计算结果如下表所示,
Figure BDA0003235598650000101
当弹子槽倾斜角度为16°时,在进程中相同的操纵力下,摩擦系数为0.05时,移动盘输出制动压力更大,同时在回程中所需的操纵力越小,有效避免弹子加压机构在回程中出现自锁卡滞;对比图5和图6可以看出,当摩擦系数为0.06时,相同的操纵力下,弹子槽倾斜角度为15°时,所提供的制动压力更大。
实施例二
为了验证本发明提出的力传递函数模型,选用某车辆弹子加压制动器,基于ADAMS数值计算软件,对弹子加压机构开展动力学仿真分析得到增力系数的仿真分析结果。弹子加压机构的相关参数为:转动盘的内径和外径分别是180mm和140mm,移动盘的内径和外径分别是176mm和144mm,弹子槽半径为13mm,弹子槽倾斜角度为25°,弹子的半径为12.9mm。弹子和转动盘与移动盘之间为库伦摩擦,动摩擦系数为0.1,而静摩擦系数为0.11;最大和最小制动力矩分别为1800Nm、3600Nm,弹子槽的倾角为25°。
图7表示不同制动力矩下的进程增力系数的函数计算结果和仿真分析结果的对比图,仿真分析结果得到的进程增力系数稍小于函数计算结果,误差均在8%以内,故本发明提出的力传递函数模型可以准确描述弹子加压机构力传递性能。
与相关技术相比,本发明提供的一种制动器的弹子加压机构优化设计方法通过建立弹子加压机构的进程力传递函数和回程力传递函数对弹子加压机构的全行程进行分析,可以在弹子槽倾斜角度和摩擦系数的组合中选择最优的设计方案,提高弹子加压机构力传递性能,同时能够避免弹子加压机构在回程中出现自锁卡滞,提高制动器加压机构的承载能力和使用寿命。
以上对本发明的实施方式作出详细说明,但本发明不局限于所描述的实施方式。对本领域的技术人员而言,在不脱离本发明的原理和精神的情况下对这些实施例进行的多种变化、修改、替换和变型均仍落入在本发明的保护范围之内。

Claims (6)

1.一种弹子加压机构优化设计方法,其特征在于,所述弹子加压机构包括转动盘、移动盘及弹子,所述转动盘与所述移动盘之间设置有具有倾斜角的弹子槽,所述弹子收容并限位于所述弹子槽内,所述优化设计方法包括如下步骤:
S1:建立弹子加压机构的进程力传递函数模型和回程力传递函数模型,其中:
所述进程力传递函数模型为:
Figure QLYQS_1
所述回程力传递函数模型为:
Figure QLYQS_2
式中,Ka表示进程增力系数,Kb表示回程增力系数,μ为弹子与转动盘和移动盘之间的摩擦系数;α表示弹子槽倾斜角度;F表示进程中作动机构作用在转动盘上的操纵力,F0′表示进程中移动盘作用在摩擦片上的制动压力;P为回程中摩擦片回位作用在移动盘上的制动压力;FC为回程中转动盘作用在作动机构上的操纵力;
S2:针对任意弹子加压机构设计,选定不同的弹子槽倾斜角度和摩擦系数形成组合(α,μ),每个组合对应一种初步设计方案;
S3:根据所述进程力传递函数模型及回程力传递函数分别计算多组所述初步设计方案的进程增力系数及回程增力系数;
S4:根据操纵力FC的设计要求,确定回程增力系数的取值范围;
S5:在回程增力系数符合取值范围的初步设计方案中选择进程增力系数最大的一组为最优设计方案;
S6:基于ADAMS数值计算软件,对弹子加压机构进行动力学仿真分析,得到所述最优设计方案增力系数的仿真分析结果,计算所述仿真分析结果与函数计算结果的误差,评估所述最优设计方案的可行性。
2.根据权利要求1所述的弹子加压机构优化设计方法,其特征在于,在弹子滚动情况下,所述进程力传递函数模型为:
Figure QLYQS_3
其中μ1为滚动情况下弹子与转动盘和移动盘之间的摩擦系数。
3.根据权利要求2所述的弹子加压机构优化设计方法,其特征在于,在弹子滚动情况下,所述进程力传递函数模型的建立过程为:
S11:以所述转动盘为分析对象,建立受力平衡方程:
F=(fS1′cosα+N1′sinα)
S12:以所述移动盘为分析对象,建立受力平衡方程:
F0′=(N2′cosα-fS2′sinα)
S13:以所述弹子为分析对象,建立受力平衡方程:
fS1·r+fS2·r=Mf1+Mf2
fS1=fS2
N1=N2
Mf1=δN1
Mf2=δN2
μ1=δ/r
式中,fS1表示弹子与转动盘之间的滚动摩擦力,fS1′表示转动盘受到的反作用力;fS2表示弹子与移动盘之间的滚动摩擦力,fS2′表示移动盘受到的反作用力;N1表示转动盘对弹子的正压力,N1′表示转动盘受到的反作用力;N2表示移动盘对弹子的正压力,N2′表示移动盘受到的反作用力;Mf1表示转动盘对弹子的摩擦力偶,Mf2表示移动盘对弹子的摩擦阻力偶;r表示弹子的半径;δ表示弹子与转动盘和移动盘之间的滚动摩阻系数;
S14:联立上述各式,得到滚动状态下,弹子加压机构的进程力传递函数模型为:
Figure QLYQS_4
4.根据权利要求1所述的弹子加压机构优化设计方法,其特征在于,在弹子滑动情况下,所述进程力传递函数模型为:
Figure QLYQS_5
其中μ2为滑动情况下弹子与转动盘和移动盘之间的摩擦系数。
5.根据权利要求4所述的弹子加压机构优化设计方法,其特征在于,在弹子滑动情况下,所述进程力传递函数模型的建立过程为:
S21:以所述转动盘为分析对象,建立受力平衡方程:
F-(f1′cosα+N1′sinα)=m1a1
S22:以所述移动盘为分析对象,建立受力平衡方程:
(N2′cosα-f2′sinα)-F0′=m2a2
S23:以所述弹子为分析对象,建立受力平衡方程:
(N1-N2)cosα+(f2-f1)sinα=ma
f1=μ2N1
f2=μ2N2
式中,a1表示转动盘的切向加速度;a2表示移动盘沿轴向加速度;a表示弹子沿轴向加速度;m1、m2分别表示转动盘和移动盘质量;m表示单个弹子的质量;f1表示弹子转动盘之间的滑动摩擦力,f1′表示转动盘1受到的反作用力;f2表示弹子与移动盘之间的滑动摩擦力,f2′表示移动盘受到的反作用力;
S24:联立上述各式,得到滑动状态下弹子加压机构的进程力传递函数模型为:
Figure QLYQS_6
式中,n表示弹子个数;
S25:忽略弹子的加速度,则a=a1=a2=0,联立上式可以得到滑动情况下,弹子加压机构进程力传递函数模型为:
Figure QLYQS_7
6.根据权利要求1所述的弹子加压机构优化设计方法,其特征在于,所述回程力传递函数模型的建立过程为:
S31:以所述移动盘为分析对象,建立受力平衡方程:
FDYcosα+fDYsinα=P;
fDY=FDYμ;
S32:以所述转动盘为分析对象,建立受力平衡方程:
FDZsinα-fDZcosα=FC
fDZ=FDZμ
S33:以所述弹子为分析对象,建立受力平衡方程:
FYDsinα-fYDcosα=FZDsinα-fZDcosα
FYDcosα+fYDsinα=FZDcosα+fZDsinα
式中,P为回程中摩擦片回位作用在移动盘上的制动压力;FC为回程中转动盘作用在作动机构上的操纵力,FDY表示弹子对移动盘的正压力;fDY表示弹子与移动盘之间的滑动摩擦力,FDZ表示弹子对转动盘的正压力;fDZ表示弹子与转动盘之间的滑动摩擦力,FYD表示FDY的反作用力;FZD表示FDZ的反作用力;fYD表示fDY的反作用力;fZD表示fDZ的反作用力;
S34:联立上述各式,得到弹子加压机构回程力传递函数模型为:
Figure QLYQS_8
CN202111001618.6A 2021-08-30 2021-08-30 一种弹子加压机构优化设计方法 Active CN113591227B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111001618.6A CN113591227B (zh) 2021-08-30 2021-08-30 一种弹子加压机构优化设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111001618.6A CN113591227B (zh) 2021-08-30 2021-08-30 一种弹子加压机构优化设计方法

Publications (2)

Publication Number Publication Date
CN113591227A CN113591227A (zh) 2021-11-02
CN113591227B true CN113591227B (zh) 2023-06-16

Family

ID=78240405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111001618.6A Active CN113591227B (zh) 2021-08-30 2021-08-30 一种弹子加压机构优化设计方法

Country Status (1)

Country Link
CN (1) CN113591227B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2898776A1 (fr) * 2006-03-27 2007-09-28 Univ Reims Champagne Ardenne Chaussure et structure de chaussure a optimisation de rendement musculaire et procede de fabrication de structure et de chaussure a optimisation de rendement musculaire
WO2008031248A1 (fr) * 2006-08-14 2008-03-20 Shuguang Sun Barillet de serrure motorisé mécanique utilisant une carte-clef mince
CN105912808A (zh) * 2016-04-28 2016-08-31 辽宁科技学院 一种用于基于Pro/E弹子快速加压机构的高效设计方法
CN110161876A (zh) * 2019-04-29 2019-08-23 南京航空航天大学 一种电动助力制动系统制动踏板反馈的优化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2898776A1 (fr) * 2006-03-27 2007-09-28 Univ Reims Champagne Ardenne Chaussure et structure de chaussure a optimisation de rendement musculaire et procede de fabrication de structure et de chaussure a optimisation de rendement musculaire
WO2008031248A1 (fr) * 2006-08-14 2008-03-20 Shuguang Sun Barillet de serrure motorisé mécanique utilisant une carte-clef mince
CN105912808A (zh) * 2016-04-28 2016-08-31 辽宁科技学院 一种用于基于Pro/E弹子快速加压机构的高效设计方法
CN110161876A (zh) * 2019-04-29 2019-08-23 南京航空航天大学 一种电动助力制动系统制动踏板反馈的优化方法

Also Published As

Publication number Publication date
CN113591227A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN1116534C (zh) 机械盘式摩擦制动器和盘式摩擦离合器
CN108087453B (zh) 一种摩擦移位的双刹片刹车单元
CN113623342A (zh) 带驻车制动功能的对置式制动钳
CN113591227B (zh) 一种弹子加压机构优化设计方法
CN102966686A (zh) 一种车辆用电子驻车制动系统的制动卡钳总成
CN203161909U (zh) 车辆用电子驻车制动系统的制动卡钳总成
Wang et al. Parameters design and braking efficiency analysis of a hydraulic self-energizing wedge disc brake
CN201095358Y (zh) 断开式轮边减速驱动桥装配盘式制动器
CN112413008B (zh) 一种用于汽车主动安全测试靶车运载平台的电动制动器
CN215257496U (zh) 一种双推盘式制动器弹簧
CN109812520B (zh) 一种带打开保持装置的惯性制动器及控制方法
CN216045134U (zh) 一种新型的巴哈赛车制动盘
CN207660658U (zh) 适用于发动机制动的凸轮轴及发动机
CN107061554B (zh) 一种采用制动材料的载重汽车后盘式制动器
Wang et al. Load distribution analysis and eccentricity characteristics for marble screw-loading device of dry disc brakes
CN115258021B (zh) 一种车型制动系统结构及其前后转接机构定位计算方法
CN105443626B (zh) 驻车卡钳用新型球盘式驱动机构
CN211852559U (zh) 10寸双作用加强型分离机构
CN209510972U (zh) 盘式制动器的从动调节器及盘式制动器
CN203868195U (zh) 一种适用于儿童汽车的制动盘机构
EP3189978A1 (en) Wheel rim and method of manufacturing the same
CN109927697B (zh) 一种汽车线控制动装置
CN219472607U (zh) 一种带电子驻车的固定式卡钳制动系统总成
CN219428105U (zh) 一种电磁液联合式线控制动系统
CN114704570B (zh) 一种制动机构及制动器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant