CN113587137A - 一种用于生物质锅炉的生物质燃料掺烧系统 - Google Patents

一种用于生物质锅炉的生物质燃料掺烧系统 Download PDF

Info

Publication number
CN113587137A
CN113587137A CN202110929182.0A CN202110929182A CN113587137A CN 113587137 A CN113587137 A CN 113587137A CN 202110929182 A CN202110929182 A CN 202110929182A CN 113587137 A CN113587137 A CN 113587137A
Authority
CN
China
Prior art keywords
biomass fuel
biomass
boiler
fuel
blending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110929182.0A
Other languages
English (en)
Inventor
郭栋
申良新
李明华
车春龙
李炘舰
王聪
崔睿
刘庆坤
董雨
范世琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Shuifa Smart Energy Co ltd
Original Assignee
Shandong Shuifa Smart Energy Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Shuifa Smart Energy Co ltd filed Critical Shandong Shuifa Smart Energy Co ltd
Priority to CN202110929182.0A priority Critical patent/CN113587137A/zh
Publication of CN113587137A publication Critical patent/CN113587137A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/10Analysing fuel properties, e.g. density, calorific
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/10Correlation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/44Optimum control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/08Controlling two or more different types of fuel simultaneously

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

本发明公开了一种用于生物质锅炉的生物质燃料掺烧系统,涉及生物质锅炉发电及取暖技术领域,该系统包括锅炉在线运行分析模块和生物质燃料分析优化模块,锅炉在线运行分析模块从生物质燃料掺配和锅炉通过生物质锅炉监控系统分析出热量需求,生物质燃料分析优化模块以满足热值需求为前提,以经济最优为目标,优化确定各生物质燃料的最优的掺烧比和生物质燃料瞬时总量,与现有技术运行两方面进行优化,能进一步降低燃料消耗,具有良好的经济效益和社会效益。

Description

一种用于生物质锅炉的生物质燃料掺烧系统
技术领域
本发明涉及生物质锅炉发电及取暖技术领域,具体是一种用于生物质锅炉的生物质燃料掺烧系统。
背景技术
全球经济的飞速发展带来了能源消耗的与日俱增,由此带来的环境污染问题随之加重。能源危机和环境污染是当今世界面临的两大问题。面对传统化石能源的日益枯竭,可燃固体废弃物(如固体垃圾、污泥等),特别是生物质被认为是最具应用前景的可再生能源,并可有效解决传统能源所带来的污染和全球变暖等环境问题。相比于煤等化石燃料,生物质燃料具有自己的特点,具体表现在:(1)生物质燃料热值低,(2)生物质燃料易于点燃,着火点低,(3)生物质燃料燃尽率高,燃尽时间短,灰渣中残碳含量低,(4)大多数生物质燃料中 N、S元素含量较少,燃烧过程中释放的SO2、NOx含量较低,而且被认为二氧化碳零排放,同时生物质能贮存量丰富,已经被普遍认为是解决未来能源危机的根本出路之一。我国是农业大国,每年农业废弃物产量惊人,因此可使用的生物质资源相对丰富,但是对于秸秆等农作物废弃物的合理开发利用还不成熟,秸秆焚烧污染环境的事情还时有发生,与此同时我国又是一个燃煤污染物排放很严重的国家,因此大力发展生物质能发电技术是非常适合我国国情的。
目前,生物质资源的转化利用,已得到国内外研究学者的青睐,许多国家也制定出相应的生物质开发计划,如美国提出的关于生物质能源以及其他替代能源的规划研究,印度开展的关于绿色能源工程的计划,巴西启动的“生物柴油”计划,德国投产的生物质液化技术的项目等,且这些计划和项目也逐渐进入商业化的应用实施阶段。作为农业大国,近年来,中国也在积极推进生物质能技术创新和扩大应用,这些政策的实施对于今后生物质能源的利用起到一定的促进作用。
各生物质能利用产业,广泛存在一系列的问题,首先产业单一,目前仅涉及生物质直燃发电项目,而国家大力发展的生物天然气项目、生物成型燃料供热、生物质集中高效热电联产及多能互补技术等,少有涉及,仅在部分有条件的地区开展了生物质热电联产的推广,并没有发挥出生物质能产业在生物质能利用过程中的先锋作用,没有多元化的发展生物质功能产业,从而引领国家生物质能利用产业。
其次,生物质燃料虽然具有很多优点,但是燃烧后仍然会产生污染物,这些污染物的释放却长期被人们忽略,尤其是NOX、HCl等,有些生物质含氮的比重甚至超过了煤。而生物质存在分散广、季节性强、水分含量高、能量密度低等问题,严重限制了生物质的规模化利用。生物质自身的高水分含量及较强的吸水特性严重影响了其热转化利用和储存性能,同时高水分还会增加运输成本,导致生物质易发生变质,带来了较大的质量损失(约为30%),从而严重影响了其经济性。此外,生物质在储存和运输过程中较易发生自燃反应,存在较大的安全性隐患。生物质多为纤维组织结构,塑性和机械强度较高,难于粉碎,流动性差,很难实现与煤的良好混合,并且随着水分含量的增加,其粉碎性能急剧下降,粉碎能耗大幅增加,进一步降低了其经济性。
再次,各生物质直燃发电厂存在燃料燃尽率较低,固体未完全燃烧热损失较大,生物质存放过程热值损失较大的问题,究其原因,一是生物质燃料含水量较大,造成着火延迟,因而影响燃尽率;二是生物质燃料品质波动较大,生物质锅炉难以适应不同种类的生物质,因而造成生物质燃料和锅炉燃烧方式不能很好的匹配,导致燃烧效率较低;三是生物质燃料经过长期的堆放,热值降低,按照原有设计提供生物质燃料,难以保证热量需求,因而需增加生物质的供应,造成生物质难以燃尽。
我国生物质直燃发电产业尚处于起步阶段,产业化和商业化程度较低,效益不乐观,市场竞争力较弱,缺乏持续发展能力。生物质发电企业要想完全靠市场赚钱、维持生存并求得发展,仍是勉为其难,主要原因是生物质发电成本高、缺乏上网竞价能力。建设和运营成本相对较高,上网电价难以支撑生物质能发电厂的正常运营。单位造价大,与常规火电项目比较,生物质燃料的特点决定了生物质直燃发电建设项目的单位千瓦投资大;燃料成本高,生物质发电的燃料成本构成要比传统发电复杂,与传统燃料不同,生物质发电燃料分散在农村的千家万户,其燃料成本除了包括秸秆等原料的购买成本外,加工成本、储运费用以及损耗占燃料成本的比重较大。
发明内容
本发明的目的是综合生物质燃料特性分析,生物质存在水分含量高、炉内燃烧不充分、灰渣含碳量高、长期储存热值损失大等问题,制定一种用于生物质锅炉的生物质燃料掺烧方法,用以满足热量需求,实现经济最优化。
为了解决上述技术问题,本发明采用如下技术方案:一种用于生物质锅炉的生物质燃料掺烧系统,包括锅炉在线运行分析模块和生物质燃料分析优化模块,所述锅炉在线运行分析模块用来分析出锅炉的热量需求,所述生物质燃料分析优化模块根据热量需求确定各生物质燃料的掺烧比和生物质燃料瞬时总量。
作为本发明的进一步改进,所述生物质燃料分析优化模块包括单个生物质燃料工业元素分析数据库单元、混合生物质燃料工业元素分析数据库单元、生物质燃料堆放时间、天气数据库单元、生物质燃料购买价格数据库单元和生物质燃料掺烧优化单元;
所述单个生物质燃料工业元素分析数据库单元用于存储各种生物质的数据信息,所述数据信息包括基础数据、工业分析数据、元素分析数据;
所述混合生物质燃料工业元素分析数据库单元用于对由多种生物质配置的混合燃料特性进行分析,所述混合燃料特性包括着火特性、燃尽特性、结渣特性和污染物排放特性;
所述生物质燃料堆放时间、天气数据库单元用于存储生物质燃料堆放的时间、天气等数据;
所述生物质燃料购买价格数据库单元用于存储生物质燃料的购买价格情况;
所述生物质燃料掺烧优化单元用于设定各生物质燃料的掺烧比例,调用所述单个生物质燃料工业元素分析数据库单元的各种生物质燃料的数据信息,所述混合生物质燃料的燃烧特性分析单元的混合生物质燃料的燃烧特性数据,并结合所述锅炉在线运行分析模块的分析结果即热量需求,以满足锅炉热量需求为前提,实现经济价值为目标对各生物质燃料的掺烧比例进行调整确定各中生物质燃料的掺烧比例和瞬时燃料总量。
作为本发明的进一步改进,所述基础数据包括生物质燃料的种类、库存量、生物质燃料的价格、生物质燃料的堆放时间、天气数据、燃料价格;所述工业分析数据包括生物质的水分、低位发热量、灰分、挥发分;所述元素分析数据包括碳氢、氧、氮、硫元素。
作为本发明的进一步改进,生物质锅炉在线分析单元(11)确定生物质锅炉的能量需求,具体通过如下方式实现:
Q=F*S*△T;其中Q为瞬时热量需求,F为锅炉出口的瞬时流量,△T为锅炉出口和入口的温度差值。
作为本发明的进一步改进,所述生物质燃料掺烧优化单元用来确定生物质燃料的掺配比例以及瞬时流量,具体通过如下方式实现:1>建立生物质燃料成本模型:
Emin=
Figure 597347DEST_PATH_IMAGE001
其中,Z是生物质燃料的重量,P是生物质燃料的价格,Emin是金额最小;
2>建立约束函数:
热量约束:Q = V=
Figure 576805DEST_PATH_IMAGE002
挥发分约束:V=
Figure 356542DEST_PATH_IMAGE003
,Vmin≤V≤Vmax,
水分约束:M=
Figure 77984DEST_PATH_IMAGE004
,M<Mmax,
灰分约束:A=
Figure 892356DEST_PATH_IMAGE005
,Amin≤A≤Amax,
软化温度约束:T=fT(Xi ,Qi),T≥Tmin,
其中,Q是锅炉在线分析模块计算出的热量需求, Bn为第n种生物质燃料的掺烧比例,k为生物质燃料种类的总个数,Rn为第n种生物质燃料的发热量,RA和RB对应为发热总量的下限和上限,V为掺烧混合物的总挥发分,Vmin和Vmax对应为挥发分的下限和上限,M为掺烧混合物的总水分,Mmax为水分上限,A为掺烧混合物的总灰分,Amin和Amax对应为灰分的下限和上限,T为掺烧混合物的软化温度,TA为软化温度下限;
3>以Emin取最小为目标,结合约束函数进行迭代优化确定各生物质燃料的的掺烧比例
与现有技术相比,本发明具有的有益效果为:本发明有效的建立了生物质燃料成本模型,利用剪枝AI算法进行寻优计算,从而获得最优的生物质燃料掺烧比例,有效保证了经济性。
附图说明
下面结合附图和具体实施方式对本发明作进一步的说明:
图1为本发明的结构原理图。
图中:1.锅炉在线运行分析模块,2.生物质燃料分析优化模块,21.单个生物质燃料工业元素分析数据库单元,22.混合生物质燃料工业元素分析数据库单元,23.生物质燃料堆放时间、天气数据库单元,24.生物质燃料购买价格数据库单元,25.生物质燃料掺烧优化单元。
值得注意的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
具体实施方式
为了本发明的技术方案和有益效果更加清楚明白,下面结合附图和具体实施例对本发明进行进一步的详细说明,应当理解,此处所描述的具体实施方式仅用于理解本发明,并不用于限定本发明,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种技术方案:用于生物质锅炉的生物质燃料掺烧系统,包括锅炉在线运行分析模块和生物质燃料分析优化模块,所述锅炉在线运行分析模块用来分析出锅炉的热量需求,所述生物质燃料分析优化模块根据热量需求确定各生物质燃料的掺烧比和生物质燃料瞬时总量。
所述生物质燃料分析优化模块包括单个生物质燃料工业元素分析数据库单元、混合生物质燃料工业元素分析数据库单元、生物质燃料堆放时间、天气数据库单元、生物质燃料购买价格数据库单元和生物质燃料掺烧优化单元;
所述单个生物质燃料工业元素分析数据库单元用于存储各种生物质的数据信息,所述数据信息包括基础数据、工业分析数据、元素分析数据;
所述混合生物质燃料工业元素分析数据库单元用于对由多种生物质配置的混合燃料特性进行分析,所述混合燃料特性包括着火特性、燃尽特性、结渣特性和污染物排放特性;
所述生物质燃料堆放时间、天气数据库单元用于存储生物质燃料堆放的时间、天气等数据,以及存储过程中的温湿度,用于折算各生物质的损耗程度;
所述生物质燃料购买价格是生物质燃料掺烧的价格指标;
所述生物质燃料掺烧优化单元用于设定各生物质燃料的掺烧比例,调用所述单个生物质燃料工业元素分析数据库单元的各种生物质燃料的数据信息,所述混合生物质燃料的燃烧特性分析单元的混合生物质燃料的燃烧特性数据,并结合所述锅炉在线运行分析模块的分析结果即热量需求,以满足锅炉热量需求为前提,实现经济价值为目标对各生物质燃料的掺烧比例进行调整确定各中生物质燃料的掺烧比例和瞬时燃料总量。
所述基础数据包括生物质燃料的种类、库存量、生物质燃料的价格、生物质燃料的堆放时间、天气数据、燃料价格;所述工业分析数据包括生物质的水分、低位发热量、灰分、挥发分;所述元素分析数据包括碳氢、氧、氮、硫元素。
生物质锅炉在线分析单元(11)确定生物质锅炉的能量需求,具体通过如下方式实现:
Q=F*S*△T;其中Q为瞬时热量需求,F为锅炉出口的瞬时流量,△T为锅炉出口和入口的温度差值。
所述生物质燃料掺烧优化单元用来确定生物质燃料的掺配比例以及瞬时流量,具体通过如下方式实现:1>建立生物质燃料成本模型:
Emin=
Figure 714819DEST_PATH_IMAGE001
其中,Z是生物质燃料的重量,P是生物质燃料的价格,Emin是金额最小;
2>建立约束函数:
热量约束:Q = V=
Figure 44169DEST_PATH_IMAGE002
挥发分约束:V=
Figure 243069DEST_PATH_IMAGE003
,Vmin≤V≤Vmax,
水分约束:M=
Figure 911948DEST_PATH_IMAGE004
,M<Mmax,
灰分约束:A=
Figure 718361DEST_PATH_IMAGE005
,Amin≤A≤Amax,
软化温度约束:T=fT(Xi ,Qi),T≥Tmin,
其中,Q是锅炉在线分析模块计算出的热量需求, Bn为第n种生物质燃料的掺烧比例,k为生物质燃料种类的总个数,Rn为第n种生物质燃料的发热量,RA和RB对应为发热总量的下限和上限,V为掺烧混合物的总挥发分,Vmin和Vmax对应为挥发分的下限和上限,M为掺烧混合物的总水分,Mmax为水分上限,A为掺烧混合物的总灰分,Amin和Amax对应为灰分的下限和上限,T为掺烧混合物的软化温度,TA为软化温度下限;
3>以Emin取最小为目标,结合约束函数进行迭代优化确定各生物质燃料的的掺烧比例。
表1:单个生物质燃料工业元素分析表
Figure 472690DEST_PATH_IMAGE006
表2:生物质燃料入厂存储时间点工业元素分析表表2:生物质燃料入厂存储时间点工业元素分析表
Figure 209702DEST_PATH_IMAGE008
以某企业装机2台15MW生物质锅炉机组为研究对象,本发明具体实施过程及数据如下:
首先利用生物质锅炉在线运行分析单元计算出锅炉的热量需求,例如某时候锅炉出口的设定温度是T2=85℃,锅炉进水温度是T1=10℃,锅炉效率是fect=0.92;水的比热容是4.2*10³J/kg·℃,锅炉进水流量是F=75t/h其中热量需求
Q=(T2-T1)*F*4.2/0.92=25679.34GJ/h。
该企业每次采用4种生物质燃料进行掺烧,以下数据为锅炉的具体要求:
Q =
Figure RE-578409DEST_PATH_IMAGE009
Figure RE-273833DEST_PATH_IMAGE009
, Q≥25679.34GJ,
V= Q
Figure RE-984300DEST_PATH_IMAGE010
Figure RE-462686DEST_PATH_IMAGE010
,50%≤V≤85%,
M=
Figure RE-824266DEST_PATH_IMAGE011
Figure RE-628274DEST_PATH_IMAGE011
,M<12.16%,
A=
Figure RE-622774DEST_PATH_IMAGE012
Figure RE-170430DEST_PATH_IMAGE012
,3.2≤A≤10.6%,
T=fT(Xi ,Qi),T≥1000℃,
价格P =
Figure RE-137249DEST_PATH_IMAGE013
Figure RE-641654DEST_PATH_IMAGE013
;求P的最小值,遍历所有生物质燃料4种组合,求价格的最小值,此过程采用的是行业内的公知常识剪纸AI算法,具体步骤如下:
1)确定锅炉的热量需求;
2)在满足热量需求、锅炉设计燃料特性包括挥发分约束、水分约束、灰分约束、软化温度约束的条件下,构建配煤掺烧成本模型,即寻优的目标函数。
3)通过约束条件剪枝寻优路径,设置掺烧比例精度步长,以Emin最小为目标,枚举每种可能的生物质燃料掺配比例。精度步长越小月精确,计算耗时也厂,精度步长越大,精确相对较差,计算耗时较短。
价格最小值对应的生物质的掺烧比例就是最优掺烧比,有效保证了供给足够热量用最少价格的生物质燃料。

Claims (5)

1.一种用于生物质锅炉的生物质燃料掺烧系统,其特征在于:包括锅炉在线运行分析模块和生物质燃料分析优化模块,所述锅炉在线运行分析模块用来分析出锅炉的热量需求,所述生物质燃料分析优化模块根据热量需求确定各生物质燃料的掺烧比和生物质燃料瞬时总量。
2.根据权利要求1所述的一种用于生物质锅炉的生物质燃料掺烧系统,其特征在于:所述生物质燃料分析优化模块包括单个生物质燃料工业元素分析数据库单元、混合生物质燃料工业元素分析数据库单元、生物质燃料堆放时间、天气数据库单元、生物质燃料购买价格数据库单元和生物质燃料掺烧优化单元;
所述单个生物质燃料工业元素分析数据库单元用于存储各种生物质的数据信息,所述数据信息包括基础数据、工业分析数据、元素分析数据;
所述混合生物质燃料工业元素分析数据库单元用于对由多种生物质配置的混合燃料特性进行分析,所述混合燃料特性包括着火特性、燃尽特性、结渣特性和污染物排放特性;
所述生物质燃料堆放时间、天气数据库单元用于存储生物质燃料堆放的时间、天气等数据;
所述生物质燃料购买价格数据库单元用于存储生物质燃料的购买价格情况;
所述生物质燃料掺烧优化单元用于设定各生物质燃料的掺烧比例,调用所述单个生物质燃料工业元素分析数据库单元的各种生物质燃料的数据信息,所述混合生物质燃料的燃烧特性分析单元的混合生物质燃料的燃烧特性数据,并结合所述锅炉在线运行分析模块的分析结果即热量需求,以满足锅炉热量需求为前提,实现经济价值为目标对各生物质燃料的掺烧比例进行调整确定各中生物质燃料的掺烧比例和瞬时燃料总量。
3.根据权利要求2所述的一种用于生物质锅炉的生物质燃料掺烧系统,其特征在于:所述基础数据包括生物质燃料的种类、库存量、生物质燃料的价格、生物质燃料的堆放时间、天气数据、燃料价格;所述工业分析数据包括生物质的水分、低位发热量、灰分、挥发分;所述元素分析数据包括碳氢、氧、氮、硫元素。
4.根据权利要求2所述的一种用于生物质锅炉的生物质燃料掺烧系统,其特征在于:生物质锅炉在线分析单元(11)确定生物质锅炉的能量需求,具体通过如下方式实现:
Q=F*S*△T;其中Q为瞬时热量需求,F为锅炉出口的瞬时流量,△T为锅炉出口和入口的温度差值。
5.根据权利要求1所述的一种用于生物质锅炉的生物质燃料掺烧系统,其特征在于:所述生物质燃料掺烧优化单元用来确定生物质燃料的掺配比例以及瞬时流量,具体通过如下方式实现:1>建立生物质燃料成本模型:
Emin=
Figure DEST_PATH_IMAGE002
其中,Z是生物质燃料的重量,P是生物质燃料的价格,Emin是金额最小;
2>建立约束函数:
热量约束:Q = V=
Figure DEST_PATH_IMAGE004
挥发分约束:V=
Figure DEST_PATH_IMAGE006
,Vmin≤V≤Vmax,
水分约束:M=
Figure DEST_PATH_IMAGE008
,M<Mmax,
灰分约束:A=
Figure DEST_PATH_IMAGE010
,Amin≤A≤Amax,
软化温度约束:T=fT(Xi ,Qi),T≥Tmin,
其中,Q是锅炉在线分析模块计算出的热量需求, Bn为第n种生物质燃料的掺烧比例,k为生物质燃料种类的总个数,Rn为第n种生物质燃料的发热量,RA和RB对应为发热总量的下限和上限,V为掺烧混合物的总挥发分,Vmin和Vmax对应为挥发分的下限和上限,M为掺烧混合物的总水分,Mmax为水分上限,A为掺烧混合物的总灰分,Amin和Amax对应为灰分的下限和上限,T为掺烧混合物的软化温度,TA为软化温度下限;
3>以Emin取最小为目标,结合约束函数进行迭代优化确定各生物质燃料的的掺烧比例。
CN202110929182.0A 2021-08-13 2021-08-13 一种用于生物质锅炉的生物质燃料掺烧系统 Pending CN113587137A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110929182.0A CN113587137A (zh) 2021-08-13 2021-08-13 一种用于生物质锅炉的生物质燃料掺烧系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110929182.0A CN113587137A (zh) 2021-08-13 2021-08-13 一种用于生物质锅炉的生物质燃料掺烧系统

Publications (1)

Publication Number Publication Date
CN113587137A true CN113587137A (zh) 2021-11-02

Family

ID=78257637

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110929182.0A Pending CN113587137A (zh) 2021-08-13 2021-08-13 一种用于生物质锅炉的生物质燃料掺烧系统

Country Status (1)

Country Link
CN (1) CN113587137A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102902215A (zh) * 2012-10-18 2013-01-30 辽宁省电力有限公司电力科学研究院 直吹式火电机组煤种混烧控制方法
KR20130058898A (ko) * 2011-11-28 2013-06-05 부산대학교 산학협력단 바이오매스 고체성형연료 및 이의 제조방법
CN104819650A (zh) * 2015-04-09 2015-08-05 重庆华诚远志节能环保科技有限公司 工业炉窑智能控制系统
WO2017210768A1 (en) * 2016-06-09 2017-12-14 Avalon Alliance Inc. Bio-available mineral fertilizer and derivative applications, including product processes
CN109376945A (zh) * 2018-11-13 2019-02-22 华能国际电力股份有限公司上海石洞口第电厂 一种基于多煤种的配煤掺烧优化系统
CN109782726A (zh) * 2019-02-27 2019-05-21 杭州集益科技有限公司 一种水运燃煤电厂的实时智能燃料系统
CN212029568U (zh) * 2020-05-09 2020-11-27 北京联合力控股集团有限公司 燃煤电厂耦合生物质调峰结构
JP2021021554A (ja) * 2019-07-30 2021-02-18 三菱パワー株式会社 ボイラの制御装置、ボイラシステム、発電プラント、及びボイラの制御方法
CN112662445A (zh) * 2020-12-01 2021-04-16 中船重工(上海)新能源有限公司 生物质锅炉掺烧鸡粪稻壳混料的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130058898A (ko) * 2011-11-28 2013-06-05 부산대학교 산학협력단 바이오매스 고체성형연료 및 이의 제조방법
CN102902215A (zh) * 2012-10-18 2013-01-30 辽宁省电力有限公司电力科学研究院 直吹式火电机组煤种混烧控制方法
CN104819650A (zh) * 2015-04-09 2015-08-05 重庆华诚远志节能环保科技有限公司 工业炉窑智能控制系统
WO2017210768A1 (en) * 2016-06-09 2017-12-14 Avalon Alliance Inc. Bio-available mineral fertilizer and derivative applications, including product processes
CN109376945A (zh) * 2018-11-13 2019-02-22 华能国际电力股份有限公司上海石洞口第电厂 一种基于多煤种的配煤掺烧优化系统
CN109782726A (zh) * 2019-02-27 2019-05-21 杭州集益科技有限公司 一种水运燃煤电厂的实时智能燃料系统
JP2021021554A (ja) * 2019-07-30 2021-02-18 三菱パワー株式会社 ボイラの制御装置、ボイラシステム、発電プラント、及びボイラの制御方法
CN212029568U (zh) * 2020-05-09 2020-11-27 北京联合力控股集团有限公司 燃煤电厂耦合生物质调峰结构
CN112662445A (zh) * 2020-12-01 2021-04-16 中船重工(上海)新能源有限公司 生物质锅炉掺烧鸡粪稻壳混料的方法

Similar Documents

Publication Publication Date Title
Zhou et al. A comprehensive review on densified solid biofuel industry in China
Malico et al. Current status and future perspectives for energy production from solid biomass in the European industry
CN201314576Y (zh) 上吸式生物质颗粒气化炉
Tong et al. Role and development of thermal power units in new power systems
Bergman et al. Primer on wood biomass for energy
CN113587137A (zh) 一种用于生物质锅炉的生物质燃料掺烧系统
Liu et al. Research progress of biomass fuel upgrading and distributed utilization technology
Huo et al. Evaluation of different clean heat supply modes based on crop straws in the rural area of Northern China
CN217714899U (zh) 一种煤粉锅炉纯氨燃烧器布置结构及锅炉炉膛
Li et al. Capacity configuration model of biogas-based integrated energy system
Niu et al. Present situation of biomass energy utilization-a comparison between China and the United States
Li et al. Research on energy and agricultural alternative energy based on crop biomass fuel power generation
Cioablă et al. Biomass waste as a renewable source of biogas production—experiments
Niu et al. Explore the current situation and development trend of China's straw power generation industry
Ma et al. Research on an approach to high temperature flameless combustion technology of biomass
CN220852108U (zh) 化石能源与清洁能源耦合的油田注汽系统
Li et al. Research on the Development Status of Biomass Energy Serving the Construction of Ecological Civilization: A Case Study in Henan Province, China.
Wu et al. Analysis on development trend of biomass energy distributed utilization
Ion et al. Integration of biomass resources into existent district heating system
Li et al. Reviewe of Biomass Energy utilization technology
Liu et al. Current situation and development trend of biomass power generation technology
Lu et al. Analysis and Economic Evaluation of Hourly Operation Strategy Based on MSW Classification and LNG Multi-Generation System
Zhixia et al. Pollution Reduction Effect of Rural Integrated Energy System Oriented to Low-Carbon Transformation
Xiangcheng Comparison and Analysis of Three Different Power Generation Methods under the Context of Dual Carbon Goals
CN118095535A (zh) 一种基于共烧技术的多能耦合系统及其优化配置方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination