CN113587064B - 一种光热电站的镜场启停系统及控制方法 - Google Patents

一种光热电站的镜场启停系统及控制方法 Download PDF

Info

Publication number
CN113587064B
CN113587064B CN202110784978.1A CN202110784978A CN113587064B CN 113587064 B CN113587064 B CN 113587064B CN 202110784978 A CN202110784978 A CN 202110784978A CN 113587064 B CN113587064 B CN 113587064B
Authority
CN
China
Prior art keywords
working medium
heat transfer
transfer working
temperature
mirror field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110784978.1A
Other languages
English (en)
Other versions
CN113587064A (zh
Inventor
刘继平
张顺奇
刘明
严俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202110784978.1A priority Critical patent/CN113587064B/zh
Publication of CN113587064A publication Critical patent/CN113587064A/zh
Application granted granted Critical
Publication of CN113587064B publication Critical patent/CN113587064B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/028Steam generation using heat accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/28Methods of steam generation characterised by form of heating method in boilers heated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/18Applications of computers to steam boiler control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/16Steam superheating characterised by heating method by using a separate heat source independent from heat supply of the steam boiler, e.g. by electricity, by auxiliary combustion of fuel oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/80Arrangements for controlling solar heat collectors for controlling collection or absorption of solar radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/30Arrangements for storing heat collected by solar heat collectors storing heat in liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明公开了一种光热电站的镜场启停系统及控制方法,涉及光热电站领域,主要用于减少光热电站启停过程中由于镜场造成的能量损失;该系统主要包括镜场、再循环阀门、高温储热罐进口阀门、高温储热罐、高温传热工质泵、高温储热罐旁路阀门、过热器旁路阀门等设备;在启停过程中,通过采用分层控制技术,合理调节高温储热罐旁路阀门、过热器旁路阀门和低温传热工质泵的传热工质流量,实现中低温传热工质的利用,并对不同启停阶段的镜场出口传热工质温度进行优化;本发明可以降低电加热器的功率,有效减少镜场的散热损失,并提高进入高温储热罐的传热工质温度,从而减少光热电站启停过程的能量损失,提高光热电站的年发电量。

Description

一种光热电站的镜场启停系统及控制方法
技术领域
本发明涉及光热电站技术领域,特别是涉及一种光热电站镜场启停系统及控制方法。
背景技术
由于太阳能具有清洁、资源丰富等优点,近年来太阳能的利用技术不断发展,光热电站是一种有效利用太阳能进行发电的技术。然而,由于太阳能具有间歇性的特点,光热电站一般需要进行日常启动,而启动过程的能量损失会明显降低光热电站的年发电量,增加发电成本,降低了光热电站的市场竞争力。
目前光热电站的启动方式为镜场首先启动,镜场出口传热工质温度和流量达到目标值后,蒸汽发生系统开始启动,由于蒸汽发生系统启动过程中需要从较低温度升高至额定值,因此蒸汽发生系统启动前期并不需要过高温度的传热工质,这样导致的结果是,一方面需要利用低温传热工质调节进入蒸汽发生系统的传热工质温度,另一方面,镜场始终运行在较高温度水平,明显增加了镜场的散热损失,研究表明镜场在启动过程中的能量损失占总能量损失的15~20%;在停机过程中,镜场的出口传热工质温度不断降低,进入高温储热罐后,会降低高温储热罐的传热工质温度,降低机组的运行效率。因此如何优化镜场的启停方式,在保证蒸汽发生系统产生合格蒸汽的同时,降低镜场的散热损失并提高机组的效率是亟待解决的问题。
发明内容
为了克服现有技术的不足,本发明提供了一种光热电站的镜场启停系统及控制方法,通过在不同启停阶段合理设置镜场运行方式,实现了对中低温传热工质的利用,同时降低了电加热器的功率和镜场的散热损失,提高了高温储热罐的传热工质温度,有利于提高光热电站的年发电量。
为了达到上述目的,本发明采用如下技术方案。
一种光热电站的镜场启停系统,系统包括镜场1、再循环阀门2、高温储热罐进口阀门3、高温储热罐4、高温传热工质泵5、高温储热罐旁路阀门6、过热器旁路阀门7、过热器8、蒸汽发生器9、预热器10、低温储热罐11、低温储热罐出口阀门12、低温传热工质泵13、外置循环泵14、电加热器15;
所述的镜场1的出口分为四个支路,第一个支路通过再循环阀门2与低温传热工质泵13的进口相连接,第二个支路通过高温储热罐进口阀门3与高温储热罐4相连接,第三个支路通过高温储热罐旁路阀门6与过热器8的传热工质进口相连接,第四个支路通过过热器旁路阀门7与蒸汽发生器9的传热工质进口相连接;高温储热罐4的传热工质出口与高温传热工质泵5的进口相连接,高温传热工质泵5的传热工质出口与过热器8的传热工质进口相连接;过热器8的传热工质出口与蒸汽发生器9的传热工质进口相连接,过热器8的蒸汽进口与蒸汽发生器9的蒸汽出口相连接;蒸汽发生器9的传热工质出口与预热器10的传热工质进口相连接,蒸汽发生器9的饱和水出口通过外置循环泵14与电加热器15相连接,蒸汽发生器9的给水进口与预热器10的给水出口相连接;预热器10的传热工质出口与低温储热罐11的传热工质进口相连接;低温储热罐11的传热工质出口与低温传热工质泵13的进口相连接,低温传热工质泵13的出口与镜场1的进口相连接。
所述的一种光热电站的镜场启动控制方法,其特征在于,控制方法采用分层控制技术,第一层控制用于设定值的优化,第二层控制用于调节控制量使被控量跟随设定值,在整个镜场启动阶段的控制方法为:
第一阶段为镜场1的预热过程,在光照条件达到启动标准后,打开再循环阀门2和低温传热工质泵13,使镜场1运行在再循环模式,以提高镜场1的出口传热工质温度至第一目标温度,传热工质温度设定值通过第一层控制进行优化,优化目标为:在镜场1的热应力不超过许用热应力的条件下,提高传热工质的升温速度,第二层控制则通过调节低温传热工质泵13的转速控制再循环流量,使镜场1的出口传热工质温度达到设定值;
第二阶段为镜场1的出口传热工质温度达到第一目标温度后,再循环阀门2逐渐关闭,低温储热罐出口阀门12和过热器旁路阀门7逐渐打开,传热工质开始进入蒸汽发生器9和预热器10,传热工质流量的设定值通过第一层控制进行优化,优化目标为:在维持蒸汽发生器9压力的条件下,降低电加热器15的功率,第二层控制则通过调节过热器旁路阀门7,控制进入蒸汽发生器9的传热工质流量达到设定值;
第三阶段为镜场1的传热工质升温过程,在电加热器15停止运行后,打开高温储热罐旁路阀门6,逐渐关闭过热器旁路阀门7,并通过调节镜场1的传热工质流量,使镜场1的出口传热工质温度升高至第二目标温度,传热工质温度的设定值通过第一层控制进行优化,优化目标为:在镜场1的热应力不超过许用热应力、且镜场1的传热工质出口温度高于过热器8的出口蒸汽温度的条件下,提高传热工质的升温速度,第二层控制则通过调节低温传热工质泵13的转速控制进入镜场1的传热工质流量,使镜场1的出口传热工质温度达到设定值;
第四阶段为镜场1的定温运行阶段,第二层控制通过调节低温传热工质泵13的转速控制进入镜场1的传热工质流量,使镜场1的出口传热工质温度保持不变,并打开高温储热罐进口阀门3,高温传热工质开始进入高温储热罐4;
第五阶段为镜场1的传热工质升温过程,打开高温传热工质泵5,逐渐关闭高温储热罐旁路阀门6,并通过调节镜场1的传热工质流量,使镜场1的出口传热工质温度升高至第三目标温度,传热工质温度的设定值通过第一层控制进行优化,优化目标为:在过热器8的进口传热工质温度高于出口蒸汽温度、且出口蒸汽压力不断增加的条件下,降低过热器8的进口传热工质和出口蒸汽的温差,第二层控制通过调节低温传热工质泵13的转速控制进入镜场1的传热工质流量,使镜场1的出口传热工质温度达到设定值;
第六阶段为镜场1的定温运行阶段,第二层控制通过调节低温传热工质泵13的转速控制进入镜场1的传热工质流量,使镜场1的出口传热工质温度保持不变;
在整个镜场停机阶段的控制方法为:
第一阶段,随着光照的减少,镜场1的出口传热工质的温度不断降低,打开高温储热罐旁路阀门6,经过高温储热罐旁路阀门6的传热工质流量的设定值通过第一层控制进行优化,优化目标为:在维持机组发电功率不变的条件下,降低高温传热工质泵5的传热工质流量,第二层控制通过调节高温储热罐旁路阀门6,控制经过高温储热罐旁路阀门6的传热工质流量达到设定值;
第二阶段,镜场1的出口传热工质温度降至第二目标温度时,关闭高温储热罐旁路阀门6,并逐渐打开过热器旁路阀门7,经过过热器旁路阀门7的传热工质流量的设定值通过第一层控制进行优化,优化目标为:在维持机组发电功率不变的条件下,降低高温传热工质泵5的传热工质流量,第二层控制通过调节过热器旁路阀门7,控制经过过热器旁路阀门7的传热工质流量达到设定值;
第三阶段,镜场1的出口传热工质温度降低至第一目标温度时,关闭过热器旁路阀门7,打开再循环阀门2,启动电伴热系统,第二层控制通过调节低温传热工质泵13的转速控制再循环流量,维持镜场1的传热工质温度高于凝固温度。
优选的,如果传热工质为熔融盐,则第一目标温度为280~300℃,第二目标温度为460~480℃,第三目标温度为550~560℃,如果传热工质为导热油,则第一目标温度为80~100℃,第二目标温度为260~280℃,第三目标温度为370~390℃。
优选的,第一层控制采用预测控制算法进行计算。
优选的,第二层控制采用前馈加反馈的控制算法控制低温传热工质泵13,而高温储热罐旁路阀门6和过热器旁路阀门7均采用PID反馈控制。
和现有技术相比较,本发明具备如下优点:
(1)本发明通过利用镜场启动过程中的低温传热工质,降低电加热器的功率,减少光热电站启动过程中的能量消耗;
(2)本发明通过在镜场的不同启停阶段合理设置镜场温度,可以有效降低镜场的散热损失,降低光热电站启停过程中的能量损失;
(3)本发明可以提高进入高温储热罐的传热工质温度,可以增加光热电站运行过程中的蒸汽温度,提高光热电站的运行效率。
附图说明
图1为光热电站的镜场启停控制系统构型示意图。
图中:1镜场、2再循环阀门、3高温储热罐进口阀门、4高温储热罐、5高温传热工质泵、6高温储热罐旁路阀门、7过热器旁路阀门、8过热器、9蒸汽发生器、10预热器、11低温储热罐、12低温储热罐出口阀门、13低温传热工质泵、14外置循环泵、15电加热器。
图2为启动过程中镜场出口传热工质的理论温度变化。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。
一种光热电站的镜场启停系统,系统包括镜场1、再循环阀门2、高温储热罐进口阀门3、高温储热罐4、高温传热工质泵5、高温储热罐旁路阀门6、过热器旁路阀门7、过热器8、蒸汽发生器9、预热器10、低温储热罐11、低温储热罐出口阀门12、低温传热工质泵13、外置循环泵14、电加热器15;
所述的镜场1的出口分为四个支路,第一个支路通过再循环阀门2与低温传热工质泵13的进口相连接,第二个支路通过高温储热罐进口阀门3与高温储热罐4相连接,第三个支路通过高温储热罐旁路阀门6与过热器8的传热工质进口相连接,第四个支路通过过热器旁路阀门7与蒸汽发生器9的传热工质进口相连接;高温储热罐4的传热工质出口与高温传热工质泵5的进口相连接,高温传热工质泵5的传热工质出口与过热器8的传热工质进口相连接;过热器8的传热工质出口与蒸汽发生器9的传热工质进口相连接,过热器8的蒸汽进口与蒸汽发生器9的蒸汽出口相连接;蒸汽发生器9的传热工质出口与预热器10的传热工质进口相连接,蒸汽发生器9的饱和水出口通过外置循环泵14与电加热器15相连接,蒸汽发生器9的给水进口与预热器10的给水出口相连接;预热器10的传热工质出口与低温储热罐11的传热工质进口相连接;低温储热罐11的传热工质出口与低温传热工质泵13的进口相连接,低温传热工质泵13的出口与镜场1的进口相连接。
所述的一种光热电站的镜场启动控制方法,控制方法采用分层控制技术,第一层控制用于控制设定值的优化,采用非线性预测控制算法进行优化,第二层控制的作用为通过调节控制量使被控量跟随设定值,采用前馈加反馈的控制算法进行控制,在整个镜场启动阶段的控制方法为:
第一阶段为镜场1的预热过程,在光照条件达到启动标准后,打开再循环阀门2和低温传热工质泵13,使镜场1运行在再循环模式,以提高镜场1的出口传热工质温度至第一目标温度,传热工质温度设定值通过第一层控制进行优化,优化目标为:在镜场1的热应力不超过许用热应力的条件下,提高传热工质的升温速度,第二层控制则通过调节低温传热工质泵13的转速控制再循环流量,使镜场1的出口传热工质温度达到设定值;
第二阶段为镜场1的出口传热工质温度达到第一目标温度后,再循环阀门2逐渐关闭,低温储热罐出口阀门12和过热器旁路阀门7逐渐打开,传热工质开始进入蒸汽发生器9和预热器10,传热工质流量的设定值通过第一层控制进行优化,优化目标为:在维持蒸汽发生器9压力的条件下,降低电加热器15的功率,第二层控制则通过调节过热器旁路阀门7,控制进入蒸汽发生器9的传热工质流量达到设定值;
第三阶段为镜场1的传热工质升温过程,在电加热器15停止运行后,打开高温储热罐旁路阀门6,逐渐关闭过热器旁路阀门7,并通过调节镜场1的传热工质流量,使镜场1的出口传热工质温度升高至第二目标温度,传热工质温度的设定值通过第一层控制进行优化,优化目标为:在镜场1的热应力不超过许用热应力、且镜场1的传热工质出口温度高于过热器8的出口蒸汽温度的条件下,提高传热工质的升温速度,第二层控制则通过调节低温传热工质泵13的转速控制进入镜场1的传热工质流量,使镜场1的出口传热工质温度达到设定值;
第四阶段为镜场1的定温运行阶段,第二层控制通过调节低温传热工质泵13的转速控制进入镜场1的传热工质流量,使镜场1的出口传热工质温度保持不变,并打开高温储热罐进口阀门3,高温传热工质开始进入高温储热罐4;
第五阶段为镜场1的传热工质升温过程,打开高温传热工质泵5,逐渐关闭高温储热罐旁路阀门6,并通过调节镜场1的传热工质流量,使镜场1的出口传热工质温度升高至第三目标温度,传热工质温度的设定值通过第一层控制进行优化,优化目标为:在过热器8的进口传热工质温度高于出口蒸汽温度、且出口蒸汽压力不断增加的条件下,降低过热器8的进口传热工质和出口蒸汽的温差,第二层控制通过调节低温传热工质泵13的转速控制进入镜场1的传热工质流量,使镜场1的出口传热工质温度达到设定值;
第六阶段为镜场1的定温运行阶段,第二层控制通过调节低温传热工质泵13的转速控制进入镜场1的传热工质流量,使镜场1的出口传热工质温度保持不变;
在整个镜场停机阶段的控制方法为:
第一阶段,随着光照的减少,镜场1的出口传热工质的温度不断降低,打开高温储热罐旁路阀门6,经过高温储热罐旁路阀门6的传热工质流量的设定值通过第一层控制进行优化,优化目标为:在维持机组发电功率不变的条件下,降低高温传热工质泵5的传热工质流量,第二层控制通过调节高温储热罐旁路阀门6,控制经过高温储热罐旁路阀门6的传热工质流量达到设定值;
第二阶段,镜场1的出口传热工质温度降至第二目标温度时,关闭高温储热罐旁路阀门6,并逐渐打开过热器旁路阀门7,经过过热器旁路阀门7的传热工质流量的设定值通过第一层控制进行优化,优化目标为:在维持机组发电功率不变的条件下,降低高温传热工质泵5的传热工质流量,第二层控制通过调节过热器旁路阀门7,控制经过过热器旁路阀门7的传热工质流量达到设定值;
第三阶段,镜场1的出口传热工质温度降低至第一目标温度时,关闭过热器旁路阀门7,打开再循环阀门2,启动电伴热系统,第二层控制通过调节低温传热工质泵13的转速控制再循环流量,维持镜场1的传热工质温度高于凝固温度。
对于第一层控制使用预测控制算法对设定值进行优化,具体计算步骤为:
(1)确定被控对象的动态特性,可以近似使用一个有限项卷积公式进行描述:
Figure BDA0003158355490000091
式中:yM(k+i)为第k+i时刻模型的输出量;u(k+i-j)为第k+i-j时刻模型的输入量;gj为模型参数;N为有限卷积的项数。
(2)控制系统的期望输出是从本时刻实际输出出发,且向设定值光滑过渡的一条参考轨迹规定的,在k时刻的参考轨迹可由其在未来采样时刻的值来描述,它通常可取作一阶指数变化的形式:
yr(k+i)=yM(k)+[c-yM(k)](1-e-iT/τ)
式中:yM(k)为第k时刻模型的输出量;yr(k+i)为第k+i时刻的参考输出量;τ为参考轨迹的时间常数;i为第i个计算时刻;T为采样周期;c为参考轨迹的目标值。
(3)k时刻的优化准则为使预测输出值yF尽可能接近参考输出量yr,并减少模型的输入量u的变化,这一优化性能指标可写作
Figure BDA0003158355490000092
式中:J(k)为k时刻的优化目标函数;u(k+j-1)为第k+j-1时刻模型的输入量;yF(k+i)为第k+i时刻预测输出值;F为优化时域;M为控制时域;qi和ri分别为非负权系数。
(4)由于计算模型与实际物理过程存在误差,因此在构成预测输出值yF时,除了利用模型的输出量yM外,还附加了一个误差e,其一般形式为
yF(k+i)=yM(k+i)+he(k)
式中:h为误差的加权补偿系数;e(k)为第k时刻的误差。
(5)采用闭环预测的最优控制量的计算为
Figure BDA0003158355490000101
其中
Figure BDA0003158355490000102
Figure BDA0003158355490000103
Figure BDA0003158355490000104
Figure BDA0003158355490000105
Figure BDA0003158355490000106
Figure BDA0003158355490000107
Figure BDA0003158355490000108
式中:
Figure BDA0003158355490000109
为由误差的加权补偿系数组成的向量;
Figure BDA00031583554900001010
为由整个预测阶段的参考输出量yr组成的向量;
Figure BDA00031583554900001011
为由所求的现时和未来的模型的输入量u组成的向量;
Figure BDA00031583554900001012
为由k时刻以前的模型的输入量u组成的已知向量;
Figure BDA00031583554900001013
是由模型参数gi组成的已知矩阵;
Figure BDA00031583554900001014
是由非负权系数qi和ri构成的对角矩阵。
闭环预测的最优控制量则作为第二层控制的设定值。
第二层控制的任务为使被控量跟随设定值,对于镜场1的出口传热工质温度控制回路,具体控制策略为:
本控制回路使用前馈加反馈的控制策略,反馈控制策略使用串级控制系统,主控制的任务为通过控制镜场1的传热工质流量,使镜场1的出口传热工质温度达到设定值;副控制的任务为通过控制低温传热工质泵13,控制镜场1的传热工质流量;前馈控制策略通过利用镜场1的稳态模型计算前馈控制量,提高控制系统的抗干扰能力,并在前馈控制的输出增加低通滤波器,以增加控制系统的动态性能。
对于高温储热罐旁路和过热器旁路的传热工质流量控制回路,具体控制策略为:
本控制回路使用反馈控制策略,通过调节高温储热罐旁路阀门6和过热器旁路阀门7,改变传热工质的流量,并将传热工质的实际流量与目标流量进行比较,误差值输入PID控制器进行调节,使传热工质的实际流量达到目标值,PID控制器的计算原理为
Figure BDA0003158355490000111
式中:e(t)为t时刻的误差;u(t)为t时刻的模型的输入量;KP、TI和TD分别为比例、积分和微分常数。
通过使用本系统和方法,可以利用镜场启动过程中的低温传热工质,降低电加热器的功率,减少光热电站启动过程中的能量消耗,通过在镜场的不同启停阶段合理设置镜场温度,可以有效降低镜场的散热损失,降低光热电站启停过程中的能量损失,同时通过提高进入高温储热罐的传热工质温度,可以增加光热电站运行过程中的蒸汽温度,提高光热电站的运行效率。

Claims (4)

1.一种光热电站的镜场启停系统的启动和停机控制方法,所述光热电站的镜场启停系统包括镜场(1)、再循环阀门(2)、高温储热罐进口阀门(3)、高温储热罐(4)、高温传热工质泵(5)、高温储热罐旁路阀门(6)、过热器旁路阀门(7)、过热器(8)、蒸汽发生器(9)、预热器(10)、低温储热罐(11)、低温储热罐出口阀门(12)、低温传热工质泵(13)、外置循环泵(14)、电加热器(15);
所述的镜场(1)的出口分为四个支路,第一个支路通过再循环阀门(2)与低温传热工质泵(13)的进口相连接,第二个支路通过高温储热罐进口阀门(3)与高温储热罐(4)相连接,第三个支路通过高温储热罐旁路阀门(6)与过热器(8)的传热工质进口相连接,第四个支路通过过热器旁路阀门(7)与蒸汽发生器(9)的传热工质进口相连接;高温储热罐(4)的传热工质出口与高温传热工质泵(5)的进口相连接,高温传热工质泵(5)的传热工质出口与过热器(8)的传热工质进口相连接;过热器(8)的传热工质出口与蒸汽发生器(9)的传热工质进口相连接,过热器(8)的蒸汽进口与蒸汽发生器(9)的蒸汽出口相连接;蒸汽发生器(9)的传热工质出口与预热器(10)的传热工质进口相连接,蒸汽发生器(9)的饱和水出口通过外置循环泵(14)与电加热器(15)相连接,蒸汽发生器(9)的给水进口与预热器(10)的给水出口相连接;预热器(10)的传热工质出口与低温储热罐(11)的传热工质进口相连接;低温储热罐(11)的传热工质出口与低温传热工质泵(13)的进口相连接,低温传热工质泵(13)的出口与镜场(1)的进口相连接;
其特征在于:所述的启动和停机控制方法为,控制方法采用分层控制技术,第一层控制用于设定值的优化,第二层控制用于调节控制量使被控量跟随设定值,在整个镜场启动阶段的控制方法为:
第一阶段为镜场(1)的预热过程,在光照条件达到启动标准后,打开再循环阀门(2)和低温传热工质泵(13),使镜场(1)运行在再循环模式,以提高镜场(1)的出口传热工质温度至第一目标温度,传热工质温度设定值通过第一层控制进行优化,优化目标为:在镜场(1)的热应力不超过许用热应力的条件下,提高传热工质的升温速度,第二层控制则通过调节低温传热工质泵(13)的转速控制再循环流量,使镜场(1)的出口传热工质温度达到设定值;
第二阶段为镜场(1)的出口传热工质温度达到第一目标温度后,再循环阀门(2)逐渐关闭,低温储热罐出口阀门(12)和过热器旁路阀门(7)逐渐打开,传热工质开始进入蒸汽发生器(9)和预热器(10),传热工质流量的设定值通过第一层控制进行优化,优化目标为:在维持蒸汽发生器(9)压力的条件下,降低电加热器(15)的功率,第二层控制则通过调节过热器旁路阀门(7),控制进入蒸汽发生器(9)的传热工质流量达到设定值;
第三阶段为镜场(1)的传热工质升温过程,在电加热器(15)停止运行后,打开高温储热罐旁路阀门(6),逐渐关闭过热器旁路阀门(7),并通过调节镜场(1)的传热工质流量,使镜场(1)的出口传热工质温度升高至第二目标温度,传热工质温度的设定值通过第一层控制进行优化,优化目标为:在镜场(1)的热应力不超过许用热应力、且镜场(1)的传热工质出口温度高于过热器(8)的出口蒸汽温度的条件下,提高传热工质的升温速度,第二层控制则通过调节低温传热工质泵(13)的转速控制进入镜场(1)的传热工质流量,使镜场(1)的出口传热工质温度达到设定值;
第四阶段为镜场(1)的定温运行阶段,第二层控制通过调节低温传热工质泵(13)的转速控制进入镜场(1)的传热工质流量,使镜场(1)的出口传热工质温度保持不变,并打开高温储热罐进口阀门(3),高温传热工质开始进入高温储热罐(4);
第五阶段为镜场(1)的传热工质升温过程,打开高温传热工质泵(5),逐渐关闭高温储热罐旁路阀门(6),并通过调节镜场(1)的传热工质流量,使镜场(1)的出口传热工质温度升高至第三目标温度,传热工质温度的设定值通过第一层控制进行优化,优化目标为:在过热器(8)的进口传热工质温度高于出口蒸汽温度、且出口蒸汽压力不断增加的条件下,降低过热器(8)的进口传热工质和出口蒸汽的温差,第二层控制通过调节低温传热工质泵(13)的转速控制进入镜场(1)的传热工质流量,使镜场(1)的出口传热工质温度达到设定值;
第六阶段为镜场(1)的定温运行阶段,第二层控制通过调节低温传热工质泵(13)的转速控制进入镜场(1)的传热工质流量,使镜场(1)的出口传热工质温度保持不变;
在整个镜场停机阶段的控制方法为:
第一阶段,随着光照的减少,镜场(1)的出口传热工质的温度不断降低,打开高温储热罐旁路阀门(6),经过高温储热罐旁路阀门(6)的传热工质流量的设定值通过第一层控制进行优化,优化目标为:在维持机组发电功率不变的条件下,降低高温传热工质泵(5)的传热工质流量,第二层控制通过调节高温储热罐旁路阀门(6),控制经过高温储热罐旁路阀门(6)的传热工质流量达到设定值;
第二阶段,镜场(1)的出口传热工质温度降至第二目标温度时,关闭高温储热罐旁路阀门(6),并逐渐打开过热器旁路阀门(7),经过过热器旁路阀门(7)的传热工质流量的设定值通过第一层控制进行优化,优化目标为:在维持机组发电功率不变的条件下,降低高温传热工质泵(5)的传热工质流量,第二层控制通过调节过热器旁路阀门(7),控制经过过热器旁路阀门(7)的传热工质流量达到设定值;
第三阶段,镜场(1)的出口传热工质温度降低至第一目标温度时,关闭过热器旁路阀门(7),打开再循环阀门(2),启动电伴热系统,第二层控制通过调节低温传热工质泵(13)的转速控制再循环流量,维持镜场(1)的传热工质温度高于凝固温度。
2.根据权利要求1所述的启动和停机控制方法,其特征在于,如果传热工质为熔融盐,则第一目标温度为280~300℃,第二目标温度为460~480℃,第三目标温度为550~560℃,如果传热工质为导热油,则第一目标温度为80~100℃,第二目标温度为260~280℃,第三目标温度为370~390℃。
3.根据权利要求1所述的启动和停机控制方法,其特征在于,第一层控制采用预测控制算法进行计算。
4.根据权利要求1所述的启动和停机控制方法,其特征在于,第二层控制采用前馈加反馈的控制算法控制低温传热工质泵(13),而高温储热罐旁路阀门(6)和过热器旁路阀门(7)均采用PID反馈控制。
CN202110784978.1A 2021-07-12 2021-07-12 一种光热电站的镜场启停系统及控制方法 Active CN113587064B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110784978.1A CN113587064B (zh) 2021-07-12 2021-07-12 一种光热电站的镜场启停系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110784978.1A CN113587064B (zh) 2021-07-12 2021-07-12 一种光热电站的镜场启停系统及控制方法

Publications (2)

Publication Number Publication Date
CN113587064A CN113587064A (zh) 2021-11-02
CN113587064B true CN113587064B (zh) 2022-05-06

Family

ID=78246937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110784978.1A Active CN113587064B (zh) 2021-07-12 2021-07-12 一种光热电站的镜场启停系统及控制方法

Country Status (1)

Country Link
CN (1) CN113587064B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115143434B (zh) * 2022-06-30 2023-05-23 西安交通大学 一种光热电站高效启动系统及运行方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013070396A1 (en) * 2011-11-10 2013-05-16 Abengoa Solar Inc. Methods and apparatus for thermal energy storage control optimization
US20140223906A1 (en) * 2013-02-08 2014-08-14 Skyfuel, Inc. Solar/gas hybrid power system configurations and methods of use
ES2878624T3 (es) * 2014-02-24 2021-11-19 General Electric Technology Gmbh Sistema de energía termosolar
CN204187872U (zh) * 2014-05-22 2015-03-04 深圳市爱能森设备技术有限公司 一种采用熔盐传热储热的储能式太阳能热水锅炉
CN105545618A (zh) * 2014-10-31 2016-05-04 中广核太阳能开发有限公司 采用熔融盐介质的槽式太阳能热发电系统及热发电方法
CN104456528A (zh) * 2014-11-05 2015-03-25 江苏太阳宝新能源有限公司 综合利用储能和智能电网的方法及其系统
CN108561282B (zh) * 2018-03-20 2024-01-09 中国科学技术大学 一种槽式直接蒸汽与熔融盐联合热发电系统
CN208536415U (zh) * 2018-05-25 2019-02-22 中机国能电力工程有限公司 一种光热发电熔盐储热系统
CN208475685U (zh) * 2018-07-11 2019-02-05 河北道荣新能源科技有限公司 一种基于太阳能集热的熔盐储能供热系统

Also Published As

Publication number Publication date
CN113587064A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN109869199B (zh) 一种汽轮机结构及低压缸切缸控制方法
CN111255529B (zh) 供热切缸机组运行时快速响应自动发电控制系统及方法
CN114017146A (zh) 一种双机回热小汽轮机无电泵启动带负荷方法
CN113587064B (zh) 一种光热电站的镜场启停系统及控制方法
WO2023226425A1 (zh) 制氢系统及其热管理方法、装置
CN115717845A (zh) 一种熔盐储能提升火电机组调峰能力的方法
Gao et al. Research on modeling and deep peak regulation control of a combined heat and power unit
CN112412557B (zh) 一种辅助调频的汽轮机高旁灵活供热系统
CN113638776A (zh) 一种抽汽背压式汽轮机热力系统及其控制方法
CN115882014B (zh) 一种燃料电池进气温度控制装置及控制方法
CN115013101B (zh) 一种超临界二氧化碳发电机组的协调控制系统
CN112556258A (zh) 一种补偿时延的热泵智能控制方法
CN217813611U (zh) 基于蓄热罐快速提升火电机组负荷响应速率的系统
CN108800598B (zh) 烟气余热回收利用联合暖风器双旁路宽负荷调整方法
CN115789616A (zh) 一种熔盐储能提升火电机组调峰能力的控制方法
CN113446656B (zh) 功率-负荷匹配的光伏光热pv/t热电冷联供系统调控方法
CN116292063A (zh) 管道式异步水力发电控制系统及其控制策略
CN212227002U (zh) 蓄热调峰系统
CN115143434B (zh) 一种光热电站高效启动系统及运行方法
CN113410850A (zh) 基于mpc的光热风电联合调频模型和调频策略
CN105757759A (zh) 热效率优化汽水换热首站及其运行方法
CN113432099B (zh) 光热电站启动过程的预热器入口给水温度控制系统及方法
CN116378790A (zh) 一种用于循环发电装置的协调控制系统及方法和发电系统
CN115954505B (zh) 一种燃料电池电堆冷启动的方法
CN211038762U (zh) 一种燃气联合循环机组汽机旁路控制策略分析系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant