CN113586316A - 一种增频微振海流能摩擦纳米发电机 - Google Patents

一种增频微振海流能摩擦纳米发电机 Download PDF

Info

Publication number
CN113586316A
CN113586316A CN202110983303.XA CN202110983303A CN113586316A CN 113586316 A CN113586316 A CN 113586316A CN 202110983303 A CN202110983303 A CN 202110983303A CN 113586316 A CN113586316 A CN 113586316A
Authority
CN
China
Prior art keywords
plate
friction
ocean current
shell
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110983303.XA
Other languages
English (en)
Other versions
CN113586316B (zh
Inventor
庞洪臣
黄喜利
于海华
潘新祥
魏斌
杨芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changle County Investment Cooperation Promotion Center
Guangdong Ocean University
Original Assignee
Changle County Investment Cooperation Promotion Center
Guangdong Ocean University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changle County Investment Cooperation Promotion Center, Guangdong Ocean University filed Critical Changle County Investment Cooperation Promotion Center
Priority to CN202110983303.XA priority Critical patent/CN113586316B/zh
Publication of CN113586316A publication Critical patent/CN113586316A/zh
Priority to PCT/CN2022/073076 priority patent/WO2023024431A1/zh
Priority to ZA2023/01537A priority patent/ZA202301537B/en
Application granted granted Critical
Publication of CN113586316B publication Critical patent/CN113586316B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

本发明涉及海洋能发电技术领域,公开了一种增频微振海流能摩擦纳米发电机,包括壳体、电源管理系统和至少一个发电组,壳体具有进水口和出水口,发电组包括支撑筒、第一弹性件和至少一个发电单元,支撑筒通过第一弹性件与壳体的内壁连接,发电单元包括折叠板和第二弹性件,折叠板的一端连接在支撑筒的内壁上、另一端通过第二弹性件与支撑筒的内壁连接,折叠板由多个板体首尾相连形成可叠合或展开的结构,相邻的两个板体在叠合时相接触的侧面上分别设有第一摩擦片和第二摩擦片,第二摩擦片上设有介电薄膜,第二摩擦片与电源管理系统电连接,既可利用波浪产生振动外,还可以利用海流的流动产生振动,提高了海流能的利用率,实现对海流能的有效收集。

Description

一种增频微振海流能摩擦纳米发电机
技术领域
本发明涉及海洋能发电技术领域,特别是涉及一种增频微振海流能摩擦纳米发电机。
背景技术
海洋中蕴含着大量的可再生能源,开发和利用海洋能源已受到国内外学者的广泛关注。作为可再生能源之一的海流能具有能量密度高、分布范围广等优势。目前对海流能的利用主要采用水下涡轮机。水下涡轮机在2.5-3.6m/s甚至更高的流速下才可工作,而全世界大量的海流其流速都低于1.5m/s,因此水下涡轮机的应用条件受到水流速度的限制。摩擦纳米发电技术是近年来新兴的一种发电技术,其可高效地将海流能转换成电能,具有重要的实际应用意义。
目前的纳米摩擦发电装置都是利用海浪中的垂荡运动。现有的纳米摩擦发电装置通常包括壳体、弹簧和质量体,壳体是内部中空的封闭壳体,质量体通过弹簧与壳体的内壁连接,质量体的外壁和壳体的内壁上设有纳米摩擦发电薄膜。将壳体置于海中时,壳体随波浪的垂荡上下移动,进而使内部的质量体上下移动,质量体外壁上的纳米摩擦发电薄膜和壳体内壁上的纳米摩擦发电薄膜产生相对运动,进行摩擦而生电。该种纳米摩擦发电单元只能利用波浪的垂荡运动,使海流能利用率较低。
中国发明专利申请CN110677070A(公开日为2020年01月10日)公开了一种柱式多点纳米摩擦微波发电装置,包括中空的圆柱浮筒、实心圆柱和摩擦发电机组,所述实心圆柱位于圆柱浮筒的中心位置,所述摩擦发电机组至少有四组且等间距设置在圆柱浮筒和实心圆柱之间的空隙中,所述摩擦发电机组包括箱体、设置在箱体上端的盖板、与盖板下端面固连的竖直方向的弹簧、与竖直方向弹簧固连的质量体,在质量体的外表面和箱体的内表面分别设置有薄板片,每个薄板片上设置有一组纳米摩擦发电机薄膜。该专利是通过波浪带动圆柱浮筒上下移动,使内部的质量体上下移动来与箱体的内壁产生摩擦进行发电的,因此,该专利仅能利用波浪的垂荡运动。而对于海流能来说,海流还会对发电装置产生冲击,该专利的发电装置不能利用该类能量。
发明内容
本发明的目的是提供一种提高海流能利用率的增频微振海流能摩擦纳米发电机。
为了实现上述目的,本发明提供了一种增频微振海流能摩擦纳米发电机,包括壳体、电源管理系统和至少一个发电组,所述电源管理系统与所述壳体相连接,所述壳体的两端具有与其内部相通的进水口和出水口,所述发电组位于所述壳体内,所述发电组包括支撑筒、第一弹性件和至少一个发电单元,所述支撑筒通过所述第一弹性件与所述壳体的内壁连接,所述发电单元位于所述支撑筒内,所述发电单元包括折叠板和第二弹性件,所述折叠板的一端连接在所述支撑筒的内壁上、另一端通过所述第二弹性件与所述支撑筒的内壁连接,所述折叠板包括多个板体,多个所述板体首尾相连形成可叠合或展开的结构,相邻的两个所述板体在叠合时相接触的侧面上分别设有第一摩擦片和第二摩擦片,所述第二摩擦片上设有介电薄膜,所述第二摩擦片与所述电源管理系统电连接。
作为优选方案,所述进水口和所述出水口设于所述壳体轴向的两端,所述支撑筒轴向的两端分别通过一个所述第一弹性件与所述壳体连接,所述支撑筒的轴向与所述壳体的轴向相垂直,所述折叠板和所述第二弹性件沿支撑筒的直径方向设置。
作为优选方案,还包括导流罩,所述导流罩为喇叭口结构,所述导流罩的直径较小的一端与所述进水口相连。
作为优选方案,还包括过流板,所述过流板安装于所述进水口处,所述过流板上贯穿其两侧的过流孔。
作为优选方案,所述壳体设置所述出水口的一端设有导流翼。
作为优选方案,还包括基座和连接轴,所述基座内部中空,所述电源管理系统设于所述基座内,所述壳体通过所述连接轴可转动地连接在所述基座上,所述连接轴垂直于所述进水口和所述出水口所在的直线上。
作为优选方案,所述壳体、所述支撑筒和所述基座上均涂覆有石墨烯防腐材料层。
作为优选方案,所述第一摩擦片为铝箔,所述第二摩擦片为铜箔。
作为优选方案,所述介电薄膜为PTFE膜片。
作为优选方案,所述第一摩擦片背离其连接的所述板体的侧面上以及所述第二摩擦片与所述介电薄膜相连接的侧面上均设有纳米至微米级凸起的微结构。
与现有技术相比,本发明的有益效果在于:
本发明通过在壳体设置进水口和出水口,使海水能流入流出壳体,并在海流流动时会流过壳体内部连接的发电组的支撑筒,对于任何非流线型物体,在水流流过该物体时,都会在物体两侧交替地产生脱离结构物表面的旋涡,因此,海流在流过支撑筒时,支撑筒的两侧交替地产生脱离其表面的旋涡,交替发放的泻涡又会在支撑筒上生成顺流向及横流向周期性变化的脉动压力,而支撑筒通过第一弹性件与壳体连接,使支撑筒为弹性支撑,脉动流体力将引发支撑筒的周期性振动,产生涡激振动现象。支撑筒的振动会使其内的第二弹性件和折叠板伸长和收缩,使折叠板上的第一摩擦片和介电薄膜发生周期性的接触分离,由于第一摩擦片、介电薄膜两种材料具有不同的电极序,所以在发生相对接触分离时,在两者的表面就会分别带上异种电荷,使第二摩擦片表面感应出正电,产生电势差,从而驱动电子的流动在输出电路中产生电输出。另外,本发明也可以利用波浪的垂荡运动发生振动。因此,本发明除可利用波浪产生振动外,还可以利用海流的流动产生振动,实现增频,提高了海流能的利用率,实现对海流能的有效收集。
附图说明
图1是本发明实施例的增频微振海流能摩擦纳米发电机的结构示意图。
图2是本发明实施例的支撑筒的内部结构示意图。
图3是本发明实施例的折叠板的结构示意图。
图4是本发明实施例的发电单元的工作示意图。
图5是本发明实施例的电路连接图。
图中,1-壳体;101-进水口;102-出水口;2-电源管理系统;3-支撑筒;4-第一弹性件;5-折叠板;6-第二弹性件;7-第一摩擦片;8-第二摩擦片;9-介电薄膜;10-导流罩;11-过流板;1101-过流孔;12-导流翼;13-基座;14-连接轴。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
在本发明的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1至图5所示,本发明实施例优选实施例的一种增频微振海流能摩擦纳米发电机,包括壳体1、电源管理系统2和至少一个发电组,电源管理系统2与壳体1相连接,壳体1的两端具有与其内部相通的进水口101和出水口102,发电组位于壳体1内,发电组包括支撑筒3、第一弹性件4和至少一个发电单元,支撑筒3通过第一弹性件4与壳体1的内壁连接,发电单元包括折叠板5和第二弹性件6,折叠板5的一端连接在支撑筒3的内壁上、另一端通过第二弹性件6与支撑筒3的内壁连接,折叠板5包括多个板体,多个板体首尾相连形成可叠合或展开的结构,相邻的两个板体在叠合时相接触的侧面上分别设有第一摩擦片7和第二摩擦片8,第二摩擦片8上设有介电薄膜9,第二摩擦片8与电源管理系统2电连接。本实施例通过在壳体1设置进水口101和出水口102,使海水能流入流出壳体1,并在海流流动时会流过壳体1内部连接的发电组的支撑筒3,对于任何非流线型物体,在水流流过该物体时,都会在物体两侧交替地产生脱离结构物表面的旋涡,因此,海流在流过支撑筒3时,支撑筒3的两侧交替地产生脱离其表面的旋涡,交替发放的泻涡又会在支撑筒3上生成顺流向及横流向周期性变化的脉动压力,而支撑筒3通过第一弹性件4与壳体1连接,使支撑筒3为弹性支撑,脉动流体力将引发支撑筒3的周期性振动,产生涡激振动现象。支撑筒3的振动会使其内的第二弹性件6和折叠板5伸长和收缩,使折叠板5上的第一摩擦片7和介电薄膜8发生周期性的接触分离,由于第一摩擦片7、介电薄膜8两种材料具有不同的电极序,所以在发生相对接触分离时,在两者的表面就会分别带上异种电荷,使第二摩擦片8表面感应出正电,产生电势差,从而驱动电子的流动在输出电路中产生电输出。另外,本实施例也可以利用波浪的垂荡运动发生振动。因此,本实施例除可利用波浪产生振动外,还可以利用海流的流动产生振动,实现增频,即增加了发生振动的途径,提高了海流能的利用率,实现对海流能的有效收集。
涡激振动是一种常见的流固耦合现象。非流线形结构在水流作用下,其两侧会周期性地产生涡脱落,从而在结构上形成周期性外力,引发结构振动。在海流作用下,支撑筒3可产生很大的振幅,流体的动能大部分被弹性支撑的支撑筒3吸收,形成稳定的周期性振荡运动。固定于折叠板5表面的第一摩擦片7与介电薄膜9会发生周期性接触分离,由于第一摩擦片7、介电薄膜9两种材料具有不同的电极序,所以在发生相对接触分离时,在两者的表面就会分别带上异种电荷,具体为第一摩擦片7带正电荷,介电薄膜9带负电荷。此时,第二摩擦片8表面感应出正电,因而产生电势差。从而驱动电子的流动在输出电路中产生电输出。在第二摩擦片8背部分别引出导电线路,并通过导线连接到电源管理系统2。持续海流作用下,该发电单元能持续向外输出电流,电源管理系统2对产生的电流进行收集,并将电量储存在其电池中。另外,本实施例通过折叠板5叠合和展开实现第一摩擦片7和介电薄膜9的接触和分离,相对于质量体的外壁纳米摩擦片与筒体的内壁纳米摩擦片相对运动进行发电,折叠板5运动频率高,可提高装置发电量,保证持续发电。
本实施例的进水口101和出水口102设于壳体1轴向的两端,支撑筒3轴向的两端分别通过一个第一弹性件4与壳体1连接,支撑筒3的轴向与壳体1的轴向相垂直,折叠板5和第二弹性件6沿支撑筒3的直径方向设置,可同时利用海流流动和波浪的垂荡运动,进一步提高海流能的利用率,提高发电效率。且通过两个第一弹性件4连接支撑筒3,可增加涡激振动。本实施例的第一弹性件4和第二弹性件6均为弹簧。折叠板5采用具有弹性的薄片,使折叠板5在支撑筒3振动时,可与第二弹性件6发生伸长和缩短。应当指出的是,折叠板5还可使其相邻的板体之间转动连接以实现叠合和展开。支撑筒3是两端封闭、内部中空的筒体,可防止海水进入支撑筒3内。此外,本实施例的支撑筒3为可发生弹性形变的柔性圆筒,进一步增加涡激振动。
进一步地,本实施例的发电机还包括导流罩10,导流罩10为喇叭口结构,导流罩10的直径较小的一端与进水口101相连,有利于汇集海流进入壳体1中,增大流过支撑筒3的流体速度。另外,本实施例的发电机还包括过流板11,过流板11安装于进水口101处,过流板11上贯穿其两侧的过流孔101,使海流分为多股流体进入壳体1中,提高流过支撑筒3的流体的流速,增加旋涡,提高支撑筒3的涡激振动,使发电机在低速海流时仍可以发电,且可起到保护作用,避免发电组被海流冲入的外物损坏。本实施例的过流孔1101为矩形孔。此外,本实施例的壳体1设置出水口102的一端设有导流翼12,使壳体1置于海流中时,壳体1的进水口101和出水口102的方向与海流的方向相同,可根据海流的方向调整壳体1的方向,实现迎流发电。本实施例的导流翼12为流线型。
在本实施例中,发电机还包括基座13和连接轴14,基座13内部中空,电源管理系统2设于基座13内,壳体1通过连接轴14可转动地连接在基座13上,连接轴14垂直于进水口101和出水口102所在的直线上。基座13可起到定位作用,避免发电机随海流漂流,同时壳体1通过连接轴14与基座13转动连接,可使壳体1随海流转动,实现迎流。如图5所示,电源管理系统2包括整流器、升压器和电池,整流器输入端与发电单元的输出端相连接,升压器的输入侧与整流器输出端连接,升压器的输出侧与电池连接。当发电单元设置有两个或两个以上时,电源管理系统2将各发电单元单独进行整流然后并联整合输出,并在电池中储存电量。进一步地,本实施例的壳体1、支撑筒3和基座13上均涂覆有石墨烯防腐材料层,可以减少海水对装置的腐蚀。
可选地,本实施例的第一摩擦片7为铝箔,第二摩擦片8为铜箔。介电薄膜9为PTFE膜片。其中,第一摩擦片7和介电薄膜9的形状、面积相同,使折叠板5叠合时,第一摩擦片7、介电薄膜9有一个瞬间摩擦面可完全重合。进一步地,第一摩擦片7背离其连接的板体的侧面上以及第二摩擦片8与介电薄膜9相连接的侧面上均设有纳米至微米级凸起的微结构,可提高发电效率。同样地,介电薄膜9背离第二摩擦片8的表面上也设有纳米至微米级凸起的微结构。可选地,第一摩擦片7、第二摩擦片8和介电薄膜9的表面可部分或全部分布微结构。该微结构优选为纳米线、纳米管、纳米棒、纳米颗粒、纳米沟槽、微米沟槽、纳米锥或纳米球,以及由前述结构形成的阵列,特别是由纳米线、纳米管或者纳米棒的纳米阵列。微结构可以通过光刻蚀、等离子刻蚀等方法制备的线状、立方体、或者四棱锥形状的阵列,阵列中每个单元的尺寸在微米到纳米量级。应当指出的是,只要不影响发电材料的机械强度,具体微结构的单元尺寸和形状不应限制本发明的范围。
本发明的工作过程为:将发电机整体置于海水中,海水流动,海流依次经过导流罩10和过流板11上的过流孔1101进入壳体1中,海流流过通过第一弹性件4弹性支撑的支撑筒3并从出水口102流出,使支撑筒3产生涡激振动,进而带动支撑筒3的第二弹性件6和折叠板5进行展开和收缩,形成周期性振荡运动,折叠板5上的第一摩擦片7和介电薄膜9随之周期性接触和分离,使第二摩擦片8感应生电;当海流方向改变时,壳体1随海流进行转动,在导流翼12的作用下,使进水口101在海流流动方向上位于出水口102的前方,始终迎流发电。
综上,本发明实施例提供一种增频微振海流能摩擦纳米发电机,其通过在壳体1设置进水口101和出水口102,使海水能流入流出壳体1,并在海流流动时会流过壳体1内部连接的发电组的支撑筒3,对于任何非流线型物体,在水流流过该物体时,都会在物体两侧交替地产生脱离结构物表面的旋涡,因此,海流在流过支撑筒3时,支撑筒3的两侧交替地产生脱离其表面的旋涡,交替发放的泻涡又会在支撑筒3上生成顺流向及横流向周期性变化的脉动压力,而支撑筒3通过第一弹性件4与壳体1连接,使支撑筒3为弹性支撑,脉动流体力将引发支撑筒3的周期性振动,产生涡激振动现象。支撑筒3的振动会使其内的第二弹性件6和折叠板5伸长和收缩,使折叠板5上的第一摩擦片7和介电薄膜8发生周期性的接触分离,由于第一摩擦片7、介电薄膜8两种材料具有不同的电极序,所以在发生相对接触分离时,在两者的表面就会分别带上异种电荷,使第二摩擦片8表面感应出正电,产生电势差,从而驱动电子的流动在输出电路中产生电输出。另外,本实施例也可以利用波浪的垂荡运动发生振动。因此,本实施例除可利用波浪产生振动外,还可以利用海流的流动产生振动,实现增频,提高了海流能的利用率,实现对海流能的有效收集。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (10)

1.一种增频微振海流能摩擦纳米发电机,其特征在于,包括壳体(1)、电源管理系统(2)和至少一个发电组,所述电源管理系统(2)与所述壳体(1)相连接,所述壳体(1)的两端具有与其内部相通的进水口(101)和出水口(102),所述发电组位于所述壳体(1)内,
所述发电组包括支撑筒(3)、第一弹性件(4)和至少一个发电单元,所述支撑筒(3)通过所述第一弹性件(4)与所述壳体(1)的内壁连接,所述发电单元位于所述支撑筒(3)内,所述发电单元包括折叠板(5)和第二弹性件(6),所述折叠板(5)的一端连接在所述支撑筒(3)的内壁上、另一端通过所述第二弹性件(6)与所述支撑筒(3)的内壁连接,所述折叠板(5)包括多个板体,多个所述板体首尾相连形成可叠合或展开的结构,相邻的两个所述板体在叠合时相接触的侧面上分别设有第一摩擦片(7)和第二摩擦片(8),所述第二摩擦片(8)上设有介电薄膜(9),所述第二摩擦片(8)与所述电源管理系统(2)电连接。
2.根据权利要求1所述的增频微振海流能摩擦纳米发电机,其特征在于,所述进水口(101)和所述出水口(102)设于所述壳体(1)轴向的两端,所述支撑筒(3)轴向的两端分别通过一个所述第一弹性件(4)与所述壳体(1)连接,所述支撑筒(3)的轴向与所述壳体(1)的轴向相垂直,所述折叠板(5)和所述第二弹性件(6)沿支撑筒(3)的直径方向设置。
3.根据权利要求1所述的增频微振海流能摩擦纳米发电机,其特征在于,还包括导流罩(10),所述导流罩(10)为喇叭口结构,所述导流罩(10)的直径较小的一端与所述进水口(101)相连。
4.根据权利要求1所述的增频微振海流能摩擦纳米发电机,其特征在于,还包括过流板(11),所述过流板(11)安装于所述进水口(101)处,所述过流板(11)上贯穿其两侧的过流孔(1101)。
5.根据权利要求1所述增频微振海流能摩擦纳米发电机,其特征在于,所述壳体(1)设置所述出水口(102)的一端设有导流翼(12)。
6.根据权利要求1所述增频微振海流能摩擦纳米发电机,其特征在于,还包括基座(13)和连接轴(14),所述基座(13)内部中空,所述电源管理系统(2)设于所述基座(13)内,所述壳体(1)通过所述连接轴(14)可转动地连接在所述基座(13)上,所述连接轴(14)垂直于所述进水口(101)和所述出水口(102)所在的直线上。
7.根据权利要求6所述增频微振海流能摩擦纳米发电机,其特征在于,所述壳体(1)、所述支撑筒(3)和所述基座(13)上均涂覆有石墨烯防腐材料层。
8.根据权利要求1所述增频微振海流能摩擦纳米发电机,其特征在于,所述第一摩擦片(7)为铝箔,所述第二摩擦片(8)为铜箔。
9.根据权利要求1所述增频微振海流能摩擦纳米发电机,其特征在于,所述介电薄膜(9)为PTFE膜片。
10.根据权利要求1所述增频微振海流能摩擦纳米发电机,其特征在于,所述第一摩擦片(7)背离其连接的所述板体的侧面上以及所述第二摩擦片(8)与所述介电薄膜(9)相连接的侧面上均设有纳米至微米级凸起的微结构。
CN202110983303.XA 2021-08-25 2021-08-25 一种增频微振海流能摩擦纳米发电机 Active CN113586316B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110983303.XA CN113586316B (zh) 2021-08-25 2021-08-25 一种增频微振海流能摩擦纳米发电机
PCT/CN2022/073076 WO2023024431A1 (zh) 2021-08-25 2022-01-21 一种增频微振海流能摩擦纳米发电机
ZA2023/01537A ZA202301537B (en) 2021-08-25 2023-02-07 Frequency-increased and micro-vibrated ocean current energy triboelectric nanogenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110983303.XA CN113586316B (zh) 2021-08-25 2021-08-25 一种增频微振海流能摩擦纳米发电机

Publications (2)

Publication Number Publication Date
CN113586316A true CN113586316A (zh) 2021-11-02
CN113586316B CN113586316B (zh) 2023-07-14

Family

ID=78239643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110983303.XA Active CN113586316B (zh) 2021-08-25 2021-08-25 一种增频微振海流能摩擦纳米发电机

Country Status (3)

Country Link
CN (1) CN113586316B (zh)
WO (1) WO2023024431A1 (zh)
ZA (1) ZA202301537B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374336A (zh) * 2022-01-14 2022-04-19 上海大学 一种伞型四电极波浪能量收集摩擦纳米发电机
CN114483430A (zh) * 2022-01-28 2022-05-13 哈尔滨工业大学(威海) 一种摆动圆柱涡激振动潮流能利用装置及其设计方法
CN114738166A (zh) * 2022-04-11 2022-07-12 大连海事大学 一种基于摩擦纳米发电的循环水余压发电系统
WO2023024431A1 (zh) * 2021-08-25 2023-03-02 广东海洋大学 一种增频微振海流能摩擦纳米发电机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117118268B (zh) * 2023-10-25 2024-02-06 山东科技大学 一种海流能纳米发电静力触探装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922399A (zh) * 2010-07-23 2010-12-22 南京航空航天大学 水流振动发电机
CN103075313A (zh) * 2013-01-15 2013-05-01 重庆大学 一种利用低速气流流致振动收集电能的方法
CN103368452A (zh) * 2013-03-08 2013-10-23 国家纳米科学中心 静电脉冲发电机和直流脉冲发电机
CN103762896A (zh) * 2014-02-17 2014-04-30 重庆大学 串行排列双柱体涡致振动收集低速流动能的装置
CN203851063U (zh) * 2014-01-24 2014-09-24 国家纳米科学中心 一种振动式摩擦发电装置及海浪发电装置
CN105099255A (zh) * 2014-04-29 2015-11-25 北京纳米能源与系统研究所 一种适用于波动液体的发电系统
CN107086811A (zh) * 2017-05-18 2017-08-22 中国科学院理化技术研究所 一种时均流驱动的摩擦纳米发电装置及方法
CN107707149A (zh) * 2017-11-20 2018-02-16 浙江大学 基于纸基的堆叠摩擦纳米发电机
CN110086373A (zh) * 2019-04-29 2019-08-02 电子科技大学 一种仿生贝壳式呼吸监测摩擦纳米发电机及其制备方法
CN110501518A (zh) * 2019-08-26 2019-11-26 大连海事大学 一种基于摩擦纳米发电的多介质测速计
US20200266045A1 (en) * 2016-09-12 2020-08-20 Georgia Tech Research Corporation Rational Nano-Coulomb Ionization

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113586316B (zh) * 2021-08-25 2023-07-14 广东海洋大学 一种增频微振海流能摩擦纳米发电机

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922399A (zh) * 2010-07-23 2010-12-22 南京航空航天大学 水流振动发电机
CN103075313A (zh) * 2013-01-15 2013-05-01 重庆大学 一种利用低速气流流致振动收集电能的方法
CN103368452A (zh) * 2013-03-08 2013-10-23 国家纳米科学中心 静电脉冲发电机和直流脉冲发电机
CN203851063U (zh) * 2014-01-24 2014-09-24 国家纳米科学中心 一种振动式摩擦发电装置及海浪发电装置
CN103762896A (zh) * 2014-02-17 2014-04-30 重庆大学 串行排列双柱体涡致振动收集低速流动能的装置
CN105099255A (zh) * 2014-04-29 2015-11-25 北京纳米能源与系统研究所 一种适用于波动液体的发电系统
US20200266045A1 (en) * 2016-09-12 2020-08-20 Georgia Tech Research Corporation Rational Nano-Coulomb Ionization
CN107086811A (zh) * 2017-05-18 2017-08-22 中国科学院理化技术研究所 一种时均流驱动的摩擦纳米发电装置及方法
CN107707149A (zh) * 2017-11-20 2018-02-16 浙江大学 基于纸基的堆叠摩擦纳米发电机
CN110086373A (zh) * 2019-04-29 2019-08-02 电子科技大学 一种仿生贝壳式呼吸监测摩擦纳米发电机及其制备方法
CN110501518A (zh) * 2019-08-26 2019-11-26 大连海事大学 一种基于摩擦纳米发电的多介质测速计

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023024431A1 (zh) * 2021-08-25 2023-03-02 广东海洋大学 一种增频微振海流能摩擦纳米发电机
CN114374336A (zh) * 2022-01-14 2022-04-19 上海大学 一种伞型四电极波浪能量收集摩擦纳米发电机
CN114374336B (zh) * 2022-01-14 2024-04-19 上海大学 一种伞型四电极波浪能量收集摩擦纳米发电机
CN114483430A (zh) * 2022-01-28 2022-05-13 哈尔滨工业大学(威海) 一种摆动圆柱涡激振动潮流能利用装置及其设计方法
CN114483430B (zh) * 2022-01-28 2024-03-01 哈尔滨工业大学(威海) 一种摆动圆柱涡激振动潮流能利用装置及其设计方法
CN114738166A (zh) * 2022-04-11 2022-07-12 大连海事大学 一种基于摩擦纳米发电的循环水余压发电系统
CN114738166B (zh) * 2022-04-11 2024-04-02 大连海事大学 一种基于摩擦纳米发电的循环水余压发电系统

Also Published As

Publication number Publication date
ZA202301537B (en) 2023-09-27
WO2023024431A1 (zh) 2023-03-02
CN113586316B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
CN113586316B (zh) 一种增频微振海流能摩擦纳米发电机
Wang et al. An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition
US9394875B2 (en) System for harvesting water wave energy
CN203851063U (zh) 一种振动式摩擦发电装置及海浪发电装置
WO2021077854A1 (zh) 一种复摆升频式波浪能收集装置
CN106385200B (zh) 一种基于卡门涡街效应的柔性压电发电装置
Wang et al. A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy
CN105156260A (zh) 摆动式水翼端部激振波浪能转换装置
CN105006992B (zh) 双点弹性支撑圆柱涡激振动流体动能转换装置
Zhu et al. The state-of-the-art brief review on piezoelectric energy harvesting from flow-induced vibration
CN113556059B (zh) 基于涡激振动的压电与摩擦纳米发电相结合的能量收集器
Yu et al. Vibration-coupled TENGs from weak to ultra-strong induced by vortex for harvesting low-grade airflow energy
CN102957340A (zh) 微风发电机
CN109139339B (zh) 波浪能发电装置及发电方法
CN107086811A (zh) 一种时均流驱动的摩擦纳米发电装置及方法
CN209115248U (zh) 波浪能发电装置
Yan et al. Review of wave power system development and research on triboelectric nano power systems
JP2011106434A (ja) 海洋エネルギー発電デバイス及びこれを用いた蓄電装置
CN217824768U (zh) 一种弹簧摆件式的摩擦纳米发电机装置
CN110224635B (zh) 一种多方向俘能装置
CN212875690U (zh) 一种基于立管振动的摩擦纳米发电装置
CN117081422A (zh) 一种基于风致晃动的v型高效固液摩擦纳米能量收集装置
Cao et al. A sea snake structure wave power generator for efficiently harvesting ocean wave energy with flexible structure
US11637510B2 (en) Funnel-shaped underwater energy harvesting equipment
CN108566117B (zh) 一种压差式的压电发电装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant