CN113582952B - Method for preparing 2,5-furandicarboxylic acid from straw - Google Patents
Method for preparing 2,5-furandicarboxylic acid from straw Download PDFInfo
- Publication number
- CN113582952B CN113582952B CN202111014207.0A CN202111014207A CN113582952B CN 113582952 B CN113582952 B CN 113582952B CN 202111014207 A CN202111014207 A CN 202111014207A CN 113582952 B CN113582952 B CN 113582952B
- Authority
- CN
- China
- Prior art keywords
- chromium
- manganese
- molecular sieve
- furandicarboxylic acid
- straw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- CHTHALBTIRVDBM-UHFFFAOYSA-N furan-2,5-dicarboxylic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)O1 CHTHALBTIRVDBM-UHFFFAOYSA-N 0.000 title claims abstract description 120
- 239000010902 straw Substances 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 33
- 239000002808 molecular sieve Substances 0.000 claims abstract description 54
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000003054 catalyst Substances 0.000 claims abstract description 51
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000011572 manganese Substances 0.000 claims abstract description 19
- 239000011651 chromium Substances 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 15
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 15
- 239000012046 mixed solvent Substances 0.000 claims abstract description 15
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000006555 catalytic reaction Methods 0.000 claims abstract description 13
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 5
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 5
- XCNJCXWPYFLAGR-UHFFFAOYSA-N chromium manganese Chemical compound [Cr].[Mn].[Mn].[Mn] XCNJCXWPYFLAGR-UHFFFAOYSA-N 0.000 claims abstract 9
- 239000000243 solution Substances 0.000 claims description 26
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 claims description 12
- 239000002028 Biomass Substances 0.000 claims description 10
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 claims description 9
- 235000007164 Oryza sativa Nutrition 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 235000009566 rice Nutrition 0.000 claims description 8
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 8
- 238000009210 therapy by ultrasound Methods 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 238000001354 calcination Methods 0.000 claims description 6
- 238000005470 impregnation Methods 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 238000011068 loading method Methods 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 3
- 229910052681 coesite Inorganic materials 0.000 claims description 2
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 229910052682 stishovite Inorganic materials 0.000 claims description 2
- 229910052905 tridymite Inorganic materials 0.000 claims description 2
- 240000007594 Oryza sativa Species 0.000 claims 1
- 238000007654 immersion Methods 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 230000003197 catalytic effect Effects 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 abstract description 5
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 238000011084 recovery Methods 0.000 abstract description 3
- 238000010923 batch production Methods 0.000 abstract 1
- BQKCOFRVVANBNO-UHFFFAOYSA-N chromium manganese Chemical compound [Cr][Mn][Cr] BQKCOFRVVANBNO-UHFFFAOYSA-N 0.000 description 29
- 238000006243 chemical reaction Methods 0.000 description 18
- 239000007788 liquid Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- 241000209094 Oryza Species 0.000 description 7
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- NOEGNKMFWQHSLB-UHFFFAOYSA-N 5-hydroxymethylfurfural Chemical compound OCC1=CC=C(C=O)O1 NOEGNKMFWQHSLB-UHFFFAOYSA-N 0.000 description 5
- RJGBSYZFOCAGQY-UHFFFAOYSA-N hydroxymethylfurfural Natural products COC1=CC=C(C=O)O1 RJGBSYZFOCAGQY-UHFFFAOYSA-N 0.000 description 5
- -1 furan compound Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 150000002402 hexoses Chemical class 0.000 description 2
- 239000002029 lignocellulosic biomass Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 235000019631 acid taste sensations Nutrition 0.000 description 1
- 239000002154 agricultural waste Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004690 nonahydrates Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/56—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D307/68—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/16—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J29/166—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
本发明公开了一种利用秸秆制备2,5‑呋喃二甲酸的方法,该方法将铬‑锰负载USY分子筛整体式催化剂、秸秆与由二甲基亚砜和水组成的混合溶剂混合,加热进行催化反应,得到2,5‑呋喃二甲酸,其中铬‑锰负载USY分子筛整体式催化剂是以USY分子筛为载体,负载有铬元素和锰元素,铬元素和锰元素以金属氧化物的形态存在。本发明的铬‑锰负载USY分子筛整体式催化剂具有催化效率高、产率高、稳定性强、回收效率高、原料成本低、能耗低等优点,用于生成2,5‑呋喃二甲酸,其产率可达到67%,适于大规模的批量生产,有很好的市场前景。
The invention discloses a method for preparing 2,5-furandicarboxylic acid by using straws. In the method, chromium-manganese-loaded USY molecular sieve monolithic catalysts, straws, and a mixed solvent composed of dimethyl sulfoxide and water are mixed, and heated. Catalyzed reaction to obtain 2,5-furandicarboxylic acid, wherein the chromium-manganese-supported USY molecular sieve monolithic catalyst is supported by USY molecular sieve, loaded with chromium and manganese elements, and the chromium and manganese elements exist in the form of metal oxides. The chromium-manganese-loaded USY molecular sieve monolithic catalyst of the present invention has the advantages of high catalytic efficiency, high yield, strong stability, high recovery efficiency, low raw material cost, and low energy consumption, and is used to generate 2,5-furandicarboxylic acid. Its yield can reach 67%, is suitable for large-scale batch production, and has very good market prospect.
Description
技术领域technical field
本发明属于化学技术和农业废物资源化领域,涉及生物精炼领域,具体涉及一种利用秸秆制备2,5-呋喃二甲酸的方法。The invention belongs to the fields of chemical technology and agricultural waste recycling, and relates to the field of biorefining, in particular to a method for preparing 2,5-furandicarboxylic acid from straw.
背景技术Background technique
随着工业的快速发展,化石燃料等能源的日益枯竭使人类开始寻求新的可持续能源,而将生物质制备成高价值的平台化合物是实现生物质资源有效利用的重要途径之一。2,5-呋喃二甲酸作为重要的呋喃化合物,被美国能源部列为十二种最具代表性的生物基平台化合物之一,同时也被认为是石油衍生物对苯二甲酸最合适的替代品。2,5-呋喃二甲酸具有与对苯二甲酸相似的结构,可以替代对苯二甲酸作为广泛使用的聚对苯二甲酸乙二醇酯的原料,从而减少对化石燃料的依赖。然而,现阶段对于2,5-呋喃二甲酸合成的研究,大多基于5-羟甲基糠醛、果糖、葡萄糖等,技术发展路线十分有限。其中,由5-羟甲基糠醛氧(HMF)合成2,5-呋喃二甲酸是最重要的技术路线,通常由精制的5-羟甲基糠醛氧(HMF)氧化合成得到,或通过5-羟甲基糠醛氧(HMF)经己糖脱水得到。然而,基于精制产品的生产路线的成本较高,难以大范围推广应用。因此,以木质纤维素生物质为基底,探究直接生产高价值的2,5-呋喃二甲酸是一个崭新的方向。With the rapid development of industry and the depletion of fossil fuels and other energy sources, human beings began to seek new sustainable energy sources, and the preparation of biomass into high-value platform compounds is one of the important ways to realize the effective utilization of biomass resources. As an important furan compound, 2,5-furandicarboxylic acid is listed as one of the twelve most representative bio-based platform compounds by the US Department of Energy, and is also considered to be the most suitable substitute for petroleum derivative terephthalic acid Taste. 2,5-furandicarboxylic acid has a similar structure to terephthalic acid and can replace terephthalic acid as a raw material for widely used polyethylene terephthalate, thereby reducing dependence on fossil fuels. However, most of the current research on the synthesis of 2,5-furandicarboxylic acid is based on 5-hydroxymethylfurfural, fructose, glucose, etc., and the technical development route is very limited. Among them, the synthesis of 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural oxygen (HMF) is the most important technical route, which is usually synthesized by oxidation of refined 5-hydroxymethylfurfural oxygen (HMF), or through 5- Hydroxymethylfurfural (HMF) is obtained by dehydration of hexose. However, the cost of the production route based on refined products is high, and it is difficult to promote and apply it on a large scale. Therefore, it is a new direction to explore the direct production of high-value 2,5-furandicarboxylic acid based on lignocellulosic biomass.
目前,通过生物质制备增值化学品的研究已经引起了人们的重视,但木质纤维素类生物质的结构复杂,目标产物的转化率非常低,且关于利用生物质生产2,5-呋喃二甲酸的研究较少。因而,如何通过生物质直接制备高价值的2,5-呋喃二甲酸化学品,对于提高生物质的利用率具有十分重要的意义。At present, the research on the production of value-added chemicals by biomass has attracted people's attention, but the structure of lignocellulosic biomass is complex, and the conversion rate of target products is very low, and the production of 2,5-furandicarboxylic acid from biomass less research. Therefore, how to directly prepare high-value 2,5-furandicarboxylic acid chemicals from biomass is of great significance for improving the utilization rate of biomass.
发明内容Contents of the invention
本发明要解决的技术问题是克服现有技术的不足,提供一种催化效率高、产率高、稳定性强、回收效率高、原料成本低且能耗低的利用秸秆制备2,5-呋喃二甲酸的方法。The technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a method for preparing 2,5-furan from straw with high catalytic efficiency, high yield, strong stability, high recovery efficiency, low raw material cost and low energy consumption. Diformic acid method.
为解决上述技术问题,本发明采用以下技术方案。In order to solve the above technical problems, the present invention adopts the following technical solutions.
一种利用秸秆制备2,5-呋喃二甲酸的方法,包括以下步骤:将铬-锰负载USY分子筛整体式催化剂、秸秆与混合溶剂混合,加热至120℃~240℃进行生物质催化反应,得到2,5-呋喃二甲酸;所述铬-锰负载USY分子筛整体式催化剂以USY分子筛为载体,在所述USY分子筛上负载有铬元素和锰元素,所述铬元素与锰元素以金属氧化物的形态存在,所述混合溶剂由二甲基亚砜和水组成。A method for preparing 2,5-furandicarboxylic acid from straw, comprising the following steps: mixing chromium-manganese-loaded USY molecular sieve monolithic catalyst, straw and a mixed solvent, heating to 120°C-240°C for biomass catalytic reaction, and obtaining 2,5-furandicarboxylic acid; the chromium-manganese loaded USY molecular sieve monolithic catalyst is supported by USY molecular sieve, and chromium and manganese are loaded on the USY molecular sieve, and the chromium and manganese are metal oxides The form exists, and the mixed solvent is composed of dimethyl sulfoxide and water.
上述的利用秸秆制备2,5-呋喃二甲酸的方法,优选的,所述铬-锰负载USY分子筛整体式催化剂、秸秆与混合溶剂的比例为0.3g~1.1g∶0.5g~2g∶50mL,所述混合溶剂中二甲基亚砜与水的体积比为1∶1。In the above-mentioned method for preparing 2,5-furandicarboxylic acid using straw, preferably, the ratio of the chromium-manganese-loaded USY molecular sieve monolithic catalyst, straw and mixed solvent is 0.3g-1.1g:0.5g-2g:50mL, The volume ratio of dimethyl sulfoxide to water in the mixed solvent is 1:1.
上述的利用秸秆制备2,5-呋喃二甲酸的方法,优选的,所述秸秆为水稻秸秆。In the above-mentioned method for preparing 2,5-furandicarboxylic acid using straw, preferably, the straw is rice straw.
上述的利用秸秆制备2,5-呋喃二甲酸的方法,优选的,所述加热前进行超声处理,所述超声处理的时间为30min~60min,所述生物质催化反应的时间为4h~6h。In the above-mentioned method for preparing 2,5-furandicarboxylic acid from straw, preferably, ultrasonic treatment is performed before the heating, the time of the ultrasonic treatment is 30 minutes to 60 minutes, and the time of the catalytic reaction of biomass is 4 hours to 6 hours.
上述的利用秸秆制备2,5-呋喃二甲酸的方法,优选的,所述铬元素的负载量为铬-锰负载USY分子筛整体式催化剂质量的3%~9%,所述锰元素的负载量为铬-锰负载USY分子筛整体式催化剂质量的3%~9%。In the above-mentioned method for preparing 2,5-furandicarboxylic acid using straw, preferably, the loading of the chromium element is 3% to 9% of the mass of the chromium-manganese loaded USY molecular sieve monolithic catalyst, and the loading of the manganese element is It is 3%-9% of the mass of the chromium-manganese supported USY molecular sieve monolithic catalyst.
上述的利用秸秆制备2,5-呋喃二甲酸的方法,优选的,所述铬-锰负载USY分子筛整体式催化剂的制备方法包括以下步骤:The above-mentioned method for preparing 2,5-furandicarboxylic acid by utilizing straw, preferably, the preparation method of the chromium-manganese supported USY molecular sieve monolithic catalyst comprises the following steps:
(1)将硝酸锰溶液、九水·硝酸铬和硅溶胶溶液溶于水中并搅拌,得到混合溶液;(1) Manganese nitrate solution, nonaqueous chromium nitrate and silica sol solution are dissolved in water and stirred to obtain a mixed solution;
(2)将USY分子筛材料加入到上述的混合溶液中,经超声处理、浸渍、干燥后,于300℃~500℃进行煅烧,得到铬-锰负载USY分子筛整体式催化剂。(2) Add the USY molecular sieve material into the above mixed solution, after ultrasonic treatment, impregnation and drying, and then calcining at 300° C. to 500° C. to obtain a chromium-manganese supported USY molecular sieve monolithic catalyst.
上述的利用秸秆制备2,5-呋喃二甲酸的方法,优选的,所述硝酸锰溶液、九水·硝酸铬、硅溶胶溶液、水、USY分子筛材料的比例为0.52mL~6.18mL∶1.16g~3.46g∶1mL∶100mL∶5g,所述硝酸锰溶液的质量分数为50%,所述硅溶胶溶液中SiO2的质量分数为29%~31%。更优选的,九水·硝酸铬中的铬元素与硝酸锰溶液中的锰元素的摩尔比取1∶1、1∶2或2∶1。In the above-mentioned method for preparing 2,5-furandicarboxylic acid using straw, preferably, the ratio of the manganese nitrate solution, nonaqueous chromium nitrate, silica sol solution, water, and USY molecular sieve material is 0.52mL~6.18mL: 1.16g ~3.46g: 1mL: 100mL: 5g, the mass fraction of the manganese nitrate solution is 50%, and the mass fraction of SiO2 in the silica sol solution is 29% to 31%. More preferably, the molar ratio of the chromium element in the nonahydrate·chromium nitrate to the manganese element in the manganese nitrate solution is 1:1, 1:2 or 2:1.
上述的利用秸秆制备2,5-呋喃二甲酸的方法,优选的,步骤(2)中,所述超声处理的时间为10min~30min,所述浸渍的温度为80℃~100℃,所述浸渍的时间为5h~7h,所述干燥的温度为100℃~105℃,所述干燥的时间为1h~2h。In the above-mentioned method for preparing 2,5-furandicarboxylic acid by using straw, preferably, in step (2), the time of the ultrasonic treatment is 10 min to 30 min, the temperature of the impregnation is 80°C to 100°C, and the impregnation The drying time is 5h-7h, the drying temperature is 100°C-105°C, and the drying time is 1h-2h.
上述的利用秸秆制备2,5-呋喃二甲酸的方法,优选的,步骤(2)中,所述煅烧的时间为3h~5h。In the above-mentioned method for preparing 2,5-furandicarboxylic acid from straw, preferably, in step (2), the calcination time is 3 hours to 5 hours.
与现有技术相比,本发明的优点在于:Compared with the prior art, the present invention has the advantages of:
(1)本发明提供了一种利用秸秆制备2,5-呋喃二甲酸的方法,实现了直接从农林废弃物秸秆中催化生产2,5-呋喃二甲酸的目的,避免了高成本原材料的使用。本发明中,铬-锰负载USY分子筛整体式催化剂以USY分子筛为载体,USY分子筛上负载有铬元素和锰元素;其中,USY分子筛作为一种良好的固体酸载体,能够与Cr、Mn金属元素有效的结合,经过浸渍、煅烧后Cr、Mn金属元素在催化剂表面以金属氧化物形态存在,使得催化剂表面拥有良好的氧迁移率,能够更好的实现从“秸秆→己糖→5-羟甲基糠醛→2,5-呋喃二甲酸”的转化,同时也提高了秸秆催化产生2,5-呋喃二甲酸过程中各级反应的速率。也就是说,铬-锰负载USY分子筛整体式催化剂中铬-锰双金属的负载可实现将秸秆直接催化生成高价值的2,5-呋喃二甲酸。相比于现有的2,5-呋喃二甲酸的合成方法,本发明的利用秸秆制备2,5-呋喃二甲酸的方法具有原料成本低、操作简单、能耗低、耗时短、产率高等优点,适于大规模的批量生产,有很好的市场前景。(1) The present invention provides a method for preparing 2,5-furandicarboxylic acid from straw, which realizes the purpose of catalytically producing 2,5-furandicarboxylic acid directly from agricultural and forestry waste straw, and avoids the use of high-cost raw materials . In the present invention, the chromium-manganese loaded USY molecular sieve monolith catalyst uses USY molecular sieve as a carrier, and the USY molecular sieve is loaded with chromium and manganese elements; wherein, as a good solid acid carrier, USY molecular sieve can be combined with Cr and Mn metal elements Effective combination, after impregnation and calcination, Cr and Mn metal elements exist in the form of metal oxides on the surface of the catalyst, so that the catalyst surface has good oxygen mobility, and can better realize the transformation from "straw → hexose → 5-hydroxymethyl The conversion of furfural → 2,5-furandicarboxylic acid” was also improved, and the rate of each stage of the reaction in the process of straw catalyzed production of 2,5-furandicarboxylic acid was also improved. That is to say, the chromium-manganese bimetallic loading in the chromium-manganese supported USY molecular sieve monolithic catalyst can directly catalyze the production of high-value 2,5-furandicarboxylic acid from straw. Compared with the existing synthesis method of 2,5-furandicarboxylic acid, the method for preparing 2,5-furandicarboxylic acid by using straw of the present invention has the advantages of low raw material cost, simple operation, low energy consumption, short time consumption and high yield It has high advantages, is suitable for large-scale mass production, and has a good market prospect.
(2)本发明方法中,采用的铬-锰负载USY分子筛整体式催化剂,其整体式催化剂的设计增大了材料接触面积,具有催化效率高、稳定性强、回收效率高等优点。(2) In the method of the present invention, the chromium-manganese loaded USY molecular sieve monolithic catalyst adopted, the design of its monolithic catalyst increases the material contact area, and has the advantages of high catalytic efficiency, strong stability, and high recovery efficiency.
附图说明Description of drawings
图1为本发明实施例1中制得的铬-锰负载USY分子筛整体式催化剂的Cr元素的价态分析图(XPS图)。Fig. 1 is the valence state analysis diagram (XPS diagram) of Cr element of the chromium-manganese supported USY molecular sieve monolithic catalyst prepared in Example 1 of the present invention.
图2为本发明实施例1中制得的铬-锰负载USY分子筛整体式催化剂的Mn元素的价态分析图(XPS图)。Fig. 2 is the valence analysis diagram (XPS diagram) of the Mn element of the chromium-manganese supported USY molecular sieve monolithic catalyst prepared in Example 1 of the present invention.
图3为本发明实施例1中制得的铬-锰负载USY分子筛整体式催化剂的XRD图。Fig. 3 is an XRD pattern of the chromium-manganese supported USY molecular sieve monolithic catalyst prepared in Example 1 of the present invention.
图4为本发明实施例2中不同催化剂投加量对2,5-呋喃二甲酸产率的影响变化图。Fig. 4 is a graph showing the influence of different catalyst dosages on the yield of 2,5-furandicarboxylic acid in Example 2 of the present invention.
图5为本发明实施例2中不同秸秆投加量对2,5-呋喃二甲酸产率的影响变化图。Fig. 5 is a diagram showing the effect of different straw dosages on the yield of 2,5-furandicarboxylic acid in Example 2 of the present invention.
图6为本发明实施例2中不同催化反应温度对2,5-呋喃二甲酸产率的影响变化图。Fig. 6 is a graph showing the influence of different catalytic reaction temperatures on the yield of 2,5-furandicarboxylic acid in Example 2 of the present invention.
图7为本发明实施例3中铬-锰负载USY分子筛整体式催化剂循环利用催化水稻秸杆生成2,5-呋喃二甲酸的产率变化图。Fig. 7 is a graph showing the change in yield of 2,5-furandicarboxylic acid from rice straw catalyzed by the chromium-manganese-supported USY molecular sieve monolithic catalyst in Example 3 of the present invention for recycling.
具体实施方式Detailed ways
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。以下实施例中所采用的材料和仪器均为市售。The present invention will be further described below in conjunction with the accompanying drawings and specific preferred embodiments, but the protection scope of the present invention is not limited thereby. All materials and instruments used in the following examples are commercially available.
实施例1:Example 1:
一种本发明的利用秸秆制备2,5-呋喃二甲酸的方法,具体为利用铬-锰负载USY分子筛整体式催化剂催化秸秆直接生成2,5-呋喃二甲酸,包括以下步骤:A method of the present invention for preparing 2,5-furandicarboxylic acid from straw, specifically using chromium-manganese-loaded USY molecular sieve monolithic catalyst to catalyze straw to directly generate 2,5-furandicarboxylic acid, comprising the following steps:
将0.7g铬-锰负载USY分子筛整体式催化剂与1g水稻秸秆混合,倒入50mL二甲基亚砜和水组成的混合溶剂介质中,混合溶剂中二甲基亚砜与水的体积比为1:1,超声预处理30min,加热至180℃下催化反应5h,反应完成后,通过循环真空泵进行固液分离,得到2,5-呋喃二甲酸。检测固液分离得到的溶液中2,5-呋喃二甲酸的浓度,结果表明2,5-呋喃二甲酸的产率为67%。Mix 0.7g of chromium-manganese loaded USY molecular sieve monolithic catalyst with 1g of rice straw and pour it into a mixed solvent medium composed of 50mL dimethyl sulfoxide and water. The volume ratio of dimethyl sulfoxide to water in the mixed solvent is 1 : 1, ultrasonic pretreatment for 30min, heating to 180°C for catalytic reaction for 5h, after the reaction was completed, solid-liquid separation was carried out by a circulating vacuum pump to obtain 2,5-furandicarboxylic acid. The concentration of 2,5-furandicarboxylic acid in the solution obtained by solid-liquid separation was detected, and the result showed that the yield of 2,5-furandicarboxylic acid was 67%.
本实施例中,采用的铬-锰负载USY分子筛整体式催化剂以USY分子筛为载体,在USY分子筛上负载有铬元素和锰元素,铬元素与锰元素以金属氧化物的形态存在,即Cr2O3、CrO3、MnO2、Mn2O3、Mn3O4,其中,铬元素和锰元素的负载量分别为铬-锰负载USY分子筛整体式催化剂总质量的6%。In this example, the chromium-manganese supported USY molecular sieve monolithic catalyst used USY molecular sieve as a carrier, chromium and manganese elements are loaded on the USY molecular sieve, and the chromium and manganese elements exist in the form of metal oxides, that is, Cr 2 O 3 , CrO 3 , MnO 2 , Mn 2 O 3 , Mn 3 O 4 , wherein the loaded amounts of chromium and manganese are respectively 6% of the total mass of the chromium-manganese loaded USY molecular sieve monolithic catalyst.
本实施例中,采用的铬-锰负载USY分子筛整体式催化剂的制备方法包括以下步骤:In this example, the preparation method of the chromium-manganese supported USY molecular sieve monolithic catalyst comprises the following steps:
(1)将2.31g九水·硝酸铬、2.06mL硝酸锰溶液、1mL硅溶胶溶液置于烧杯中,硝酸锰溶液的质量分数为50%,硅溶胶溶液中SiO2的质量分数为29%~31%,加入100mL超纯水,完全溶解形成铬锰混合溶液;(1) 2.31g nonaqueous chromium nitrate, 2.06mL manganese nitrate solution, and 1mL silica sol solution are placed in a beaker, the mass fraction of manganese nitrate solution is 50%, and SiO in the silica sol solution The mass fraction is 29%~ 31%, add 100mL ultrapure water, completely dissolve to form a mixed solution of chromium and manganese;
(2)将5g USY分子筛加入到铬锰混合溶液中,在搅拌状态下超声处理20min,再于80℃下加热浸渍6h,浸渍完成后放入烘箱中于105℃干燥1h,得到混合物。将该混合物置于马弗炉中于400℃煅烧4h,得到铬-锰负载USY分子筛整体式催化剂。(2) Add 5g of USY molecular sieve into the chromium-manganese mixed solution, ultrasonically treat it for 20min while stirring, then heat and impregnate at 80°C for 6h, and put it in an oven to dry at 105°C for 1h after impregnation to obtain the mixture. The mixture was calcined in a muffle furnace at 400° C. for 4 h to obtain a chromium-manganese supported USY molecular sieve monolithic catalyst.
图1和图2分别为本实施例1制得的铬-锰负载USY分子筛整体式催化剂中Cr和Mn的XPS图。从图中可看出,Cr以+3、+6价存在,Mn以+2、+3、+4价存在,这侧面反映了催化剂表面良好的氧化还原性。Figure 1 and Figure 2 are the XPS diagrams of Cr and Mn in the chromium-manganese supported USY molecular sieve monolithic catalyst prepared in Example 1, respectively. It can be seen from the figure that Cr exists in +3 and +6 valences, and Mn exists in +2, +3 and +4 valences, which reflects the good oxidation-reduction properties of the catalyst surface.
图3为本实施例1中制得的铬-锰负载USY分子筛整体式催化剂的XRD图。从图中可看出,Cr、Mn金属元素通过煅烧处理后在催化剂表面以氧化物形态存在,这能够提高秸秆催化产生2,5-呋喃二甲酸过程中各级反应的速率。Figure 3 is the XRD pattern of the chromium-manganese supported USY molecular sieve monolithic catalyst prepared in Example 1. It can be seen from the figure that Cr and Mn metal elements exist in the form of oxides on the surface of the catalyst after calcination, which can increase the reaction rate of all stages in the process of straw catalysis to produce 2,5-furandicarboxylic acid.
实施例2:Example 2:
考察不同反应参数对2,5-呋喃二甲酸产率的影响,具体为采用实施例1制得的铬-锰负载USY分子筛整体式催化剂催化秸秆生成2,5-呋喃二甲酸。The influence of different reaction parameters on the yield of 2,5-furandicarboxylic acid was investigated, specifically, the chromium-manganese supported USY molecular sieve monolithic catalyst prepared in Example 1 was used to catalyze straw to generate 2,5-furandicarboxylic acid.
(1)不同催化剂投加量(1) Different catalyst dosage
分别将0.3g、0.5g、0.7g、0.9g、1.1g铬-锰负载USY分子筛整体式催化剂与1g水稻秸秆混合,倒入50mL二甲基亚砜和水组成的混合溶剂介质中,混合溶剂中二甲基亚砜与水的体积比为1:1,超声预处理30min,加热,在反应温度180℃下催化反应5h,反应完成后通过循环真空泵进行固液分离,检测固液分离得到的溶液中2,5-呋喃二甲酸的浓度。Mix 0.3g, 0.5g, 0.7g, 0.9g, 1.1g of chromium-manganese supported USY molecular sieve monolithic catalyst with 1g of rice straw, and pour it into a mixed solvent medium composed of 50mL dimethyl sulfoxide and water. The volume ratio of dimethyl sulfoxide to water in the medium is 1:1, ultrasonic pretreatment for 30 minutes, heating, catalytic reaction at a reaction temperature of 180 ° C for 5 hours, after the reaction is completed, the solid-liquid separation is carried out by a circulating vacuum pump, and the solid-liquid separation is detected. Concentration of 2,5-furandicarboxylic acid in solution.
(2)不同秸秆投加量(2) Different dosage of straw
分别将0.7g铬-锰负载USY分子筛整体式催化剂分别与0.5g、1g、1.5g、2g水稻秸秆混合,倒入50mL二甲基亚砜和水组成的混合溶剂介质中,混合溶剂中二甲基亚砜与水的体积比为1:1,超声预处理30min,加热,在反应温度180℃下催化反应5h,反应完成后通过循环真空泵进行固液分离,得到2,5-呋喃二甲酸,检测固液分离得到的溶液中2,5-呋喃二甲酸的浓度。Mix 0.7g of chromium-manganese supported USY molecular sieve monolithic catalyst with 0.5g, 1g, 1.5g, 2g of rice straw respectively, and pour it into a mixed solvent medium composed of 50mL dimethyl sulfoxide and water. The volume ratio of sulfoxide to water is 1:1, ultrasonic pretreatment for 30min, heating, catalytic reaction at a reaction temperature of 180°C for 5h, after the reaction is completed, the solid-liquid separation is carried out by a circulating vacuum pump to obtain 2,5-furandicarboxylic acid, The concentration of 2,5-furandicarboxylic acid in the solution obtained by solid-liquid separation was detected.
(3)不同催化反应温度(3) Different catalytic reaction temperature
将0.7g铬-锰负载USY分子筛整体式催化剂与1g水稻秸秆混合,倒入50mL二甲基亚砜和水组成的混合溶剂介质中,混合溶剂中二甲基亚砜与水的体积比为1:1,超声预处理30min,加热,分别在反应温度120℃、150℃、180℃、210℃、240℃下,催化反应5h,反应完成后通过循环真空泵进行固液分离,得到2,5-呋喃二甲酸,检测固液分离得到的溶液中2,5-呋喃二甲酸的浓度。Mix 0.7g of chromium-manganese loaded USY molecular sieve monolithic catalyst with 1g of rice straw and pour it into a mixed solvent medium composed of 50mL dimethyl sulfoxide and water. The volume ratio of dimethyl sulfoxide to water in the mixed solvent is 1 : 1, ultrasonic pretreatment for 30min, heating, respectively at reaction temperatures of 120°C, 150°C, 180°C, 210°C, and 240°C, catalytic reaction for 5h, after the reaction was completed, solid-liquid separation was carried out by a circulating vacuum pump to obtain 2,5- Furandicarboxylic acid, detect the concentration of 2,5-furandicarboxylic acid in the solution obtained by solid-liquid separation.
图4至图6为本实施例2中不同反应参数对2,5-呋喃二甲酸产率的影响变化图,其中,图4为不同催化剂投加量对产率的影响,图5为不同秸秆投加量对产率的影响,图6为不同催化反应温度对产率的影响。从图中可看出,本发明中在催化剂投加量0.7g、秸秆投加量1g、反应温度180℃、反应时间5h的条件下,2,5-呋喃二甲酸的产率可达到67%。Fig. 4 to Fig. 6 are the impact changes of different reaction parameters on the yield of 2,5-furandicarboxylic acid in Example 2, wherein, Fig. 4 is the effect of different catalyst dosage on the yield, and Fig. 5 is the effect of different straw The influence of dosage on yield, Figure 6 shows the influence of different catalytic reaction temperature on yield. It can be seen from the figure that the yield of 2,5-furandicarboxylic acid in the present invention can reach 67% under the conditions of catalyst dosage 0.7g, straw dosage 1g, reaction temperature 180°C, and reaction time 5h. .
实施例3:Example 3:
考察铬-锰负载USY分子筛整体式催化剂在催化生成2,5-呋喃二甲酸过程中的重复利用性。将实施例1中反应后的整体式催化剂通过纯水简单冲洗,干燥后用于下一次催化反应,制备步骤与实施例1相同,即反应参数为催化剂投加量0.7g、秸秆投加量1g、反应温度180℃、反应时间5h。反应完成后,再进入下一次循环。The reusability of chromium-manganese supported USY molecular sieve monolithic catalyst in the process of catalytic production of 2,5-furandicarboxylic acid was investigated. The monolithic catalyst after the reaction in Example 1 was simply rinsed with pure water, dried and used for the next catalytic reaction. The preparation steps were the same as in Example 1, that is, the reaction parameters were catalyst dosage 0.7g and straw dosage 1g , Reaction temperature 180°C, reaction time 5h. After the reaction is completed, enter the next cycle.
图7为本实施例3中铬-锰负载USY分子筛整体式催化剂循环利用催化水稻秸秆生成2,5-呋喃二甲酸的产率变化图。从图中可看出,本发明的铬-锰负载USY分子筛整体式催化剂的循环利用性良好,在6次循环使用中,催化效果基本保持不变,这说明该催化剂是一种稳定性好、高效的新型催化材料,具有广阔的应用前景。Fig. 7 is a graph showing the change in yield of 2,5-furandicarboxylic acid generated from rice straw catalyzed by the chromium-manganese-supported USY molecular sieve monolith catalyst in Example 3 for recycling. As can be seen from the figure, the recyclability of the chromium-manganese supported USY molecular sieve monolithic catalyst of the present invention is good, and in 6 cycles of use, the catalytic effect remains basically unchanged, which shows that the catalyst is a kind of good stability, High-efficiency new catalytic materials have broad application prospects.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。The above descriptions are only preferred embodiments of the present invention, and do not limit the present invention in any form. Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person familiar with the art, without departing from the spirit and technical solutions of the present invention, can use the methods and technical content disclosed above to make many possible changes and modifications to the technical solutions of the present invention, or modify them to be equivalent Variations of equivalent embodiments. Therefore, any simple modifications, equivalent replacements, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention, which do not deviate from the technical solutions of the present invention, still fall within the protection scope of the technical solutions of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111014207.0A CN113582952B (en) | 2021-08-31 | 2021-08-31 | Method for preparing 2,5-furandicarboxylic acid from straw |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111014207.0A CN113582952B (en) | 2021-08-31 | 2021-08-31 | Method for preparing 2,5-furandicarboxylic acid from straw |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113582952A CN113582952A (en) | 2021-11-02 |
CN113582952B true CN113582952B (en) | 2023-08-01 |
Family
ID=78240596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111014207.0A Active CN113582952B (en) | 2021-08-31 | 2021-08-31 | Method for preparing 2,5-furandicarboxylic acid from straw |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113582952B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105418561A (en) * | 2015-12-07 | 2016-03-23 | 南京工业大学 | Method for preparing 2, 5-furandicarboxylic acid by catalyzing fructose through supported bifunctional catalyst |
WO2016053186A1 (en) * | 2014-09-30 | 2016-04-07 | Agency For Science, Technology And Research | Triphasic system for direct conversion of sugars to furandicarboxylic acid |
CN107739354A (en) * | 2017-10-09 | 2018-02-27 | 中国科学院过程工程研究所 | The method that one pot of one-step method is prepared 2,5 furandicarboxylic acids by fructose |
CN108484545A (en) * | 2018-04-24 | 2018-09-04 | 浙江大学 | A kind of method and system of continuous synthesis furandicarboxylic acid |
CN109574962A (en) * | 2018-12-06 | 2019-04-05 | 中国科学技术大学 | The method that one kind preparing 2,5 furandicarboxylic acids by sugar |
CN111606875A (en) * | 2020-06-15 | 2020-09-01 | 莆田达凯新材料有限公司 | Method for preparing furandicarboxylic acid monomer from bamboo biomass |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8772515B2 (en) * | 2012-10-11 | 2014-07-08 | Wisconsin Alumni Research Foundation | Method to convert biomass to 5-(hydroxymethyl)-furfural (HMF) and furfural using lactones, furans, and pyrans as solvents |
-
2021
- 2021-08-31 CN CN202111014207.0A patent/CN113582952B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016053186A1 (en) * | 2014-09-30 | 2016-04-07 | Agency For Science, Technology And Research | Triphasic system for direct conversion of sugars to furandicarboxylic acid |
CN105418561A (en) * | 2015-12-07 | 2016-03-23 | 南京工业大学 | Method for preparing 2, 5-furandicarboxylic acid by catalyzing fructose through supported bifunctional catalyst |
CN107739354A (en) * | 2017-10-09 | 2018-02-27 | 中国科学院过程工程研究所 | The method that one pot of one-step method is prepared 2,5 furandicarboxylic acids by fructose |
CN108484545A (en) * | 2018-04-24 | 2018-09-04 | 浙江大学 | A kind of method and system of continuous synthesis furandicarboxylic acid |
CN109574962A (en) * | 2018-12-06 | 2019-04-05 | 中国科学技术大学 | The method that one kind preparing 2,5 furandicarboxylic acids by sugar |
CN111606875A (en) * | 2020-06-15 | 2020-09-01 | 莆田达凯新材料有限公司 | Method for preparing furandicarboxylic acid monomer from bamboo biomass |
Non-Patent Citations (3)
Title |
---|
Cr-Mn bimetallic functionalized USY zeolite monolithic catalyst for direct production of 2, 5-Furandicarboxylic acid from raw biomass;Youzheng Chai等;Chemical Engineering Journal;第429卷;132173(1-10) * |
Direct production of 2, 5-Furandicarboxylicacid from raw biomass by manganese dioxide catalysis cooperated with ultrasonic-assisted diluted acid pretreatment;Youzheng Chai等;Bioresource Technology;第337卷;125421(1-10) * |
生物质碳水化合物催化转化制 2,5-呋喃二甲酸的研究进展;刘贤响 等;石油化工;第45卷(第7期);872-879 * |
Also Published As
Publication number | Publication date |
---|---|
CN113582952A (en) | 2021-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111377890B (en) | Method for producing 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural | |
Chai et al. | Cr-Mn bimetallic functionalized USY zeolite monolithic catalyst for direct production of 2, 5-Furandicarboxylic acid from raw biomass | |
CN107573516B (en) | A kind of preparation method of vanadium modified metal organic framework material | |
CN109701547B (en) | A kind of preparation method and product of manganese-cerium catalyst with high methane catalytic activity | |
CN110508274A (en) | Modified biochar low temperature denitrification catalyst and its application | |
CN109174094A (en) | A kind of preparation method and application of Rutile Type solid-solution material | |
CN107308944A (en) | A kind of TiO 2-based catalyst and its preparation method and application | |
CN115007182B (en) | Preparation method of potassium-oxygen co-doped graphite-phase carbon nitride photocatalyst | |
CN113385165A (en) | Yttria composite metal oxide catalyst and preparation method and application thereof | |
CN114570389B (en) | Sulfonic carbon catalyst and preparation method and application thereof | |
CN113582952B (en) | Method for preparing 2,5-furandicarboxylic acid from straw | |
CN108097239A (en) | A kind of new coal tar carbon dioxide gasification catalyst and preparation method thereof | |
CN114904587B (en) | Preparation method of cesium modified phosphotungstic acid@UiO-66/porous carbon-based composite material | |
CN109867641A (en) | Utilize the method for Ce-Mo composite oxide catalytic fructose preparation 2,5-furandaldehyde | |
CN115770616B (en) | CTAB-MoSxCdS composite photocatalyst, and preparation method and application thereof | |
CN110437189B (en) | Preparation method of 5-formyl-2-furancarboxylic acid | |
CN111229322A (en) | BiOCl/C3N4/UiO-66 ternary composite photocatalytic material | |
CN110152722A (en) | A method of utilizing polyvinylpyrrolidone to assist in the synthesis of zeolite molecular sieve supported composite catalysts | |
CN113926459B (en) | Magnetic carbon-based catalyst and method for preparing biodiesel by using same | |
CN108126731B (en) | A kind of solid acid catalyst for biomass hydrolysis to prepare levulinic acid | |
CN110560131A (en) | Method for dehydrogenating ammonia borane by visible light catalysis of CoPt nanosheet catalyst | |
CN110586194A (en) | Preparation method and application of metal-organic framework material loaded polyacid site ionic liquid catalyst | |
CN103962142B (en) | Nucleocapsid perovskite type catalyst preparation method for methane methyl alcohol | |
CN106378161B (en) | Dimethyl ether is for the carbon containing porous material catalyst and preparation method of polymethoxy dimethyl ether and application | |
CN115466978A (en) | Catalyst with high electrocatalytic oxidation activity and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |