CN113577288A - Mst4相关物质在制备治疗脑出血后神经炎症反应的药物中的应用 - Google Patents

Mst4相关物质在制备治疗脑出血后神经炎症反应的药物中的应用 Download PDF

Info

Publication number
CN113577288A
CN113577288A CN202111080992.XA CN202111080992A CN113577288A CN 113577288 A CN113577288 A CN 113577288A CN 202111080992 A CN202111080992 A CN 202111080992A CN 113577288 A CN113577288 A CN 113577288A
Authority
CN
China
Prior art keywords
mst4
expression
nlrp3
preparing
nlrp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111080992.XA
Other languages
English (en)
Inventor
徐阳
吴晓东
黄四妹
胡文杰
储照虎
赵守财
马领松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yijishan Hospital of Wannan Medical College
First Affiliated Hospital of Wannan Medical College
Original Assignee
First Affiliated Hospital of Wannan Medical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Affiliated Hospital of Wannan Medical College filed Critical First Affiliated Hospital of Wannan Medical College
Priority to CN202111080992.XA priority Critical patent/CN113577288A/zh
Publication of CN113577288A publication Critical patent/CN113577288A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/454Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/64Sulfonylureas, e.g. glibenclamide, tolbutamide, chlorpropamide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了MST4相关物质作为如下(a)和/或(b)和/或(c)和/或(d)和/或(e)和/或(f)和/或(g)的应用,(a)制备促进MST4和NLRP3的表达的物质;(b)制备抑制MST4表达的物质;(c)制备抑制NLRP3的表达的物质;(d)制备抑制MST4表达,而促进NLRP3表达的物质;(e)制备抑制IL‑1β和TNF‑α的释放的物质;(f)制备预防和/或治疗神经功能缺损、脑水肿的物质;(g)制备预防和/或治疗脑出血后神经炎症反应的物质。本发明的试验证明:MCC950抑制MST4与NLRP3相互作用抑制脑出血后神经炎症反应;与sham组相比,ICH后内源性MST4和NLRP3的表达增加,MST4和NLRP3分别共定位于小胶质细胞中;MCC950显着减轻神经功能缺损、脑水肿,而对MST4蛋白的表达没有影响。

Description

MST4相关物质在制备治疗脑出血后神经炎症反应的药物中的 应用
技术领域
本发明涉及MST4相关物质在制备治疗脑出血后神经炎症反应的药物中的应用。
背景技术
脑出血(ICH)是一种严重的中风,占10%-15%,伴有严重的神经功能障碍。原发性脑损伤是由ICH后的血肿引起的。炎症级联加速血肿并导致细胞死亡。ICH后小胶质细胞被迅速激活,然后释放促炎因子和趋化因子引起继发性脑损伤。越来越多的证据表明,神经炎症在ICH后继发性脑损伤的病理机制中起着至关重要的作用。
哺乳动物丝氨酸/苏氨酸蛋白激酶4(mammalian Ste20-like kinase 4)MST4是炎症的负调节因子,MST4被归类为GCK亚科成员,属于MST激酶,在胸腺和大脑中大量表达。除了影响细胞迁移、分化和细胞增殖外,MST4还介导细胞生长和凋亡。MST4敲低小鼠在感染性休克后会增加炎症并降低存活率,这与MST4对TRAF6磷酸化的限制有关。hesperadin是一种选择性有效的MST4激酶抑制剂。目前尚无关于MST4是否参与ICH后免疫炎症的报道。
NLRP3炎症小体是炎症小体的典型代表,已被广泛研究。NLRP3炎症小体调节caspase-1的裂解并参与白细胞介素1β(IL-1β)的加工。研究证实ICH诱导的NLRP3炎症小体激活导致IL-1β的释放并促进中性粒细胞浸润,加重炎症,加重脑水肿。作为一种有效的NLRP3炎症小体抑制剂,MCC950可减轻ICH后的炎症和脑损伤。TRAF6对于通过TLR/IL-1R途径介导NLRP3是必不可少的。
综上所述,如何研发一种MST4相关物质在制备治疗脑出血后神经炎症反应的药物中应用,是亟待解决的技术问题。
发明内容
为此,本发明提供一种MST4相关物质在制备治疗脑出血后神经炎症反应的药物中的应用。
为了实现上述目的,本发明提供如下技术方案:
本发明提供MST4相关物质作为如下(a)和/或(b)和/或(c)和/或(d)和/或(e)和/或(f)和/或(g)的应用,
(a)制备促进MST4和NLRP3的表达的产品;
(b)制备抑制MST4表达的产品;
(c)制备抑制NLRP3的表达的产品;
(d)制备抑制MST4表达,而促进NLRP3表达的产品;
(e)制备抑制IL-1β和TNF-α的释放的产品;
(f)制备预防和/或治疗神经功能缺损、脑水肿的产品;
(g)制备预防和/或治疗脑出血后神经炎症反应的产品。
本发明的一个实施例中,所述MST4相关物质包括MST4的表达促进物,MST4的表达抑制物,MST4和NLRP3相互作用的促进物,MST4和NLRP3相互作用的抑制物。
本发明的一个实施例中,所述MST4的表达促进物为MST4 AAV。
本发明的一个实施例中,所述MST4的表达抑制物为Hesperadin。
本发明的一个实施例中,所述MST4和NLRP3相互作用的抑制物为Hesperadin或/和MCC950。
本发明的一个实施例中,所述Hesperadin的化学式如式(I)所示:
Figure BDA0003263978360000031
所述MCC950的化学式如式(II)所示:
Figure BDA0003263978360000032
本发明的一个实施例中,所述MST4和NLRP3相互作用的促进物为MST4AAV。
本发明还提供一种产品,其活性成分为MST4相关物质,所述产品的用途为如下(a)和/或(b)和/或(c)和/或(d)和/或(e)和/或(f)和/或(g):
(a)促进MST4和NLRP3的表达;
(b)抑制MST4表达;
(c)抑制NLRP3的表达;
(d)抑制MST4表达,而促进NLRP3表达;
(e)抑制IL-1β和TNF-α的释放;
(f)预防和/或治疗神经功能缺损、脑水肿;
(g)预防和/或治疗脑出血后神经炎症反应。
本发明的一个实施例中,所述MST4相关物质包括MST4的表达促进物,MST4的表达抑制物,MST4和NLRP3相互作用的促进物,MST4和NLRP3相互作用的抑制物。
本发明具有如下优点:
本发明的试验证明:MCC950抑制MST4与NLRP3相互作用抑制脑出血后神经炎症反应;与sham组相比,ICH后内源性MST4和NLRP3的表达增加,MST4和NLRP3分别共定位于小胶质细胞中;MCC950显着减轻神经功能缺损、脑水肿,而对MST4蛋白的表达没有影响。
Hesperadin预处理抑制MST4的表达并增加NLRP3炎性体药物蛋白的表达,从而加重神经功能缺损和脑水肿。
本发明的结果表明,MST4基因的上调抑制了NLRP3炎症小体的激活、IL-1β和TNF-α的释放,显着改善了脑水肿和神经功能缺损。MST4通过NLRP3炎症小体激活减轻ICH小鼠的炎症进展和脑损伤。MST4可以减轻ICH小鼠的神经炎症,改善神经功能,这与抑制nlrp3介导的炎症有关。
附图说明
为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。
图1为本发明实施例提供的MST4相关物质在制备治疗脑出血后神经炎症反应的药物中的应用试验设计流程图;
图2为本发明实施例提供的ICH后MST4、NLRP3的表达及其细胞定位的结果示意图,其中,(A)假手术组和小鼠脑出血后6、12、24、72h各时间点MST4和NLRP3表达的代表性条带;(B C)MST4/actin、NLRP3/actin灰度值定量,每组n=6只;(D)脑出血后24h用Iba1-MST4及Ibal1-NLRP3免疫荧光双标检测,每组n=3只,*p<0.05vs.假手术组;
图3为本发明实施例提供的MST4 AAV抑制NLRP3炎性体激活结果的示意图,其中,(A)MST4、NLRP3、IL-1β、caspase-1,TNF-α代表性免疫印迹条带;(B C D E F)MST4/actin、NLRP3/actin、IL-1β/actin、caspase-1/actin、TNF-α/actin灰度值定量,每组n=6只;(G)Garcia Test行为学检测,n=15只/组;(H)Corner Test行为学检测,n=15只/组;(I)BWC水含量评估,n=6只/组;*p<0.05vs.sham,#p<0.05vs.脑出血组;
图4为本发明实施例提供的Hesperadin增加NLRP3炎性体激活结果的示意图,其中,(A)MST4、NLRP3、IL-1β、caspase-1,TNF-α代表性免疫印迹条带;(B C D E F)MST4/actin、NLRP3/actin、IL-1β/actin、caspase-1/actin、TNF-α/actin灰度值定量,每组n=6只;(G)脑出血组与Hesperidin给药组Garcia Test行为学检测,n=15只/组;(H)脑出血组与Hesperidin给药组Corner Test行为学检测,n=15只/组;(I)脑出血组与Hesperidin给药组BWC水含量评估,n=6只/组;*p<0.05vs.sham,#p<0.05vs.脑出血组;
图5为本发明实施例提供的MCC950减弱炎症对MST4/NLRP3信号的影响结果的示意图;其中,(A)MST4、NLRP3、IL-1β、caspase-1,TNF-α代表性免疫印迹条带;(B C D E F)MST4/actin、NLRP3/actin、IL-1β/actin、caspase-1/actin、TNF-α/actin灰度值定量,每组n=6只;(G)脑出血组与MCC950给药组Garcia Test行为学检测,n=15只/组;(H)脑出血组与MCC950给药组Corner Test行为学检测,n=15只/组;(I)脑出血组与MCC950给药组BWC水含量评估,n=6只/组;*p<0.05vs.sham,#p<0.05vs.脑出血;
图6为本发明实施例提供的Hesperadin和MCC950均可抑制MST4与NLRP3的结合与共定位的结果示意图,其中,实验2、3、4中各组MST4和NLRP3的免疫荧光染色,MST4(红色)与NLRP3(绿色)共标记,比例尺:20μm,每组n=3只。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的材料,MST4 AAV购买自美国Vigenebio Biosciences公司;MCC950和Hesperidin均购买自美国MedChemExpress公司。
本发明的材料,实验对象为C57BL/6雄性小鼠。7-8周龄,体重24-28克,购自南京青龙山繁殖场。
实施例1、试验设计
1、试验设计:如图1所示,小鼠被分配到四个独立的实验,并列出了所有的设计细节。
实验1:30只小鼠分为假手术组和脑出血后6h、12h、24h和72h组。western blot检测MST4和NLRP3水平。取脑组织进行免疫荧光(IF)检测。
实验2:随机分为假手术组、ICH组、ICH+对照AAV组、ICH+MST4 AAV组各60只。western blot检测MST4、NLRP3、IL-1β、caspase-1和TNF-α蛋白水平(n=6),收集脑组织IF(n=3),在脑出血后24h进行神经功能测试(n=15)和脑含水量(n=6)。
实验3:ICH组和ICH+Hesperidin组各30只。所有小鼠于脑出血后24h处死,进行western blot(n=6)、BWC(n=6)、神经学检测(n=15),IF(n=3)。
实验4:ICH组和ICH+MCC950组各30只。所有小鼠于脑出血后24h处死,进行westernblot(n=6)、BWC(n=6)、神经学检测(n=15),IF(n=3)。
2、脑出血建模
通过注射胶原酶IV建立小鼠ICH模型。用保温垫将小鼠的体温保持在37.5℃,在bregma右侧钻孔2mm,在bregma正面钻孔0.8mm。入针深度3.5mm。接下来,向纹状体注射细菌胶原酶IV 10分钟(500nl PBS中0.07单位)。注射后静置15分钟,防止胶原酶泄漏。最后缝合切口并消毒。
3、侧脑室注射给药
侧脑室(ICV)注射位置在嵴后0.3mm,嵴侧1.0mm。插入深度2.3mm。MST4 AAV(Vigenebio Biosciences,Maryland,USA,4.95 1013vg/ml)于脑出血前4周注入侧脑室,总体积为10μl。Hesperadin(MCE,HY-12054,0.4μg/μl)溶于1%DMSO溶剂中,于ICH前1小时通过ICV给药,给药剂量为2ul。将mc950溶于磷酸盐缓冲生理盐水中,每只小鼠10mg/kg剂量,连续3天。MCC950的剂量是根据以往的报道选择的,表明它能有效预防损伤(Ren et al.,2018)。对照组只给予磷酸盐缓冲盐水。
4、行为学评估
Garcia测试总分为21分,包括攀爬、侧翻、触感本体感觉、自发活动、抓握、前肢行走、肢体运动对称性和轴向感觉。让老鼠前进到一个30度角的角落,然后转身离开这个角落。离开拐角时,记录鼠标转弯的方向。向右转的老鼠越多,说明神经损伤越严重。
5、脑水含量评估
脑出血后24小时处死小鼠取脑。无灌注时,将组织分为五个部分:小脑、同侧皮质(ipsi-cx)、基底神经节(ipsi-bg)、基底神经节(contc-bg)、对侧皮质(contc)。湿重(WW)和干重(DW)在100℃下蒸发,持续24小时。生物用水量计算公式:[(WW DW)/WW]100%。
6、蛋白免疫印迹Western Blot
Western blot如前所述。所有一抗均显示:兔多克隆抗mst4(1:1500,10847-1-AP,Proteintech),兔多克隆抗nlrp3抗体(1:1500,19771-1-AP,Proteintech),兔多克隆抗il-1β抗体(1:1000,ab9722,Abcam),兔多克隆抗caspase-1抗体(1:1500,22915-1-AP,Proteintech),兔多克隆抗tnf-α抗体(1:1500,346654,ZEN-BIOSCIENCE),β-actin(1:1000,GB1101,Servicebio Technology,China)。
7、免疫荧光Immunofluorescence
脑标本按脱水、石蜡包埋、切片的顺序进行处理。切片用二甲苯和不同梯度乙醇(100%、85%、75%)脱蜡,置于EDTA抗原回收缓冲液中,微波炉加热孵育。用3%牛血清白蛋白封闭切片30分钟。脑切片用一抗、二抗和DAPI孵育。一抗:MST4(1:50,10847-1-AP,Proteintech),Iba1(1:50,GB11105,Servicebio Technology),NLRP3(1:50,19771-1-AP,Proteintech)。二抗:cy3偶联山羊抗兔(1:50 0,GB21303,Servicebio Technology)、fitc偶联山羊抗兔(1:500,GB22303,Servicebio Technology)。
实施例2、ICH后MST4、NLRP3的表达及其细胞定位
MST4蛋白水平在ICH后12小时、24小时显着升高,在12小时达到峰值(*p<0.05与假手术;图2A、B)。在ICH后12和24小时观察到NLRP3蛋白水平升高,在24小时达到峰值(*p<0.05与假手术,图2A、C)。MST4和NLRP3水平均随峰值下降。ICH后24小时是选择作为实验2、3和4的观察时间点。进行MST4或NLRP3与Iba1的免疫荧光。MST4和NLRP3均在小胶质细胞中表达,并在ICH后增加(图2D)。
实施例3、MST4 AAV抑制NLRP3炎性体激活
ICH后MST4、NLRP3炎性体成分、IL-1β、TNF-α的表达增加(*p<0.05与假手术;图3A-F)。MST4 AAV减弱caspase-1激活、IL-1β和TNF-α分泌(#p<0.05vs.ICH;图3A-F)。MST4 AAV给药显着改善神经功能缺损(*p<0.05,*p与假手术,#p<0.05与ICH,图3G-H)。与神经学评估一致,BWC在ICH后同侧半球升高,而MST4 AAV死亡BWC(*p<0.05,*与假手术,#p<0.05与ICH,图3I)。
实施例4、Hesperadin增加NLRP3炎性体激活
Hesperadin预处理抑制MST4蛋白表达,同时增加NLRP3、IL-1β、caspase-1和TNF-α的表达(#p<0.05vs.ICH,图4A-F)。hesperadin在ICH小鼠中加重神经功能缺损(#p<0.05vs.ICH,图4G-H)并增加BWC(#p<0.05vs.ICH,图4I)。
实施例5、MCC950减弱炎症对MST4/NLRP3信号的影响
ICH+MCC950组的ICH NLRP3蛋白含量降低(#p<0.05vs.ICH,图5A、C)。同时,IL-1β、caspase-1和TNF-α的表达相应降低(#p<0.05vs.ICH,图5A,DF),而MCC950处理显示MST4表达没有差异(#p<0.05与ICH,图5B)。MCC950改善NLRP3介导的ICH后神经功能损伤(#p<0.05vs.ICH,图5G,H)。MCC950干扰降低了ICH后受影响基底神经节的BWC(#p<0.05与ICH,图5I)。
实施例6、Hesperadin和MCC950均可抑制MST4与NLRP3的结合与共定位
在ICH后24小时在血肿周围的脑组织中进行MST和NLRP3的双重免疫荧光染色。观察到MST4、NLRP3的免疫荧光共标记,并且MST4 AAV减少了ICH后MST4-NLRP3荧光积累(图6)。MST4 AAV减少了ICH后MST4-NLRP3荧光积累。在ICH+Hesperadin组中,MST4的荧光强度较弱,而NLRP3的荧光强度增加。MCC950的给药显着降低了NLRP3的荧光强度。
本实施例通过免疫荧光双标技术对脑出血后24小时血肿周围的脑组织中MST4和NLRP3荧光染色。在脑出血组中观察到较强MST4和NLRP3荧光强度,并且MST4 AAV减少了ICH后MST4-NLRP3荧光积累,MST4AAV减弱了MST4-NLRP3之间相互作用。同时在MCC950给药组,MST4-NLRP3荧光积累也减少,MCC950也减弱了MST4-NLRP3之间结合。相反的在Hesperadin组中,MST4的荧光强度较弱,而NLRP3的荧光强度增加。
本发明实施例检测到ICH增加了小鼠大脑中MST4蛋白的表达。MST4在小胶质细胞中表达并参与ICH的炎症病理过程。MST4通过调节NLRP3药物信号通路影响ICH的行为结果。在ICH条件下,MST4的上调显示出有益的结果并降低了BWC,而MST4抑制剂hesperadin的给药显示出相反的效果。此外,NLRP3炎症小体抑制剂MCC950降低了ICH小鼠的BWC并改善了神经功能。此外,MST4蛋白含量的增加表明ICH后抗炎作用得到加强。
本发明的实施例报告了MST4在ICH动物模型中对免疫反应的作用。MST4蛋白的上调可能与抑制炎症反应避免过度炎症加重损伤有关。本发明的研究表明MST4和NLRP3蛋白水平在ICH后增加。MST4的峰值在ICH后12小时,而NLRP3的峰值在ICH后24小时。选择ICH后24小时作为机制研究的时间点,因为本发明的研究侧重于下游炎症,而不是MST4相关的自噬途径。
本发明实施例进行了MST4 AAV的给药,结果表明,MST4的上调负调节NLRP3炎症小体并降低IL-1β和TNF-α的表达,这表明MST4可能是ICH引起的炎症的潜在治疗靶点。
本发明使用了MST4抑制剂hesperadin并抑制了MST4的表达,同时激活了NLRP3炎症小体并增加了炎症因子。它加重了神经功能缺损并减少了脑水肿。在一定程度上,不同时间点增大的MST4可能介导自噬损伤。此外,MCC950抑制了NLRP3炎症小体对NLRP3、IL-1β、caspase-1和TNF-α表达的影响,而MST4蛋白水平没有差异。NLRP3抑制ICH诱导的MST4增加可能通过抑制NLRP3介导的炎症在改善神经功能方面发挥重要作用。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
参考文献:
1.Espada,C.E.,St Gelais,C.,Bonifati,S.,Maksimova,V.V.,Cahill,M.P.,Kim,S.H.,Wu,L.,2021.TRAF6 and TAK1 Contribute to SAMHD1-Mediated NegativeRegulation of NF-κB Signaling.J Virol.95.
2.Feng,L.,Chen,Y.,Ding,R.,Fu,Z.,Yang,S.,Deng,X.,Zeng,J.,2015.P2X7Rblockade prevents NLRP3 inflammasome activation and brain injury in a ratmodel of intracerebral hemorrhage:involvement of peroxynitrite.JNeuroinflammation.12,190.
3.Gao,Y.,Ma,L.,Luo,C.L.,Wang,T.,Zhang,M.Y.,Shen,X.,Meng,H.H.,Ji,M.M.,Wang,Z.F.,Chen,X.P.,Tao,L.Y.,2017.IL-33Exerts Neuroprotective Effect in MiceIntracerebral Hemorrhage Model Through Suppressing Inflammation/Apoptotic/Autophagic Pathway.Mol Neurobiol.54,3879-3892.
4.Hamarsheh,S.,Zeiser,R.,2020.NLRP3 Inflammasome Activation inCancer:A Double-Edged Sword.Front Immunol.11,1444.
5.Han,X.M.,Tian,P.Y.,Zhang,J.L.,2019.MicroRNA-486-5p inhibits ovariangranulosa cell proliferation and participates in the development of PCOS viatargeting MST4.Eur Rev Med Pharmacol Sci.23,7217-7223.
6.Jiao,S.,Zhang,Z.,Li,C.,Huang,M.,Shi,Z.,Wang,Y.,Song,X.,Liu,H.,Li,C.,Chen,M.,Wang,W.,Zhao,Y.,Jiang,Z.,Wang,H.,Wong,C.C.,Wang,C.,Zhou,Z.,2015.The kinase MST4 limits inflammatory responses through directphosphorylation of the adaptor TRAF6.Nat Immunol.16,246-57.
7.Keep,R.F.,Hua,Y.,Xi,G.,2012.Intracerebral haemorrhage:mechanisms ofinjury and therapeutic targets.Lancet Neurol.11,720-31.
8.Kelley,N.,Jeltema,D.,Duan,Y.,He,Y.,2019.The NLRP3 Inflammasome:AnOverview of Mechanisms of Activation and Regulation.Int J Mol Sci.20.
9.Kim,C.K.,Ryu,W.S.,Choi,I.Y.,Kim,Y.J.,Rim,D.,Kim,B.J.,Jang,H.,Yoon,B.W.,Lee,S.H.,2013.Detrimental effects of leptin on intracerebral hemorrhagevia the STAT3 signal pathway.J Cereb Blood Flow Metab.33,944-53.
10.Krafft,P.R.,McBride,D.W.,Lekic,T.,Rolland,W.B.,Mansell,C.E.,Ma,Q.,Tang,J.,Zhang,J.H.,2014.Correlation between subacute sensorimotor deficitsand brain edema in two mouse models of intracerebral hemorrhage.Behav BrainRes.264,151-60.
11.Krafft,P.R.,McBride,D.,Rolland,W.B.,Lekic,T.,Flores,J.J.,Zhang,J.H.,2017.α7 Nicotinic Acetylcholine Receptor Stimulation AttenuatesNeuroinflammation through JAK2-STAT3 Activation in Murine Models ofIntracerebral Hemorrhage.Biomed Res Int.2017,8134653.
12.Kuramatsu,J.B.,Huttner,H.B.,Schwab,S.,2013.Advances in themanagement of intracerebral hemorrhage.J Neural Transm(Vienna).120 Suppl 1,S35-41.13.Lin,J.L.,Chen,H.C.,Fang,H.I.,Robinson,D.,Kung,H.J.,Shih,H.M.,2001.MST4,a new Ste20-related kinase that mediates cell growth andtransformation via modulating ERK pathway.Oncogene.20,6559-69.
14.Ling,P.,Lu,T.J.,Yuan,C.J.,Lai,M.D.,2008.Biosignaling of mammalianSte20-related kinases.Cell Signal.20,1237-47.
15.Liu,X.,You,J.,Peng,X.,Wang,Q.,Li,C.,Jiang,N.,Che,C.,Zhou,Y.,Zheng,H.,Zhang,Z.,Zhao,G.,Lin,J.,2020.Mammalian Ste20-like kinase 4 inhibits theinflammatory response in Aspergillus fumigatus keratitis.IntImmunopharmacol.88,107021.
16.Lu,Q.,Liu,R.,Sherchan,P.,Ren,R.,He,W.,Fang,Y.,Huang,Y.,Shi,H.,Tang,L.,Yang,S.,Zhang,J.H.,Tang,J.,2021.TREM(Triggering Receptor Expressed onMyeloid Cells)-1 Inhibition Attenuates Neuroinflammation via PKC(ProteinKinase C)δ/CARD9(Caspase Recruitment Domain Family Member 9)Signaling PathwayAfter Intracerebral Hemorrhage in Mice.Stroke.Strokeaha120032736.
17.Lu,T.,Wang,Z.,Prativa,S.,Xu,Y.,Wang,T.,Zhang,Y.,Yu,L.,Xu,N.,Tang,J.,You,W.,Chen,G.,Zhang,J.H.,2019.Macrophage stimulating protein preservesblood brain barrier integrity after intracerebral hemorrhage throughrecepteur d'origine nantais dependent GAB1/Src/β-catenin pathway activationin a mouse model.J Neurochem.148,114-126.
18.Ma,Q.,Chen,S.,Hu,Q.,Feng,H.,Zhang,J.H.,Tang,J.,2014.NLRP3inflammasome contributes to inflammation after intracerebral hemorrhage.AnnNeurol.75,209-19.
19.Qian,Z.,Lin,C.,Espinosa,R.,LeBeau,M.,Rosner,M.R.,2001.Cloning andcharacterization of MST4,a novel Ste20-like kinase.J Biol Chem.276,22439-45.
20.Ren,H.,Kong,Y.,Liu,Z.,Zang,D.,Yang,X.,Wood,K.,Li,M.,Liu,Q.,2018.Selective NLRP3(Pyrin Domain-Containing Protein 3)Inflammasome InhibitorReduces Brain Injury After Intracerebral Hemorrhage.Stroke.49,184-192.
21.Roh,K.H.,Lee,Y.,Yoon,J.H.,Lee,D.,Kim,E.,Park,E.,Lee,I.Y.,Kim,T.S.,Song,H.K.,Shin,J.,Lim,D.S.,Choi,E.J.,2021.TRAF6-mediated ubiquitination ofMST1/STK4 attenuates the TLR4-NF-κB signaling pathway in macrophages.Cell MolLife Sci.78,2315-2328.
22.Sheth,K.N.,Rosand,J.,2014.Targeting the immune system inintracerebral hemorrhage.JAMA Neurol.71,1083-4.
23.Shi,S.X.,Li,Y.J.,Shi,K.,Wood,K.,Ducruet,A.F.,Liu,Q.,2020.IL(Interleukin)-15 Bridges Astrocyte-Microglia Crosstalk and Exacerbates BrainInjury Following Intracerebral Hemorrhage.Stroke.51,967-974.
24.Speir,M.,Lawlor,K.E.,2021.RIP-roaring inflammation:RIPK1 and RIPK3driven NLRP3 inflammasome activation and autoinflammatory disease.Semin CellDev Biol.109,114-124.
25.Unamuno,X.,Gómez-Ambrosi,J.,Ramírez,B.,Rodríguez,A.,Becerril,S.,Valentí,V.,Moncada,R.,Silva,C.,Salvador,J.,Frühbeck,G.,Catalán,V.,2021.NLRP3inflammasome blockade reduces adipose tissue inflammation and extracellularmatrix remodeling.Cell Mol Immunol.18,1045-1057.
26.Wan,S.Y.,Li,G.S.,Tu,C.,Chen,W.L.,Wang,X.W.,Wang,Y.N.,Peng,L.B.,Tan,F.,2021.MicroNAR-194-5p hinders the activation of NLRP3 inflammasomes andalleviates neuroinflammation during intracerebral hemorrhage by blocking theinteraction between TRAF6 and NLRP3.Brain Res.1752,147228.
27.Wu,H.,Arron,J.R.,2003.TRAF6,a molecular bridge spanning adaptiveimmunity,innate immunity and osteoimmunology.Bioessays.25,1096-105.
28.Wu,X.,Wu,J.,Hu,W.,Wang,Q.,Liu,H.,Chu,Z.,Lv,K.,Xu,Y.,2020.MST4Kinase Inhibitor Hesperadin Attenuates Autophagy and Behavioral Disorder viathe MST4/AKT Pathway in Intracerebral Hemorrhage Mice.Behav Neurol.2020,2476861.
29.Xing,Y.,Yao,X.,Li,H.,Xue,G.,Guo,Q.,Yang,G.,An,L.,Zhang,Y.,Meng,G.,2017.Cutting Edge:TRAF6 Mediates TLR/IL-1R Signaling-InducedNontranscriptional Priming of the NLRP3 Inflammasome.J Immunol.199,1561-1566.
30.Xiong,W.,Matheson,C.J.,Xu,M.,Backos,D.S.,Mills,T.S.,Salian-Mehta,S.,Kiseljak-Vassiliades,K.,Reigan,P.,Wierman,M.E.,2016.Structure-Based ScreenIdentification of a Mammalian Ste20-like Kinase 4(MST4)Inhibitor withTherapeutic Potential for Pituitary Tumors.Mol Cancer Ther.15,412-20.
31.Xu,Y.,Nowrangi,D.,Liang,H.,Wang,T.,Yu,L.,Lu,T.,Lu,Z.,Zhang,J.H.,Luo,B.,Tang,J.,2020.DKK3 attenuates JNK and AP-1 induced inflammation viaKremen-1 and DVL-1 in mice following intracerebral hemorrhage.JNeuroinflammation.17,130.
32.Xu,Y.,Wu,X.,Hu,W.,Yu,D.,Shao,Z.,Li,W.,Huang,T.,Zhang,J.,Zhu,X.,Li,X.,Yang,H.,Chu,Z.,Lv,K.,2021.RIP3 facilitates necroptosis through CaMKII andAIF after intracerebral hemorrhage in mice.Neurosci Lett.749,135699.
33.Yang,Z.,Zhong,L.,Xian,R.,Yuan,B.,2015.MicroRNA-223 regulatesinflammation and brain injury via feedback to NLRP3 inflammasome afterintracerebral hemorrhage.Mol Immunol.65,267-76.
34.Yao,S.T.,Cao,F.,Chen,J.L.,Chen,W.,Fan,R.M.,Li,G.,Zeng,Y.C.,Jiao,S.,Xia,X.P.,Han,C.,Ran,Q.S.,2017.NLRP3 is Required for Complement-MediatedCaspase-1 and IL-1beta Activation in ICH.J Mol Neurosci.61,385-395.
35.Yuan,B.,Shen,H.,Lin,L.,Su,T.,Zhong,S.,Yang,Z.,2015.Recombinantadenovirus encoding NLRP3 RNAi attenuate inflammation and brain injury afterintracerebral hemorrhage.J Neuroimmunol.287,71-5.

Claims (9)

1.MST4相关物质作为如下(a)和/或(b)和/或(c)和/或(d)和/或(e)和/或(f)和/或(g)的应用,
(a)制备促进MST4和NLRP3的表达的产品;
(b)制备抑制MST4表达的产品;
(c)制备抑制NLRP3的表达的产品;
(d)制备抑制MST4表达,而促进NLRP3表达的产品;
(e)制备抑制IL-1β和TNF-α的释放的产品;
(f)制备预防和/或治疗神经功能缺损、脑水肿的产品;
(g)制备预防和/或治疗脑出血后神经炎症反应的产品。
2.如权利要求1所述的应用,其特征在于,
所述MST4相关物质包括MST4的表达促进物,MST4的表达抑制物,MST4和NLRP3相互作用的促进物,MST4和NLRP3相互作用的抑制物。
3.如权利要求2所述的应用,其特征在于,
所述MST4的表达促进物为MST4 AAV。
4.如权利要求2所述的应用,其特征在于,
所述MST4的表达抑制物为Hesperadin。
5.如权利要求2所述的应用,其特征在于,
所述MST4和NLRP3相互作用的抑制物为Hesperadin或/和MCC950。
6.如权利要求5所述的应用,其特征在于,
所述Hesperadin的化学式如式(I)所示:
Figure FDA0003263978350000021
所述MCC950的化学式如式(II)所示:
Figure FDA0003263978350000022
7.如权利要求2所述的应用,其特征在于,
所述MST4和NLRP3相互作用的促进物为MST4 AAV。
8.一种产品,其活性成分为MST4相关物质,所述产品的用途为如下(a)和/或(b)和/或(c)和/或(d)和/或(e)和/或(f)和/或(g):
(a)促进MST4和NLRP3的表达;
(b)抑制MST4表达;
(c)抑制NLRP3的表达;
(d)抑制MST4表达,而促进NLRP3表达;
(e)抑制IL-1β和TNF-α的释放;
(f)预防和/或治疗神经功能缺损、脑水肿;
(g)预防和/或治疗脑出血后神经炎症反应。
9.如权利要求9所述的产品,其特征在于,
所述MST4相关物质包括MST4的表达促进物,MST4的表达抑制物,MST4和NLRP3相互作用的促进物,MST4和NLRP3相互作用的抑制物。
CN202111080992.XA 2021-09-15 2021-09-15 Mst4相关物质在制备治疗脑出血后神经炎症反应的药物中的应用 Pending CN113577288A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111080992.XA CN113577288A (zh) 2021-09-15 2021-09-15 Mst4相关物质在制备治疗脑出血后神经炎症反应的药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111080992.XA CN113577288A (zh) 2021-09-15 2021-09-15 Mst4相关物质在制备治疗脑出血后神经炎症反应的药物中的应用

Publications (1)

Publication Number Publication Date
CN113577288A true CN113577288A (zh) 2021-11-02

Family

ID=78242052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111080992.XA Pending CN113577288A (zh) 2021-09-15 2021-09-15 Mst4相关物质在制备治疗脑出血后神经炎症反应的药物中的应用

Country Status (1)

Country Link
CN (1) CN113577288A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050473A (zh) * 2007-02-09 2007-10-10 北京大学 抗细胞增殖或抗肿瘤药物的筛选试剂盒、筛选方法及用途
US20170268001A1 (en) * 2016-03-16 2017-09-21 The University Of Chicago Rnas with tumor radio/chemo-sensitizing and immunomodulatory properties and methods of their preparation and application
CN110151749A (zh) * 2018-02-13 2019-08-23 中国科学技术大学 冬凌草甲素在制备预防或治疗nlrp3炎症小体相关疾病的药物中的应用
US20210267996A1 (en) * 2018-06-27 2021-09-02 Children`S Medical Center Corporation Compounds for inhibition of inflammation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050473A (zh) * 2007-02-09 2007-10-10 北京大学 抗细胞增殖或抗肿瘤药物的筛选试剂盒、筛选方法及用途
US20170268001A1 (en) * 2016-03-16 2017-09-21 The University Of Chicago Rnas with tumor radio/chemo-sensitizing and immunomodulatory properties and methods of their preparation and application
CN110151749A (zh) * 2018-02-13 2019-08-23 中国科学技术大学 冬凌草甲素在制备预防或治疗nlrp3炎症小体相关疾病的药物中的应用
US20210267996A1 (en) * 2018-06-27 2021-09-02 Children`S Medical Center Corporation Compounds for inhibition of inflammation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAODONG WU 等: "MST4 attenuates NLRP3 inflammasome-mediated neuroinflammation and affects the prognosis after intracerebral hemorrhage in mice", 《BRAIN RESEARCH BULLETIN》 *

Similar Documents

Publication Publication Date Title
Li et al. Senolytic therapy ameliorates renal fibrosis postacute kidney injury by alleviating renal senescence
Liu et al. Mesenchymal stem cells alleviate the early brain injury of subarachnoid hemorrhage partly by suppression of Notch1-dependent neuroinflammation: involvement of Botch
Su et al. Necrostatin-1 ameliorates intracerebral hemorrhage-induced brain injury in mice through inhibiting RIP1/RIP3 pathway
Rubio et al. Mesenchymal stromal cells prevent bleomycin‐induced lung and skin fibrosis in aged mice and restore wound healing
Liang et al. Lymphatic endothelial cells efferent to inflamed joints produce iNOS and inhibit lymphatic vessel contraction and drainage in TNF-induced arthritis in mice
Halwani et al. CC and CXC chemokines induce airway smooth muscle proliferation and survival
Xiong et al. Glycyrrhizin protects against focal cerebral ischemia via inhibition of T cell activity and HMGB1-mediated mechanisms
Bridle et al. Rapamycin inhibits hepatic fibrosis in rats by attenuating multiple profibrogenic pathways
Freitas et al. Blockade of Janus kinase‐2 signaling ameliorates mouse liver damage due to ischemia and reperfusion
Wang et al. The regulatory peptide apelin: a novel inhibitor of renal interstitial fibrosis
Wang et al. Tongxinluo ameliorates renal structure and function by regulating miR-21-induced epithelial-to-mesenchymal transition in diabetic nephropathy
Morrison et al. The contribution of mannose binding lectin to reperfusion injury after ischemic stroke
Yang et al. Beneficial effects of ginsenoside-Rg1 on ischemia-induced angiogenesis in diabetic mice
Yang et al. The role of STAT3/mTOR-regulated autophagy in angiotensin II-induced senescence of human glomerular mesangial cells
Tabony et al. Protein phosphatase 2C-alpha knockdown reduces angiotensin II-mediated skeletal muscle wasting via restoration of mitochondrial recycling and function
Wu et al. Dissection of the mechanism of traditional Chinese medical prescription-Yiqihuoxue formula as an effective anti-fibrotic treatment for systemic sclerosis
Wu et al. MST4 attenuates NLRP3 inflammasome-mediated neuroinflammation and affects the prognosis after intracerebral hemorrhage in mice
Mathew Pulmonary hypertension and metabolic syndrome: Possible connection, PPARγ and Caveolin-1
Cao et al. Rhynchophylline prevents cardiac dysfunction and improves survival in lipopolysaccharide-challenged mice via suppressing macrophage I-κBα phosphorylation
Chen et al. 2, 3, 5, 4′-Tetrahydroxystilbene-2-O-β-d-glucoside exerted protective effects on diabetic nephropathy in mice with hyperglycemia induced by streptozotocin
Liu et al. Schisantherin A improves learning and memory of mice with D-galactose-induced learning and memory impairment through its antioxidation and regulation of p19/p53/p21/Cyclin D1/CDK4/RB gene expressions
Lu et al. Short time tripterine treatment enhances endothelial progenitor cell function via heat shock protein 32
Xu et al. Angiotensin-(1-7) protects against sepsis-associated left ventricular dysfunction induced by lipopolysaccharide
Lan et al. Polydatin attenuates hepatic stellate cell proliferation and liver fibrosis by suppressing sphingosine kinase 1
Zhao et al. Oleoylethanolamide alleviates macrophage formation via AMPK/PPARα/STAT3 pathway

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211102