CN113574248A - 设置有优化的冷却回路的涡轮发动机叶片 - Google Patents

设置有优化的冷却回路的涡轮发动机叶片 Download PDF

Info

Publication number
CN113574248A
CN113574248A CN202080022083.8A CN202080022083A CN113574248A CN 113574248 A CN113574248 A CN 113574248A CN 202080022083 A CN202080022083 A CN 202080022083A CN 113574248 A CN113574248 A CN 113574248A
Authority
CN
China
Prior art keywords
calibration
radius
turbine engine
duct
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080022083.8A
Other languages
English (en)
Inventor
杰拉米·雅克·阿蒂里奥·法内利
罗曼·皮埃尔·卡里乌
维安尼·西蒙
巴福·唐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Safran SA
Original Assignee
Safran SA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran SA, SNECMA SAS filed Critical Safran SA
Publication of CN113574248A publication Critical patent/CN113574248A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/14Two-dimensional elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明涉及一种涡轮发动机叶片(20),该涡轮发动机叶片包括:‑翼型件(21),该翼型件具有压力侧壁和吸力侧壁,该压力侧壁和吸力侧壁通过前缘(26)在上游连接并且通过后缘(27)在下游连接,‑冷却回路(28),该冷却回路包括在翼型件内部延伸的内腔和多个出口开口,每个出口开口大致沿着纵向轴线X定向,每个出口开口与腔连通并布置在后缘附近,以及‑校准装置(33),该校准装置布置在腔中并设置有校准导管(34),该校准导管被布置成与出口开口大致相对,根据本发明,校准导管(34)各自包括大致垂直于纵向轴线的长圆形横截面。

Description

设置有优化的冷却回路的涡轮发动机叶片
技术领域
本发明涉及涡轮发动机领域,并且特别涉及一种配备有冷却回路的涡轮发动机轮叶,该冷却回路旨在对涡轮发动机轮叶进行冷却。
背景技术
现有技术包括文献EP-A2-1 793 083、EP-A1-1 267 039和US-A1-2013/259645。
涡轮发动机轮叶,特别是高压涡轮轮叶承受非常高的温度,这会缩短该涡轮发动机轮叶的使用寿命并降低涡轮发动机的性能。实际上,涡轮发动机涡轮被布置在涡轮发动机的燃烧室的下游,该涡轮发动机喷射由涡轮膨胀的热气流,并使得涡轮发动机涡轮能够被驱动旋转以用于涡轮发动机的运行。高压涡轮被直接定位在燃烧室的出口处,并承受最高的温度。
为了使得涡轮轮叶能够经受这些严重的热应力,已知的是提供冷却回路,相对较冷的空气在该冷却回路中流通,该空气在压缩机的水平处被吸收,压缩机被定位在燃烧室的上游。更具体地,每个涡轮轮叶包括具有压力侧表面和吸力侧表面的叶片,该压力侧表面和吸力侧表面通过前缘在上游连接并且通过后缘在下游连接。冷却回路包括腔,该腔被定位在轮叶内部并通入孔口中,孔口被定位在后缘附近。这些孔口将冷却空气射流输送到叶片的壁。
然而,孔口没有被均匀地供给空气。已经开发了校准装置,以确保大部分冷却空气流仅输送到在径向上最接近轮叶根部的第一孔口。该校准装置包括隔板,该隔板设置有孔并布置在孔口上游的冷却空气路径中。这些孔使得每个孔口能够产生将对压力侧表面进行冷却的局部射流。
然而,由于局部的热梯度、与轮叶的旋转有关的离心力(该离心力引入了拉伸应力)以及孔的几何形状(该几何形状引起了应力集中系数“kt”),该校准装置的孔承受极强的机械载荷。
发明内容
本发明的目的是减小特别是用于对冷却空气进行校准的装置的孔所承受的机械应力,同时避免对装置本身和轮叶的显著的结构性修改。
根据本发明,这通过涡轮发动机轮叶来实现,该涡轮发动机轮叶包括:
-叶片,该叶片具有压力侧壁和吸力侧壁,该压力侧壁和吸力侧壁通过前缘在上游连接并且通过后缘在下游连接,
-冷却回路,该冷却回路包括在叶片内部延伸的内腔和多个出口孔口,每个出口孔口大致沿着纵向轴线X定向,每个出口孔口与内腔连通并布置在后缘附近,以及
-校准装置,该校准装置布置在内腔中并设置有校准导管,该校准导管被布置成与出口孔口大致相对,校准导管各自包括大致垂直于纵向轴线的长圆形或大致长圆形的横截面。
因此,该方案使得能够实现上述目标。特别地,校准导管的特定形状使得机械应力,特别是静应力能够极大减小,并且在保持导管在等(iso)截面,从而在等(iso)流速下时增加导管的截面的半径。载荷被分布在孔的细长端部之间,这增加了孔的接触面积,并进一步降低了应力。这种形状还使得能够限制制成校准装置和叶片的材料的晶粒的再结晶的风险。最后,与包括增加校准装置的隔板的厚度(并因此增加质量)的传统解决方案相比,该结构使得能够增加质量。
轮叶还包括以下特征中的一个或多个特征,这一个或多个特征被单独采用或组合采用:
-校准装置包括布置在校准导管下游的校准腔,该校准腔与校准导管和出口孔口流体连通。
-校准导管由隔板承载,隔板在叶片中径向延伸并形成内腔的上游和校准腔的下游,该校准腔形成容器。
-每个校准导管包括沿着穿过每个导管的中心轴线的预定宽度相对的第一直线部分和第二直线部分。
-每个第一直线部分和第二直线部分在大约0.2mm的距离d上延伸。
-每个校准导管在预定高度上延伸,并包括沿着预定高度相对的第一圆形端部和第二圆形端部。
-预定高度与预定宽度之比介于0.5到2.5之间。
-每个校准导管包括具有第一半径R1的圆弧部分,每个圆弧部分相对于穿过中心轴线并垂直于宽度L的第一中间平面对称,并且相对于穿过中心轴线并垂直于预定高度H的第二中间平面对称。
-第一端部和第二端部沿着具有第二半径R2的圆弧圆化,第二半径R2的值小于第一半径R1的值。
-第一半径R1的值等于具有圆形截面的校准导管的标称半径R0的两倍,圆形截面的通道面积等于具有长圆形截面的校准导管的横截面的通道面积。
-中心轴线由每个校准导管的预定高度和预定宽度的中间确定。
本发明还涉及一种涡轮发动机涡轮,该涡轮发动机涡轮包括至少一个具有上述特征的涡轮发动机轮叶。
本发明还涉及一种涡轮发动机,该涡轮发动机包括至少一个如上所述的涡轮发动机涡轮。
附图说明
在参照示意性附图阅读本发明的作为纯说明性和非限制性示例给出的实施例的以下详细说明性描述时,本发明将被更好地理解,并且本发明的其它目的、细节、特征和优点将变得更加清楚,在附图中:
[图1]图1是应用于本发明的涡轮发动机的示例的部分轴向截面视图;
[图2]图2是根据本发明的涡轮发动机轮叶的示例的轴向截面的示意性视图;
[图3]图3是冷却的涡轮发动机轮叶的横截面视图,该冷却的涡轮发动机轮叶配备有用于对旨在通过其后缘的水平处的孔口喷射的冷却空气进行校准的装置;
[图4]图4是根据本发明的旨在被冷却的涡轮发动机轮叶的校准装置的校准导管的示例的示意性视图;
[图5]图5示出了施加到现有技术的校准装置的圆形截面的校准导管上的静应力的映射;
[图6]图6示出了施加到根据本发明的校准装置的长圆形部段的校准导管上的静应力的映射。
具体实施方式
图1示出了应用于本发明的涡轮发动机1沿纵向轴线X的轴向截面视图。所示的涡轮发动机是旨在安装在根据本发明的飞行器上的双流和双轴涡轮发动机。当然,本发明不限于这种类型的涡轮发动机。
具有双流的该涡轮发动机1通常包括安装在气体发生器3上游的风扇2。在本发明中,并且通常,术语“上游”和“下游”相对于涡轮发动机中的气体流动并且在此沿着纵向轴线X(甚至在图1中从左到右)而限定。术语“轴向”和“轴向地”相对于纵向轴线X而限定。类似地,术语“径向”、“内”和“外”相对于垂直于纵向轴线X的径向轴线Z和相对于距纵向轴线X的距离而限定。
气体发生器3从上游到下游包括低压压缩机4a、高压压缩机4b、燃烧室5、高压涡轮6a和低压涡轮6b。
由机舱8承载的风扇壳体7包围的风扇2将进入涡轮发动机的空气分为主空气流和次级空气流,该主空气流通过气体发生器3并特别是流入主管道9中,该次级空气流在次级管道10中围绕气体发生器流通。
次级空气流由对机舱进行终止的次级喷嘴11喷射,而主空气流经由被定位在气体发生器3下游的喷射喷嘴12喷射到涡轮发动机的外部。
高压涡轮6a与低压涡轮6b一样,包括一个或多个级。每个级包括安装在移动叶片环上游的定子叶片环。定子叶片环包括多个定子或固定轮叶,被称为分配器,这些定子或固定轮叶围绕纵向轴线X沿周向分布。移动叶片环包括多个移动轮叶,这些移动轮叶围绕以纵向轴线X为中心的圆盘沿周向等距地分布。分配器使空气动力流朝向移动轮叶偏转并加速离开燃烧室,以便移动轮叶被驱动旋转。
参照图2和图3,每个涡轮轮叶(在此是高压涡轮的移动轮叶20)包括从平台22径向上升的叶片21。该平台由根部23承载,该根部旨在嵌入涡轮盘的对应凹槽中的一个中。每个叶片21包括压力侧壁24和吸力侧壁25,该压力侧壁和吸力侧壁通过前缘26在上游连接并且通过后缘27在下游连接。压力侧壁(具有压力侧表面24a)和吸力侧壁(具有吸力侧表面25a)沿着垂直于纵向轴线和径向轴线的横向轴线彼此相对。
轮叶20包括冷却回路28,该冷却回路旨在对叶片的壁进行冷却,该叶片的壁承受通过燃烧室5并离开燃烧室的主空气流的高温。冷却回路28包括内腔29,该内腔在叶片内部径向地延伸,特别是在压力侧壁24和吸力侧壁25之间延伸。根部23包括供给通道30,该供给通道包括冷却流体入口31(在此是冷却空气),该冷却流体入口在燃烧室的上游,例如在低压压缩机处,并通向腔29。通道30还通向轮叶的根部的径向内表面41上。冷却回路还包括被布置在叶片的后缘27附近的出口孔口32。出口孔口沿着纵向轴线X定向。此外,出口孔口32大致沿径向轴线对准并均匀地分布。
在图3中,出口孔口32被布置在压力侧壁24中,并通向压力侧表面24a。在实施例的该示例中,腔29还被定位在叶片下游,即更朝向后缘。
从图2和图3还可以看出,轮叶包括校准装置33,该校准装置被布置在冷却空气的路径中,以便调节该冷却空气的流速。校准装置33包括多个校准导管34,并且有利地,被布置在叶片内部的腔29中。校准导管34使得空气流能够更均匀地分布在整个孔口中,而没有流速损失。
更具体地,校准装置33包括隔板35,该隔板沿径向轴线延伸(在安装情况下)并限定在包含径向轴线的中间平面中。该隔板35被校准导管34沿大致垂直于隔板的中间平面的轴线在两侧刺穿。隔板的壁的厚度大约为1.5mm。导管34沿着隔板的径向轴线对准并均匀地分布。类似地,在安装情况下,导管34与叶片的出口孔口32大致相对。换言之,冷却空气大致轴向地流过校准导管。
在本实施例的示例中并如图3中可详细看出,隔板35与叶片形成为单件(整体)。隔板35连接腔29内部的压力侧壁和吸力侧壁。校准装置包括被布置在校准导管34下游的校准腔42。校准腔42与校准导管和出口孔口流体连通。换言之,校准腔42被布置在冷却空气朝向出口孔口(或者替代地在导管34和出口孔口之间)的路径中。以这种方式,冷却空气通过导管30流到内腔29,以穿过校准导管34,然后被接纳在充当容器的校准腔中。然后,占据整个校准腔42的冷却空气能够以相同的流速流过出口孔口。然后,我们理解存在单个校准腔42。
有利地,但以非限制性的方式,轮叶由金属合金和根据使用失蜡铸造技术的制造方法制成。优选地,该金属合金是镍基的并且可以是单晶的。
参照图4,每个导管具有长圆形(或细长或椭圆形)或大致长圆形的横截面。在该说明书中,术语“长圆形”是指长大于宽的形状。特别地,长圆形导管在预定高度H和预定宽度L上延伸。每个校准导管的中心轴线A由校准导管中间的高度和宽度的交点确定。该中心轴线A垂直于隔板35的平面B。在本示例中和在安装情况下,导管34的高度H在平行于径向轴线的方向上对准,而宽度L在平行于横向轴线的方向上对准。
高度与宽度之比H/L介于0.5到3之间,并且优选地,介于1.4到2之间。特别地,高度H介于宽度L的1.4倍到宽度L的2倍之间。以这种方式,导管在径向上间隔足够远以减小静应力。H/L比的下限是静应力的增加变成引人关注的极限。
每个导管34还具有被称为“第一部分”36和“第二部分”37的两个直线部分,这两个直线部分相对于穿过中心轴线A的宽度L相对。第一部分36和第二部分37彼此平行并沿着径向轴线延伸。这种结构使得能够局部降低应力集中系数“Kt”,并因此降低应力。这是因为拉力在平行于径向轴线的方向上施加。两个部分36、37各自在第一顶部36a、37a和第二顶部36b、37b之间的距离d上延伸。该距离d大约为0.2mm。
同样,每个导管包括被称为“第一端部”38和“第二端部”39的两个圆形端部,这两个圆形端部相对于穿过中心轴线A的高度H相对。
有利地,但以非限制性的方式,每个导管34包括双半径,以便增加现有技术的圆形截面的传统导管TA的标称半径R0的值(在图3中以虚线示出)。双半径被布置在导管的壁或周边上应力最大的地方。特别地,每个导管包括圆弧部分40,每个圆弧部分具有被称为“第一半径R1”的半径R1。这些圆弧部分40沿着导管的周边分别被定位在第一直线部分36和第二直线部分37与第一圆形端部38和第二圆形端部39之间。
我们可以看到,这里有第一半径R1的四个圆弧部分40。这些部分40相对于穿过中心轴线并垂直于宽度L的第一中间平面P1对称。这些部分40也相对于穿过中心轴线并垂直于高度H的第二中间平面P2对称。
在图4的示例中,被布置在中间平面P2的一侧上的半径R1的导管的截面的部分40的中心分别被布置在直线部分36、37的相对于中间平面P1与部分40相对的端部36a、36b、37a、37b中的一个上,并且所述端部被布置在部分40的中间平面P2的同一侧上。当然,半径中心的不同排列是可能的。
在该示例中,第一半径R1的值是圆形导管的标称半径R0的两倍。具有圆形横截面的导管的通道面积等于具有长圆形横截面的导管的横截面的通道面积。标称半径R0的值大约为0.35mm。
第一端部38和第二端部39沿着圆弧圆化,每个圆弧的半径为R2,被称为“第二半径R2”。在该示例中,第二半径R2的值小于第一半径R1的值。特别地,第二半径的值等于0.4×R1。
对于第一半径R1的给定值,距离d的值和第二半径R2的值使得导管的截面能够最小化,同时确保在应力重要处有一致的第一半径R1。
图5和图6示出了静应力的ISO比例映射,这些静应力是由承载校准导管34的隔板(主要是热隔板和离心隔板)承受载荷的结果,冷却空气在穿过出口孔口之前穿过校准导管。在图4中,我们从透视和正视图中看到了现有技术的具有标称半径R0的圆形横截面的导管,在图5中,该导管是具有特别是双半径的长圆形横截面的导管。我们看到在这种尺寸和几何形状下,通过有限元计算进行对比分析表明,导管的壁部分上的局部静应力由圆孔的1546Mpa(非常靠近的小点表示最大应力)下降到长圆形导管的10018Mpa,即降低了大约34%。

Claims (10)

1.一种涡轮发动机轮叶(20),所述涡轮发动机轮叶包括:
-叶片(21),所述叶片具有压力侧壁和吸力侧壁,所述压力侧壁和所述吸力侧壁通过前缘(26)在上游连接并且通过后缘(27)在下游连接,
-冷却回路(28),所述冷却回路包括在所述叶片内部延伸的内腔(29)和多个出口孔口(32),每个出口孔口大致沿着纵向轴线X定向,每个出口孔口与所述内腔(29)连通并布置在所述后缘(27)附近,以及
-校准装置(33),所述校准装置布置在所述内腔(29)中并设置有校准导管(34),所述校准导管被布置成与所述出口孔口(32)大致相对,所述校准导管(34)各自包括大致垂直于所述纵向轴线的长圆形横截面,
其特征在于,所述校准装置包括布置在所述校准导管(34)下游的校准腔(42),所述校准腔(42)与所述校准导管(34)和所述出口孔口(32)流体连通,并且其中,每个校准导管(34)包括沿着穿过每个校准导管(34)的中心轴线A的预定宽度L相对的第一直线部分(36)和第二直线部分(37)。
2.根据前一项权利要求所述的轮叶(20),其特征在于,所述校准导管(34)由隔板(35)承载,所述隔板在所述叶片中径向延伸并形成所述内腔(29)的上游和所述校准腔(42)的下游,所述校准腔形成容器。
3.根据前述权利要求中任一项所述的轮叶(20),其特征在于,每个第一直线部分和第二直线部分(36,37)在大约0.2mm的距离d上延伸。
4.根据前述权利要求中任一项所述的轮叶(20),其特征在于,每个校准导管(34)在预定高度H上延伸,并包括沿着所述预定高度相对的第一圆形端部(38)和第二圆形端部(39)。
5.根据权利要求4所述的轮叶(20),其特征在于,所述预定高度与所述预定宽度之比介于0.5到2.5之间。
6.根据权利要求3至5中任一项所述的轮叶(20),其特征在于,每个校准导管(34)包括具有第一半径R1的圆弧部分(40),所述圆弧部分相对于穿过所述中心轴线A并垂直于所述预定宽度L的第一中间平面(P1)对称,并且相对于穿过所述中心轴线并垂直于所述预定高度H的第二中间平面(P2)对称。
7.根据前一项权利要求所述的轮叶(20),其特征在于,所述第一端部和所述第二端部(38,39)沿着具有第二半径R2的圆弧圆化,所述第二半径R2的值小于所述第一半径R1的值。
8.根据权利要求6和7中任一项所述的轮叶(20),其特征在于,所述第一半径R1的所述值等于具有圆形截面的校准导管的标称半径R0的两倍,所述圆形截面的通道面积等于具有长圆形截面的所述校准导管的横截面的通道面积。
9.一种涡轮发动机涡轮,所述涡轮发动涡轮包括至少一个根据前述权利要求中任一项所述的轮叶(20)。
10.一种涡轮发动机(1),所述涡轮发动机包括至少一个根据前一项权利要求所述的涡轮。
CN202080022083.8A 2019-03-22 2020-03-16 设置有优化的冷却回路的涡轮发动机叶片 Pending CN113574248A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1903017 2019-03-22
FR1903017A FR3094033B1 (fr) 2019-03-22 2019-03-22 Aube de turbomachine equipee d’un circuit de refroidissement optimise
PCT/FR2020/050566 WO2020193913A1 (fr) 2019-03-22 2020-03-16 Aube de turbomachine equipee d'un circuit de refroidissement optimise

Publications (1)

Publication Number Publication Date
CN113574248A true CN113574248A (zh) 2021-10-29

Family

ID=67107880

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080022083.8A Pending CN113574248A (zh) 2019-03-22 2020-03-16 设置有优化的冷却回路的涡轮发动机叶片

Country Status (6)

Country Link
US (1) US11808167B2 (zh)
EP (1) EP3942158A1 (zh)
CN (1) CN113574248A (zh)
CA (1) CA3133762A1 (zh)
FR (1) FR3094033B1 (zh)
WO (1) WO2020193913A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12012866B1 (en) * 2023-06-12 2024-06-18 Rtx Corporation Non-circular stress reducing crossover

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1267039A1 (de) * 2001-06-11 2002-12-18 ALSTOM (Switzerland) Ltd Kühlkonstruktion für Schaufelblatthinterkante
US20040115053A1 (en) * 2002-12-17 2004-06-17 Baolan Shi Venturi outlet turbine airfoil
US20050135935A1 (en) * 2003-12-19 2005-06-23 United Technologies Corporation Cooled rotor blade with vibration damping device
EP1793083A2 (fr) * 2005-12-05 2007-06-06 Snecma Aube de turbine à refroidissement et à durée de vie améliorés
CN103052765A (zh) * 2011-03-11 2013-04-17 三菱重工业株式会社 燃气涡轮机动叶片及燃气涡轮机
US20130259645A1 (en) * 2012-03-30 2013-10-03 Robert Frederick Bergholz, JR. Turbine airfoil trailing edge cooling slots
CN104285038A (zh) * 2012-05-08 2015-01-14 通用电气公司 涡轮翼型件后缘冷却槽口
CN104508247A (zh) * 2012-08-06 2015-04-08 通用电气公司 带有优选的孔对准的旋转涡轮构件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458252B2 (en) * 2015-12-01 2019-10-29 United Technologies Corporation Cooling passages for a gas path component of a gas turbine engine
FR3048718B1 (fr) * 2016-03-10 2020-01-24 Safran Aube de turbomachine a refroidissement optimise

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1267039A1 (de) * 2001-06-11 2002-12-18 ALSTOM (Switzerland) Ltd Kühlkonstruktion für Schaufelblatthinterkante
US20040115053A1 (en) * 2002-12-17 2004-06-17 Baolan Shi Venturi outlet turbine airfoil
US20050135935A1 (en) * 2003-12-19 2005-06-23 United Technologies Corporation Cooled rotor blade with vibration damping device
EP1793083A2 (fr) * 2005-12-05 2007-06-06 Snecma Aube de turbine à refroidissement et à durée de vie améliorés
CN103052765A (zh) * 2011-03-11 2013-04-17 三菱重工业株式会社 燃气涡轮机动叶片及燃气涡轮机
US20130259645A1 (en) * 2012-03-30 2013-10-03 Robert Frederick Bergholz, JR. Turbine airfoil trailing edge cooling slots
CN104285038A (zh) * 2012-05-08 2015-01-14 通用电气公司 涡轮翼型件后缘冷却槽口
CN104508247A (zh) * 2012-08-06 2015-04-08 通用电气公司 带有优选的孔对准的旋转涡轮构件

Also Published As

Publication number Publication date
CA3133762A1 (en) 2020-10-01
WO2020193913A1 (fr) 2020-10-01
FR3094033B1 (fr) 2021-06-11
EP3942158A1 (fr) 2022-01-26
US20220178261A1 (en) 2022-06-09
FR3094033A1 (fr) 2020-09-25
US11808167B2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
CN1525048B (zh) 燃气轮机发动机涡轮机喷嘴分叉冲击隔板
CN100460630C (zh) 悬臂式安装的喷嘴段
JP4000121B2 (ja) 二分割空洞を有する単一の中空ベーンを備えたガスタービンエンジンのタービンノズルセグメント
JP5997831B2 (ja) 局所的な壁厚さ制御を伴うタービン翼
US8449254B2 (en) Branched airfoil core cooling arrangement
US7862295B2 (en) Device for guiding a stream of air entering a combustion chamber of a turbomachine
JP4311919B2 (ja) ガスタービンエンジン用のタービン翼形部
EP2871323B1 (en) Gas turbine nozzle end wall cooling
US10533454B2 (en) Turbine shroud cooling
JP2001003704A (ja) 内部冷却式タービン翼形部
US10502093B2 (en) Turbine shroud cooling
US10233836B2 (en) Turbomachine combustion chamber provided with air deflection means for reducing the wake created by an ignition plug
CN111434892A (zh) 转子,配备有该转子的涡轮和配备有该涡轮的涡轮机
US11118475B2 (en) Turbine shroud cooling
US7004721B2 (en) Annular platform for a nozzle of a low-pressure turbine of a turbomachine
CN113574248A (zh) 设置有优化的冷却回路的涡轮发动机叶片
CN115427663A (zh) 包括用于冷却后缘的三种类型的孔口的涡轮叶片
CN111433438B (zh) 用于燃气涡轮发动机的隔热罩
EP3875735A1 (en) Aerofoil for a gas turbine
RU2814335C2 (ru) Лопатка газотурбинного двигателя, оснащенная оптимизированной системой охлаждения
KR20210062058A (ko) 터빈 동익, 터빈 및 팁 클리어런스 계측 방법
CN113710875B (zh) 涡轮发动机叶片、相关涡轮发动机分配器和涡轮发动机
US11753945B2 (en) Turbine blade comprising ribs between cooling outlets with cooling holes
CN114423929B (zh) 用于通过空气射流对涡轮壳体进行冷却的装置
CN112955641B (zh) 一种用于对涡轮机喷嘴进行除冰的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination