CN113567317A - 一种用于地铁结构地下水渗流模拟的试验装置及系统 - Google Patents

一种用于地铁结构地下水渗流模拟的试验装置及系统 Download PDF

Info

Publication number
CN113567317A
CN113567317A CN202110693112.XA CN202110693112A CN113567317A CN 113567317 A CN113567317 A CN 113567317A CN 202110693112 A CN202110693112 A CN 202110693112A CN 113567317 A CN113567317 A CN 113567317A
Authority
CN
China
Prior art keywords
water
tank
model frame
underground
subway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110693112.XA
Other languages
English (en)
Inventor
王鑫
李虎
李欣
曾纯品
雷炳霄
杜晓峰
董亚楠
狄胜同
黄永亮
朱潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Jinan Rail Transit Group Co Ltd
No 801 Hydrogeological Engineering Geology Brigade of Shandong Bureau of Geology and Mineral Resources
Original Assignee
Shandong University
Jinan Rail Transit Group Co Ltd
No 801 Hydrogeological Engineering Geology Brigade of Shandong Bureau of Geology and Mineral Resources
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University, Jinan Rail Transit Group Co Ltd, No 801 Hydrogeological Engineering Geology Brigade of Shandong Bureau of Geology and Mineral Resources filed Critical Shandong University
Priority to CN202110693112.XA priority Critical patent/CN113567317A/zh
Publication of CN113567317A publication Critical patent/CN113567317A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/0806Details, e.g. sample holders, mounting samples for testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明公开了一种用于地铁结构地下水渗流模拟的试验装置及系统,其技术方案为:包括用于填筑土体的模型架,其一侧开有用于模拟隧道开挖的预留孔洞;与预留孔洞所在面相邻的两个侧面分别安装水箱,其中一个为进水箱,另一个为出水箱;进水箱与模型架通过若干进水孔连通,出水箱与模型架通过若干排水孔连通;进水箱、模型架与出水箱之间能够形成水循环。本发明能够模拟地铁施工过程对地下水渗流状态的影响,模拟数据准确,能够为实际施工提供参考,以减少地铁施工对地质环境的扰动。

Description

一种用于地铁结构地下水渗流模拟的试验装置及系统
技术领域
本发明涉及地铁施工技术领域,尤其涉及一种用于地铁结构地下水渗流模拟的试验装置及系统。
背景技术
城市化的发展带动了交通的发展,近年地铁工程发展迅速,越来越多的地铁在城镇穿行。城市水文地质较为复杂,地铁在施工过程中,难免会对地质环境产生扰动,因此亟需一种可靠的方法来研究地铁施工与地质环境之间的力学交互作用,进而来进行施工方案的指导和优化。
现阶段已经具备完备的地下水渗流理论体系,虽可以依据地下水渗流理论,根据地铁施工的地质条件来还原地下水渗流的状态,但是理论计算无法保证规律研究的实时性,并且无法针对多变的环境做出及时的调整,计算工作量大,效率低。数值模拟作为随着计算机技术的发展而发展的一项模拟计算技术,不仅可以在一定程度上对不同地质条件下的施工工况进行还原,还能实时地模拟地下水的动态演变规律,但是数值模拟技术的误差较大,其在建模计算过程中容易忽略多变的地质条件,而把模型“均匀化”,因此与实际的结果出入较大。
相似理论的推广与应用,在一定程度上也推进了相似模型实验应用。但是在实际应用过程中,部分结构的相似过程的变化以及一些物理力学参数的相似推导并不完整,进而导致实验的结果与实际有所出入。
发明内容
针对现有技术存在的不足,本发明的目的是提供一种用于地铁结构地下水渗流模拟的试验装置及系统,能够模拟地铁施工过程对地下水渗流状态的影响,模拟数据准确,能够为实际施工提供参考,以减少地铁施工对地质环境的扰动。
为了实现上述目的,本发明是通过如下的技术方案来实现:
第一方面,本发明的实施例提供了一种用于地铁结构地下水渗流模拟的试验装置,包括用于填筑土体的模型架,其一侧开有用于模拟隧道开挖的预留孔洞;
与预留孔洞所在面相邻的两个侧面分别安装水箱,其中一个为进水箱,另一个为出水箱;进水箱与模型架通过若干进水孔连通,出水箱与模型架通过若干排水孔连通;进水箱、模型架与出水箱之间能够形成水循环。
作为进一步的实现方式,所述水箱与模型架接触的界面安装有过滤筛网。
作为进一步的实现方式,所述水箱远离模型架一侧开有溢水孔,且溢水孔下方设有与水箱连通的水管。
作为进一步的实现方式,所述模型架顶部可拆卸连接盖板。
第二方面,本发明实施例还提供了一种用于地铁结构地下水渗流模拟的试验系统,包括所述的试验装置。
作为进一步的实现方式,还包括:
变水位控制装置,包括变水位水槽、安装于变水位水槽底部的升降机构,变水位水槽通过水管与进水箱连接;
循环供水装置,包括用于向变水位水槽加水的蓄水池,所述蓄水池通过水管与出水箱连接以形成回路;
检测装置,包括设置于模型架内部的沉降标、孔隙水压力计、土压力计和流量计。
作为进一步的实现方式,所述变水位水槽包括水槽外层和水槽内层,水槽内层设于水槽外层的内侧,且低于水槽外层。
作为进一步的实现方式,所述变水位水槽外侧设有沿其高度方向设置的刻度尺。
作为进一步的实现方式,所述模型架上方设有高速摄像机,高速摄像机安装于伸缩支架上。
作为进一步的实现方式,所述蓄水池与出水箱之间的水管安装水泵。
上述本发明的实施例的有益效果如下:
(1)本发明的一个或多个实施方式的试验装置包括模型架、进水箱和出水箱,进水箱能够向填筑有土体的模型架中渗水,土体中的水能够渗透至出水箱;通过模型架、进水箱和出水箱形成土体渗流模拟;模型架开有预留孔洞,以模拟隧道开挖,并设置地铁结构,从而还原地铁过程对地下水渗流状态的影响。
(2)本发明的一个或多个实施方式设置变水位控制装置,能够向试验装置供水,且水位可调节;配合设置的刻度尺,保证试验的准确性;变水位控制装置与模型架、蓄水池之间形成水循环,使水能够重复利用。
(3)本发明的一个或多个实施方式设置沉降标、孔隙水压力计、土压力计以、流量计及高速摄像机,能够获取土体渗流过程中的多维参数,提高模拟试验的准确性,以为实际地铁施工提供准确的参考。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本发明根据一个或多个实施方式的系统结构示意图;
图2是本发明根据一个或多个实施方式的试验装置结构示意图;
图3是本发明根据一个或多个实施方式的检测装置安装示意图;
图4是本发明根据一个或多个实施方式的地铁结构安装示意图;
图5是本发明根据一个或多个实施方式的变水位控制装置结构示意图;
其中,1、模型架,2、进水箱,3、出水箱,4、预留孔洞,5、盖板,6、进水管,7、出水管,8、高速摄像机,9、伸缩支架,10、溢水孔,11、水槽外层,12、水槽内层,13、升降机构,14、加水管,15、刻度尺,16、蓄水池,17、水泵,18、沉降标,19、计算机,20、孔隙水压力计,21、土压力计,22、流量计,23、地铁结构,24、进水孔,25、排水孔。
具体实施方式
实施例一:
本实施例提供了一种用于地铁结构地下水渗流模拟的试验装置,能够模拟地铁环境,如图2所示,包括模型架1、进水箱2、出水箱3,进水箱2设置于模型架1一侧,出水箱3设置于模型架1另一侧。
模型架1内部能够填筑土体,在本实施例中,所述模型架1由工字钢和矩形板构成长方体框架结构。进一步的,模型架1顶部安装盖板5,盖板5与模型架1可拆卸连接。
在本实施例中,模型架1的矩形板采用有机材料制成,例如亚克力板;模型架1的四周通过工字钢固定,以保证在土体填埋过程中模型架1的稳定性,同时更容易观察到后期渗流试验过程中的地下水渗流规律。亚克力板之间采用光固化胶固定,不仅保证了模型装置的美观及稳定性,更有利于试验中的地下水渗流规律的观测。
进一步的,模型架1开有用于模拟隧道开挖的预留孔洞1。在本实施例中,进水箱2、出水箱3位于模型架1长度方向的两侧;预留孔洞1设于模型架1宽度方向的一侧。
在本实施例中,进水箱2、出水箱3设置为长方体结构,且与模型架1的高度保持一致,进水箱2与模型架1相接的一侧开有若干进水孔24,水通过进水孔24从进水箱2中渗流至模型架1内部土体。出水箱3与模型架1相接的一侧开有若干排水孔25,水通过排水孔25从模型架1中渗流至出水箱3。
优选地,进水孔24、排水孔25沿其所在侧面呈多排多列分布。为了避免细小土体颗粒通过进水孔24、排水孔25,所述进水箱2、出水箱3与模型架1交界的侧面分别安装过滤筛网,以起到过滤作用,防止试验过程中的土体扩散到水箱影响试验的正常进行。过滤筛网的空隙可以设置为12mm、8mm、5mm、1mm、0.6mm。
进一步的,进水箱2远离模型架1的一侧连接进水管6,进水管6用于为进水箱2供水。出水箱3远离模型架1的一侧连接出水管7,出水管7用于将出水箱3中的水排出;排出的水能够重新进入进水箱2,以形成水循环。
进一步的,所述进水箱2、出水箱3远离模型架1的一侧开有溢水孔10,溢水孔10位于进水箱2、出水箱3靠近顶部位置。
在本实施例中,进水箱2、出水箱3的尺寸设置为2.4m×0.2m×0.5m;根据相似比的换算在模型架1侧面设置36cm的预留孔洞4作为隧道开挖的预留洞;进水孔24、排水孔25的直径设置为10mm,且沿对应水箱侧面呈9×9排列。可以理解的,在其他实施例中,上述尺寸可以根据具体试验要求设置。
实施例二:
本实施例提供了一种用于地铁结构地下水渗流模拟的试验系统,如图1所示,包括实施例一所述的试验装置,还包括变水位控制装置、循环供水装置和检测装置,变水位控制装置连接模型试验装置的进水箱2,循环供水装置连接模型试验装置的出水箱3;且循环供水装置为变水位控制装置供水,从而使系统形成水循环。
进一步的,如图5所示,变水位控制装置包括变水位水槽、升降机构13,升降机构13安装于变水位水槽底部,用于控制变水位水槽升降,从而实现水位的调节。升降机构13采用现有结构,例如交叉式升降机。
在本实施例中,变水位水槽设置为长方体结构,其顶部开口;包括水槽外层11和水槽内层12,水槽内层12设于水槽外层11内部,且与水槽外层11有一定的间距。所述水槽内层12的高度低于水槽外层11,通过高度不同的水槽内层12和水槽外层11为模型架1提供水位可变的水流。
可以理解的,在其他实施例中,变水位水槽也可以设置为顶部开口的圆柱形结构,只要能够容纳水即可。
进一步的,变水位水槽的底部通过进水管6与进水箱2连通,以使水从变水位水槽进入进水箱2内。变水位水槽的侧面设置刻度尺4,刻度尺4沿变水位水槽高度方向设置,以确定水位高度,保证试验的精确性。
为了保证变水位水槽的稳定性,变水位水槽设置于支撑架内,升降机构13与支撑架固定。
在本实施例中,变水位水槽采用亚克力板材料制成,方便在调整高度的过程中观察到水位的高度;进水管6采用PVC材质,保证在增大流速的过程中不会影响水管波动。
进一步的,循环供水装置包括蓄水池16、水泵17,蓄水池16连接加水管14,加水管14的端部位于变水位水槽上方。所述加水管14安装水泵17,通过水泵17将蓄水池16中的水泵入变水位水槽;变水位水槽中的水通过进水管6进入进水箱2内部。
所述蓄水池16通过水管连接水源,蓄水池16还通过出水管7连接出水箱3,且出水管7上安装水泵17,通过水泵17将出水箱3中的水泵入蓄水池16,以使水循环使用。
进一步的,所述检测装置包括设置于模型架1内部的沉降标18、孔隙水压力计20、土压力计21和流量计22,如图3和图4所示,沉降标18、孔隙水压力计20、土压力计21和流量计22分别连接计算机19,计算机19能够实时分析记录土层的地下水在试验过程中的渗流参数。
所述检测装置还包括高速摄像机8,高速摄像机8位于模型架1上方,且高速摄像机8安装于伸缩支架9上,以使高速摄像机8的高度可调节。伸缩支架9采用现有伸缩结构,此处不再赘述。高速摄像机8实时记录含水层中的土体颗粒的空间变化,以获得地下水的渗流路径。
如图4所示,模型架1中设置地铁结构23,地铁结构23通过一定的相似比例采用混凝土浇筑力学等效的长方体模型,用于试验过程中研究地铁施工过程对地下水渗流状态的影响。
进一步的,相似比的推导过程为:
假定饱和土体中土的骨架变形为线弹性、微小变形、渗流符合达西定律、水为不可压缩或者微压缩,体积力只考虑重力,根据平衡方程、有效应力原理及物理、几何方程推导得到以位移和孔隙水压力表示的平衡微分方程:
Figure BDA0003126925080000081
式中,G为剪切模量,μ为泊松比,γ为土的容重,ωx、ωx、ωx分别为x、y、z方向上的位移,u为孔隙水压力。▽2为拉普拉斯算子,其中:
Figure BDA0003126925080000082
根据达西定律和饱和土连续性得到以位移和孔隙水压力表示的连续性方程。
Figure BDA0003126925080000083
其中,γw为水的容重,kx、ky、kz分别为x、y、z方向上的渗透系数。为充分体现研究土体在地铁施工过程中的渗流演变特性,在模型实验中采取原状土样和自然水流体。因此,控制方程中的土体剪切模量G、泊松比μ在模型物理体系和原型物理体系中的相似常数相同;进一步地定义以下相似常数:
Figure BDA0003126925080000084
将相似常数代入比奥固结方程中,得模型物理场控制方程为:
Figure BDA0003126925080000085
进而得到相似指标为:
Figure BDA0003126925080000086
将相似变换代入到相似指标中,得到基于比奥固结方程的相似准则为:
Figure BDA0003126925080000091
综上所示,渗透系数为k=Kg/v,其中K为土体渗透率,v为流体运动粘滞系数。综合上述固结理论相似准则分析可得,当模型试验在离心场Ng作用下时,模型尺寸若缩减至原型的1/N时,土体变形位移缩减为原型的1/N,孔隙水压力保持不变,渗透系数比尺增大为原型的N倍。据此,根据实际的物理参数推算出相应的应力相似参数、渗流相似参数。
本实施例通过水源向蓄水池16提供水体,水体由安装于加水管14上的水泵17抽取提供给变水位控制装置,通过进水管6将变水位控制装置的水流提供给模型架1,模拟地下水环境。在试验过程中的,当地下水渗流达到平衡时,水流会流向模型架1侧面的出水箱3,当出水箱3中的水流达到一定的高度,通过安装于出水管7上的水泵17将水抽回蓄水池16,完成水循环。
本实施例通过模型试验装置、变水位控制装置、循环供水装置和检测装置构成模拟地铁施工中的地下水渗流情况,能够实现多尺度的地下水渗流状态观察,能够为后期施工提供指导,通过施工方案的优化,减少地铁施工对地质环境的扰动。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种用于地铁结构地下水渗流模拟的试验装置,其特征在于,包括用于填筑土体的模型架,其一侧开有用于模拟隧道开挖的预留孔洞;
与预留孔洞所在面相邻的两个侧面分别安装水箱,其中一个为进水箱,另一个为出水箱;进水箱与模型架通过若干进水孔连通,出水箱与模型架通过若干排水孔连通;进水箱、模型架与出水箱之间能够形成水循环。
2.根据权利要求1所述的一种用于地铁结构地下水渗流模拟的试验装置,其特征在于,所述水箱与模型架接触的界面安装有过滤筛网。
3.根据权利要求1所述的一种用于地铁结构地下水渗流模拟的试验装置,其特征在于,所述水箱远离模型架一侧开有溢水孔,且溢水孔下方设有与水箱连通的水管。
4.根据权利要求1所述的一种用于地铁结构地下水渗流模拟的试验装置,其特征在于,所述模型架顶部可拆卸连接盖板。
5.一种用于地铁结构地下水渗流模拟的试验系统,其特征在于,包括如权利要求1-4任一所述的试验装置。
6.根据权利要求5所述的一种用于地铁结构地下水渗流模拟的试验系统,其特征在于,还包括:
变水位控制装置,包括变水位水槽、安装于变水位水槽底部的升降机构,变水位水槽通过水管与进水箱连接;
循环供水装置,包括用于向变水位水槽加水的蓄水池,所述蓄水池通过水管与出水箱连接以形成回路;
检测装置,包括设置于模型架内部的沉降标、孔隙水压力计、土压力计和流量计。
7.根据权利要求6所述的一种用于地铁结构地下水渗流模拟的试验系统,其特征在于,所述变水位水槽包括水槽外层和水槽内层,水槽内层设于水槽外层的内侧,且低于水槽外层。
8.根据权利要求6或7所述的一种用于地铁结构地下水渗流模拟的试验系统,其特征在于,所述变水位水槽外侧设有沿其高度方向设置的刻度尺。
9.根据权利要求6所述的一种用于地铁结构地下水渗流模拟的试验系统,其特征在于,所述模型架上方设有高速摄像机,高速摄像机安装于伸缩支架上。
10.根据权利要求6所述的一种用于地铁结构地下水渗流模拟的试验系统,其特征在于,所述蓄水池与出水箱之间的水管安装水泵。
CN202110693112.XA 2021-06-22 2021-06-22 一种用于地铁结构地下水渗流模拟的试验装置及系统 Pending CN113567317A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110693112.XA CN113567317A (zh) 2021-06-22 2021-06-22 一种用于地铁结构地下水渗流模拟的试验装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110693112.XA CN113567317A (zh) 2021-06-22 2021-06-22 一种用于地铁结构地下水渗流模拟的试验装置及系统

Publications (1)

Publication Number Publication Date
CN113567317A true CN113567317A (zh) 2021-10-29

Family

ID=78162467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110693112.XA Pending CN113567317A (zh) 2021-06-22 2021-06-22 一种用于地铁结构地下水渗流模拟的试验装置及系统

Country Status (1)

Country Link
CN (1) CN113567317A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005363A (zh) * 2014-06-13 2014-08-27 东南大学 一种三维地下承压水流-地铁隧道结构相互作用模拟装置
CN104713987A (zh) * 2015-01-25 2015-06-17 北京工业大学 一种模拟隧道开挖过程的模型试验装置
KR20170038950A (ko) * 2015-09-30 2017-04-10 한국지질자원연구원 지반함몰 모사 토조 시험장치 및 시스템
CN107330191A (zh) * 2017-06-30 2017-11-07 暨南大学 地下水对地铁盾构隧道施工影响的数值模拟分析方法
CN108205057A (zh) * 2017-12-06 2018-06-26 湖南大学 地下工程截断水循环路径引发城区地层塌陷的模拟试验装置
CN108489892A (zh) * 2018-03-29 2018-09-04 华东交通大学 一种渗流条件下海底盾构隧道开挖试验装置及方法
AU2020103048A4 (en) * 2019-12-16 2020-12-24 Guilin University Of Technology Anti-floating simulation device of subways in karst areas
CN112414915A (zh) * 2020-11-02 2021-02-26 山东大学 模拟复杂地质条件下隧道开挖渗流变化的试验系统及方法
CN112504935A (zh) * 2020-11-25 2021-03-16 青岛理工大学 隧道渗流试验装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005363A (zh) * 2014-06-13 2014-08-27 东南大学 一种三维地下承压水流-地铁隧道结构相互作用模拟装置
CN104713987A (zh) * 2015-01-25 2015-06-17 北京工业大学 一种模拟隧道开挖过程的模型试验装置
KR20170038950A (ko) * 2015-09-30 2017-04-10 한국지질자원연구원 지반함몰 모사 토조 시험장치 및 시스템
CN107330191A (zh) * 2017-06-30 2017-11-07 暨南大学 地下水对地铁盾构隧道施工影响的数值模拟分析方法
CN108205057A (zh) * 2017-12-06 2018-06-26 湖南大学 地下工程截断水循环路径引发城区地层塌陷的模拟试验装置
CN108489892A (zh) * 2018-03-29 2018-09-04 华东交通大学 一种渗流条件下海底盾构隧道开挖试验装置及方法
AU2020103048A4 (en) * 2019-12-16 2020-12-24 Guilin University Of Technology Anti-floating simulation device of subways in karst areas
CN112414915A (zh) * 2020-11-02 2021-02-26 山东大学 模拟复杂地质条件下隧道开挖渗流变化的试验系统及方法
CN112504935A (zh) * 2020-11-25 2021-03-16 青岛理工大学 隧道渗流试验装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
狄胜同: "地下水开采导致地面沉降全过程宏细观演化机理及趋势预测研究", 博士电子期刊, pages 3 - 3 *

Similar Documents

Publication Publication Date Title
CN100583188C (zh) 地质环境模拟实验装置
CN100568318C (zh) 潜水完整井抽水模拟装置
CN102518421B (zh) 物理模拟可视化实验装置及其形成方法
CN100446052C (zh) 承压完整井抽水模拟装置
CN107024574B (zh) 一种土拱效应模拟试验装置及试验方法
CN103953074A (zh) 一种开口管桩锤击贯入和静荷载模拟实验装置及实验方法
CN105810075A (zh) 抽水触发岩溶塌陷过程实验装置
CN108152118B (zh) 一种可调节水头的桩承式路基渗流侵蚀试验装置
CN102434151B (zh) 底水油藏开发中底水锥进动态模拟实验装置及模拟系统
CN104483240A (zh) 一种大尺度模拟污染物在含水层垂向迁移的模拟装置
CN104005363A (zh) 一种三维地下承压水流-地铁隧道结构相互作用模拟装置
CN106284436B (zh) 一种采动区地表沉陷单桩静载荷模型试验装置及试验方法
CN107145671B (zh) 一种油藏数值模拟方法及系统
CN105672379A (zh) 动态承压水作用的基坑开挖模型试验装置
CN103389260B (zh) 桩基础阻碍地下水渗流的室内模拟试验方法
CN104929624B (zh) 一种超压驱动下原油二次运移速率的计算方法
Tang et al. Groundwater engineering
CN109085323A (zh) 一种可分层控制水位的分层沉降模型试验装置及试验方法
CN109372478A (zh) 一种确定非混相气驱油开采方式的实验方法及装置
CN103510950A (zh) 一种复杂结构井地层流动与管内流动耦合流动实验系统
CN112597673B (zh) 确定降雨条件下伺服支撑系统对基坑变形控制效果的方法
CN103866736A (zh) 一种矿震对煤矿地下水库影响的物理模拟试验系统及方法
CN202417477U (zh) 物理模拟可视化实验装置
CN106053762A (zh) 一种沿湖路堤渗流和变形特征试验装置及其试验方法
CN105672378A (zh) 模拟承压水头升降的基坑开挖模型试验装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination