CN113566833A - 一种多传感器融合的车辆定位方法及系统 - Google Patents

一种多传感器融合的车辆定位方法及系统 Download PDF

Info

Publication number
CN113566833A
CN113566833A CN202110853709.6A CN202110853709A CN113566833A CN 113566833 A CN113566833 A CN 113566833A CN 202110853709 A CN202110853709 A CN 202110853709A CN 113566833 A CN113566833 A CN 113566833A
Authority
CN
China
Prior art keywords
vehicle
positioning
data
sensor
navigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110853709.6A
Other languages
English (en)
Inventor
吴长水
朱锋
李升凯
赵立超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Engineering Science
Original Assignee
Shanghai University of Engineering Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Engineering Science filed Critical Shanghai University of Engineering Science
Priority to CN202110853709.6A priority Critical patent/CN113566833A/zh
Publication of CN113566833A publication Critical patent/CN113566833A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1652Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with ranging devices, e.g. LIDAR or RADAR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1656Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with passive imaging devices, e.g. cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明涉及一种多传感器融合的车辆定位方法及系统,如果可以接收GPS信号,则融合GPS装置和IMU惯性传感器进行车辆的定位,使用激光雷达进行障碍物检测,实现车辆的定位导航;如果不能接收GPS信号,则使用激光雷达构建栅格地图,融合IMU惯性传感器和相机进行车辆的定位和障碍物检测,实现车辆的定位导航。与现有技术相比,本发明根据有无GPS信号的情况,在不同的场景下采用不同的传感器融合方案进行车辆的定位导航,适用范围更广,结合多种传感器自身不同的优缺点相互配合辅助定位,定位精度高,鲁棒性好。

Description

一种多传感器融合的车辆定位方法及系统
技术领域
本发明涉及车辆定位技术领域,尤其是涉及一种多传感器融合的车辆定位方法及系统。
背景技术
2007年至今,无人驾驶系统中的定位手段大致可分为四代,其中第一代主要采用Velodyne64线激光雷达与相机分开处理方案;第二代主要方案为融合多颗16线或32线雷达融合摄像头以及其他传感器,进行定位于与目标识别;第三代主要将第二代激光雷达升级为固态激光雷达,并将固态雷达安装到车辆的前方;第四代方案将去除方向盘,采用的是移动空间的概念,目前是所有厂商追求的终极目标。综上可以看出,多传感器融合均是定位技术中必须攻克的难点。
多传感器融合技术主要存在传感器同步与融合数据开发两个难点,前者主要在于传感器高精度的时间以及空间同步,需要对激光雷达、摄像头等传感器的特性,以及人工智能有着较为深刻的理解;后者则涌现出了多种传感器融合方案,主要分为前融合与后融合两大方案。其中,后融合算法在数据原始层进行处理,可得到点云、视觉、毫米波信息的处理结果,并将目标识别结果进行汇总,从而不会丧失数据的完整性;前融合算法先将各种传感器算法进行空间与时间同步,通过算法过滤掉一些目标,从而达到端到端的目标识别效果,但是由于激光雷达产生的是3D点云数据,与摄像头收到的图像数据帧率完全不同且难以在数据空间内进行匹配,且不同品牌的激光雷达,激光雷达产生的点云特性也不尽相同,导致无人驾驶中传感器前融合算法鲁棒性较弱。
多传感器融合技术的发展,主要依赖与自动驾驶与深度学习的持续推进,在一定的融合准则下,通过对不同时间与空间维度的多传感器信息进行分析,并获得被测目标的相同描述与解释,进而得到精准的后续决策和估计。传统的传感器融合算法主要是卡尔曼滤波算法、D-S证据理论等,但是随着深度学习的发展,基于深度学习模型的融合算法也逐渐成为主要的研究方向。
目前多传感器融合的体系结构主要分为分布式、集中式和混合式。其中分布式先对各个独立传感器所获得的原始数据进行局部处理,然后再将结果送入信息融合中心进行智能优化组合来获得最终的结果。分布式对通信带宽的需求低、计算速度快、可靠性和延续性好,但跟踪的精度却远没有集中式高。集中式将各传感器获得的原始数据直接送至中央处理器进行融合处理,可以实现实时融合。其数据处理的精度高,算法灵活,缺点是对处理器的要求高,可靠性较低,数据量大,故难于实现。混合式多传感器信息融合框架中,部分传感器采用集中式融合方式,剩余的传感器采用分布式融合方式。混合式融合框架具有较强的适应能力,兼顾了集中式融合和分布式的优点,稳定性强。混合式融合方式的结构比前两种融合方式的结构复杂,这样就加大了通信和计算上的代价。
多传感器信息融合方案主要分为数据级融合、特征级融合和决策级融合三类方案,其中数据级融合:针对传感器采集的数据,依赖于传感器类型,进行同类数据的融合。数据级的融合要处理的数据都是在相同类别的传感器下采集,所以数据融合不能处理异构数据。特征级融合通过提取所采集数据包含的特征向量,用来体现所监测物理量的属性,这是面向监测对象特征的融合。如在图像数据的融合中,可以采用边沿的特征信息,来代替全部数据信息。决策级融合根据特征级融合所得到的数据特征,进行一定的判别、分类,以及简单的逻辑运算,根据应用需求进行较高级的决策,从而产生面向应用的融合。
在车辆定位系统中,主要依赖车辆自身运动状态的定位误差修正信息包括车辆速度和姿态角等,其中速度信息按照车辆的行进方向可以分为纵向速度、横向速度和垂向速度,姿态角信息通常包括俯仰角、侧倾角和方位角。由于车辆在实际运行过程中车轮一般不会离开路面,因此垂向速度、俯仰角、侧倾角的变化幅值较小。实际上,仅使用车辆方位角、纵向速度和横向速度就可以基于航位推算方法完成二维平面内的定位,因此这三个参数是影响车辆定位性能的关键参数。
在现有的用于车辆定位导航的多传感器融合技术中,纯视觉算法有着检测速度较快的优势,但在实际场景下,若目标存在遮挡,其识别框精度便会大幅度下降;视觉和惯性融合易受环境光线影响,计算量大,存在累计误差;激光雷达和惯性融合探测距离有限,不能识别物体,在特征不明显的环境中定位效果差,难以重定位;激光雷达和视觉融合计算量较大,定位结果依赖于准确的联合标定,在运动过快的情况下定位效果差;毫米波和激光雷达成本高,计算量大,且无法识别物体,在结构单一环境中定位效果差;惯性和声纳组合,存在累计误差,对动态目标跟踪效果较差。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种多传感器融合的车辆定位方法及系统,根据有无GPS信号的情况,在不同的场景下采用不同的传感器融合方案进行车辆的定位导航,适用范围更广,结合多种传感器自身不同的优缺点相互配合辅助定位,定位精度高,鲁棒性好。
本发明的目的可以通过以下技术方案来实现:
一种多传感器融合的车辆定位导航方法,如果可以接收GPS信号,则融合GPS装置和IMU惯性传感器进行车辆的定位,使用激光雷达进行障碍物检测,实现车辆的定位导航;如果不能接收GPS信号,则使用激光雷达构建栅格地图,融合IMU惯性传感器和相机进行车辆的定位和障碍物检测,实现车辆的定位导航。
进一步的,可以接收GPS信号时车辆的定位导航具体为:
获取IMU惯性传感器的测量数据,基于车辆在前一时刻的位置信息,经过坐标转换和位姿解算后得到车辆的第一位置信息;
获取GPS装置的测量数据,经过坐标转换后得到车辆的第二位置信息;
以第一位置信息为预测模型,以第二位置信息作为观测模型,使用卡尔曼滤波算法融合第一位置信息和第二位置信息,得到车辆在当前时刻的位置信息;
获取激光雷达的点云数据,得到车辆周围的障碍物信息,基于车辆在当前时刻的位置信息和车辆周围的障碍物信息实现车辆的导航。
进一步的,不能接收GPS信号时,例如在隧道或多层立交等场景下GPS信号被完全遮挡,车辆的定位导航具体为:
获取激光雷达的点云数据,构建二维栅格地图;
获取相机采集的连续的图像,对图像进行特征点提取,对相邻帧的图像的特征点进行匹配,基于匹配的特征点得到车辆的位姿信息和车辆周围的障碍物信息;
获取IMU惯性传感器的测量数据,基于车辆在前一时刻的位置信息,经过坐标转换和位姿解算后得到车辆的第一位置信息和车辆的速度信息;
使用位姿信息对第一位置信息进行矫正,得到车辆在当前时刻的位置信息,基于二维栅格地图和车辆障碍物周围的障碍物信息实现车辆的导航。
进一步的,如果不能接收GPS信号,且相机采集的数据不符合预设置的定位要求,如在光照变换强烈或特征缺失的环境中,则使用激光雷达构建栅格地图,使用IMU惯性传感器进行车辆的定位,实现车辆的定位导航。
更进一步的,不能接收GPS信号,且相机采集的数据不符合预设置的定位要求时车辆的定位导航具体为:
获取激光雷达的点云数据,构建二维栅格地图;
获取IMU惯性传感器的测量数据,基于车辆在前一时刻的位置信息,经过坐标转换和位姿解算后得到车辆的第一位置信息,将第一位置信息作为车辆在当前时刻的位置信息;
基于二维栅格地图和车辆在当前时刻的位置信息实现车辆的导航。
一种多传感器融合的车辆定位导航系统,包括传感器模块、同步控制器、数据采集器和计算模块;
所述传感器模块包括安装在车辆上的IMU惯性传感器、GPS装置、相机和激光雷达;
所述同步控制器用于实现传感器模块中各个传感器的数据同步,所述数据采集器用于获取传感器模块中各个传感器的数据;
所述计算模块基于传感器模块中各个传感器的数据,通过多传感器融合的车辆定位导航方法实现车辆的定位导航。
进一步的,相机采用主动同步方式,同步控制器向相机发送同步控制信号,包括一个触发信号和一个时间戳信息,相机接收到触发信号后开始采集数据,完成一次数据采集后将采集的数据与时间戳信息配准后发送给数据采集器。
进一步的,IMU惯性传感器采用被动同步方式,IMU惯性传感器完成一次数据采集后,将采集的数据发送给数据采集器,同时向同步控制器发送一个同步信号,所述同步控制器接收到同步信号后记录该同步信号的发生时间作为时间戳信息,并将时间戳信息发送给数据采集器,所述数据采集器将接收到的数据和时间戳信息进行配准。
进一步的,激光雷达采用授时同步方式,同步控制器向激光雷达同时发送脉冲信号和时间戳信息,激光雷达接收到脉冲信号后开始采集数据,完成一次数据采集后将采集的数据与时间戳信息配准后发送给数据采集器。
进一步的,计算模块进行车辆的定位导航时,基于预设置的坐标变换矩阵将传感器模块中各个传感器的数据统一到一个坐标系下,所述坐标变换矩阵是基于传感器模块中各个传感器在车辆上的安装位置计算得到的。
与现有技术相比,本发明具有以下有益效果:
(1)根据有无GPS信号的情况,在不同的场景下采用不同的传感器融合方案进行车辆的定位导航,适用范围更广,结合多种传感器自身不同的优缺点相互配合辅助定位,定位精度高,鲁棒性好。
(2)采用混合式架构进行多传感器融合,同时具备分布式和集中式两种架构的优点,提升了稳定性和精确度;采用特征级融合,特征级融合在兼容异构数据的同时,所需计算量较低。
(3)没有GPS信号时,通过相机、IMU惯性传感器和激光雷达进行定位导航,考虑到在光照变换强烈或特征缺失的环境中会相机导致定位失败,在相机采集的数据不符合预设置的定位要求时自动切换至激光雷达与IMU惯性传感器融合的模式完成定位功能。
(4)相机采用主动同步方式,IMU惯性传感器采用被动同步方式,激光雷达采用授时同步方式,根据传感器的特点设置了与之相适应的数据同步方式,实现多传感器的数据同步。
附图说明
图1为车辆定位方法的流程图;
图2为车辆定位系统的结构示意图;
图3为传感器模块在车辆上的安装示意图;
附图标记:1、传感器模块,2、同步控制器,3、数据采集器,4、计算模块。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
一种多传感器融合的车辆定位导航方法,如图1所示,如果可以接收GPS信号,则融合GPS装置和IMU惯性传感器进行车辆的定位,使用激光雷达进行障碍物检测,实现车辆的定位导航;如果不能接收GPS信号,则使用激光雷达构建栅格地图,融合IMU惯性传感器和相机进行车辆的定位和障碍物检测,实现车辆的定位导航。
一种多传感器融合的车辆定位导航系统,如图2所示,包括传感器模块1、同步控制器2、数据采集器3和计算模块4;
如图3所示,传感器模块1包括安装在车辆上的IMU惯性传感器、GPS装置、相机和激光雷达;
同步控制器2用于实现传感器模块1中各个传感器的数据同步,数据采集器用于获取传感器模块1中各个传感器的数据;
计算模块4基于传感器模块1中各个传感器的数据,通过多传感器融合的车辆定位导航方法实现车辆的定位导航。
IMU惯性传感器即惯性测量单元,主要用来检测和测量加速度与旋转运动的传感器,IMU惯性传感器可以实时测量车辆的运动状态信息,再利用成熟的导航解算方法实现全维导航参数(位置、速度、姿态)解算,可以作为主滤波器融合任何其它定位定姿传感器的信息,它的优势是独立自主,不与外界发生联系,不受平台、环境的干扰影响,采样率高、故障率低,从而具备高可用、高可靠的优点。本实施例中IMU惯性传感器采用Novatel公司的SAPN-FSAS,Novatel公司的SAPN-FSAS设备已经实现了GPS和IMU数据的同步,它本身也是一个同步控制器,即可以向外发送脉冲信号,也可以接收外部传感器的脉冲信号,因此,我们将SAPN-FSAS作为同步控制器2来同步相机和激光雷达的观测数据。
GPS装置是完成户外定位导航的关键设备,GPS系统包括了GPS卫星、地面主控与监测站及移动端GPS接收机组成。GPS可以提供的信息除车辆位置、速度以外,还包括伪距、星历等用于定位解算的原始数据。本实施例中,GPS采用北京北斗星通公司的C230-AT经济型单频GPS接收机。该接收机通过串口输出车辆三维位置坐标(经度、纬度、高度)、三维速度(东向、北向、天向)、时间等信息,单点水平定位精度为3m,速度测量精度为0.05m/s,输出频率为1Hz,GPS接收机放置在车内,GPS天线通过磁吸座安装在车辆顶部,其位置测量值作车辆定位的结果进行地图匹配。
相机是一种包含信息量非常广泛的传感器,成本较低,具有丰富的色彩信息,且分辨率比较高,比如1920×1080分辨率的相机拍摄的图像,在水平方向上就有1080条线,垂直方向上有1920条线,可以对视野内的景物进行比较全面的反应。
本实施例中相机采用海康威视车载网络摄像机,该摄像机可以在最高分辨率1920×1080、帧率30fps的情况下实时输出图像,并自带码流平滑设置,在车载振动环境中可以保证图像质量和流畅性,所采集的图像数据通过RJ45网络接口输出。
本实施例中相机采用前视方式安装,将其置于车辆内部前挡风玻璃中间的位置,拍摄车辆行驶过程中的前方图像信息。
激光雷达是一种由发射器发射红外光,通过接收器接收反射回来的光线,利用时间差来计算障碍物距离的传感器,不仅可以获取物体距离的信息,激光雷达还可以提供返回所扫描物体的密度信息,通过检测目标物体的空间方位和距离,通过点云来描述3D环境模型,提供目标的激光反射强度信息和被检测目标的详细形状描述等。本实施例中,激光雷达采用VLP-16激光雷达,VLP-16激光雷达是Velodyne公司出品的3维激光雷达,保留了电机转速可调节的功能。实时上传周围距离和反射率的测量值。VLP-16具有100米的远量程测量距离,每秒高达30万个点数据输出,±15°的垂直视场,360°水平视场扫描。
对于传感器模块1内的传感器,其工作频率不一样,如GPS装置的频率是10Hz,IMU惯性传感器的频率是1KHz,采集的数据不同步,因此需要同步控制器2实现数据的同步。
相机采用主动同步方式,同步控制器2发送同步控制信号,包括一个触发信号和一个时间戳信息,相机接收到触发信号后开始采集数据,完成一次数据采集后将采集的数据与时间戳信息配准后发送给数据采集器3。
IMU惯性传感器采用被动同步方式,IMU惯性传感器完成一次数据采集后,由硬件内部中断响应机制记录下精确时刻,将采集的数据发送给数据采集器3,同时向同步控制器2发送一个同步信号,同步控制器2接收到同步信号后记录该同步信号的发生时间作为时间戳信息,并将时间戳信息发送给数据采集器3,数据采集器3将接收到的数据和时间戳信息进行配准。
激光雷达采用授时同步方式,同步控制器2向激光雷达同时发送脉冲信号和时间戳信息,激光雷达接收到脉冲信号后开始采集数据,完成一次数据采集后将采集的数据与时间戳信息配准后发送给数据采集器3。
本申请的车辆定位导航分两种情况,一种是可以接收到GPS信号,一种是无法接收到GPS信号,在可以接收到GPS信号的情况下,通过GPS装置和IMU惯性传感器来进行导航和完成精确定位,接入激光雷达传感器对于指定范围内的障碍物进行检测。在无法接收到GPS信号的情况下,以相机与IMU传感器融合完成定位功能,并结合激光雷达构建栅格地图完成导航与路径规划功能;在特殊环境中相机图像特征缺失或跟踪定位失败的条件下,自动切换至激光雷达与IMU传感器融合的模式完成定位功能。
此外,如图3所示,由于各个传感器的安装位置不一样,采集到的数据需要进行坐标变换,可以基于预设置的坐标变换矩阵将传感器模块1中各个传感器的数据统一到一个坐标系下,坐标变换矩阵(如旋转矩阵、平移矩阵)是基于传感器模块1中各个传感器在车辆上的安装位置计算得到的。
(一)可以接收GPS信号时车辆的定位导航具体为:
获取IMU惯性传感器的测量数据,基于车辆在前一时刻的位置信息,经过坐标转换和位姿解算后得到车辆的第一位置信息;
获取GPS装置的测量数据,经过坐标转换后得到车辆的第二位置信息;
以第一位置信息为预测模型,以第二位置信息作为观测模型,使用卡尔曼滤波算法融合第一位置信息和第二位置信息,得到车辆在当前时刻的位置信息;
获取激光雷达的点云数据,得到车辆周围的障碍物信息,基于车辆在当前时刻的位置信息和车辆周围的障碍物信息实现车辆的导航。
在可以接收GPS信号的情况下,一方面,GPS提供了第二位置信息,而对IMU惯性传感器的数据进行积分得到第一位置信息。但是,IMU惯性传感器的定位误差会随着运行时间增长,假定IMU惯性传感器的频率是1KHz,GPS装置的频率是10Hz,那么两次GPS更新之间,可以使用100个IMU惯性传感器的测量数据进行位置预测,在接收到新的较精准的GPS数据时,使用GPS数据对当前的位置预测进行更新。不断重复,可以综合GPS装置和IMU惯性传感器的优点,校正IMU传感器累积误差,达到较好的定位效果。
通过GPS装置和IMU惯性传感器完成精确定位后,接入激光雷达对指定范围内的障碍物进行检测。在设定的激光雷达视野中没有障碍物时,车辆按照规划的路径进行行驶,当出现动态障碍物时,根据相对位置信息进行减速避障,当障碍物移除激光雷达视野时,继续按照规划路径进行行驶;在设定的激光雷达视野中出现镜头障碍物时,结合障碍物的形状大小进行探测,规划新的路径,避开障碍物后,继续行驶。而且,为了保证行驶安全,在车辆控制系统中,可以设定基于静态障碍物避障得到的局部规划路径的优先级高于原先的全局规划路径。
(二)不能接收GPS信号时,例如在隧道或多层立交等场景下GPS信号被完全遮挡,车辆的定位导航具体为:
获取激光雷达的点云数据,构建二维栅格地图;
获取相机采集的连续的图像,对图像进行特征点提取,对相邻帧的图像的特征点进行匹配,基于匹配的特征点得到车辆的位姿信息和车辆周围的障碍物信息;
获取IMU惯性传感器的测量数据,基于车辆在前一时刻的位置信息,经过坐标转换和位姿解算后得到车辆的第一位置信息和车辆的速度信息;
使用位姿信息对第一位置信息进行矫正,得到车辆在当前时刻的位置信息,基于二维栅格地图和车辆障碍物周围的障碍物信息实现车辆的导航。
主要采用视觉惯导的方法,通过特征点匹配可以得到车辆的位姿信息及障碍物信息,使用位姿信息矫正IMU惯性传感器的累积误差,得到位置信息,结合激光雷达构建的二维栅格地图完成导航和路径规划。
(三)如果不能接收GPS信号,且相机采集的数据不符合预设置的定位要求,如在光照变换强烈或特征缺失的环境中,导致相机定位识别,则使用激光雷达构建栅格地图,使用IMU惯性传感器进行车辆的定位,实现车辆的定位导航。
不能接收GPS信号,且相机采集的数据不符合预设置的定位要求时车辆的定位导航具体为:
获取激光雷达的点云数据,构建二维栅格地图;
获取IMU惯性传感器的测量数据,基于车辆在前一时刻的位置信息,经过坐标转换和位姿解算后得到车辆的第一位置信息,将第一位置信息作为车辆在当前时刻的位置信息;
基于二维栅格地图和车辆在当前时刻的位置信息实现车辆的导航。
在开阔环境中人为引入GPS失效以及城市环境中的真实GPS失效的场景下,对本申请提供的多传感器融合的车辆定位导航方法的性能进行了试验验证。试验结果表明本申请在GPS失效60s时,定位存在的最大误差小于12m,均方根误差小于3.1m,具有较高的定位精度。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种多传感器融合的车辆定位导航方法,其特征在于,
如果车辆可以接收GPS信号,则融合GPS装置和IMU惯性传感器进行车辆的定位,使用激光雷达进行障碍物检测,实现车辆的定位导航;
如果车辆不能接收GPS信号,则使用激光雷达构建栅格地图,融合IMU惯性传感器和相机进行车辆的定位和障碍物检测,实现车辆的定位导航。
2.根据权利要求1所述的一种多传感器融合的车辆定位导航方法,其特征在于,可以接收GPS信号时车辆的定位导航具体为:
获取IMU惯性传感器的测量数据,基于车辆在前一时刻的位置信息,经过坐标转换和位姿解算后得到车辆的第一位置信息;
获取GPS装置的测量数据,经过坐标转换后得到车辆的第二位置信息;
以第一位置信息为预测模型,以第二位置信息作为观测模型,使用卡尔曼滤波算法融合第一位置信息和第二位置信息,得到车辆在当前时刻的位置信息;
获取激光雷达的点云数据,得到车辆周围的障碍物信息,基于车辆在当前时刻的位置信息和车辆周围的障碍物信息实现车辆的导航。
3.根据权利要求1所述的一种多传感器融合的车辆定位导航方法,其特征在于,不能接收GPS信号时车辆的定位导航具体为:
获取激光雷达的点云数据,构建二维栅格地图;
获取相机采集的连续的图像,对图像进行特征点提取,对相邻帧的图像的特征点进行匹配,基于匹配的特征点得到车辆的位姿信息和车辆周围的障碍物信息;
获取IMU惯性传感器的测量数据,基于车辆在前一时刻的位置信息,经过坐标转换和位姿解算后得到车辆的第一位置信息和车辆的速度信息;
使用位姿信息对第一位置信息进行矫正,得到车辆在当前时刻的位置信息,基于二维栅格地图和车辆障碍物周围的障碍物信息实现车辆的导航。
4.根据权利要求1所述的一种多传感器融合的车辆定位导航方法,其特征在于,如果不能接收GPS信号,且相机采集的数据不符合预设置的定位要求,则使用激光雷达构建栅格地图,使用IMU惯性传感器进行车辆的定位,实现车辆的定位导航。
5.根据权利要求4所述的一种多传感器融合的车辆定位导航方法,其特征在于,不能接收GPS信号,且相机采集的数据不符合预设置的定位要求时车辆的定位导航具体为:
获取激光雷达的点云数据,构建二维栅格地图;
获取IMU惯性传感器的测量数据,基于车辆在前一时刻的位置信息,经过坐标转换和位姿解算后得到车辆的第一位置信息,将第一位置信息作为车辆在当前时刻的位置信息;
基于二维栅格地图和车辆在当前时刻的位置信息实现车辆的导航。
6.一种多传感器融合的车辆定位导航系统,其特征在于,基于如权利要求1-5中任一所述的车辆定位导航方法,包括传感器模块(1)、同步控制器(2)、数据采集器(3)和计算模块(4);
所述传感器模块(1)包括安装在车辆上的IMU惯性传感器、GPS装置、相机和激光雷达;
所述同步控制器(2)用于实现传感器模块(1)中各个传感器的数据同步,所述数据采集器用于获取传感器模块(1)中各个传感器的数据;
所述计算模块(4)基于传感器模块(1)中各个传感器的数据,通过多传感器融合的车辆定位导航方法实现车辆的定位导航。
7.根据权利要求6所述的一种多传感器融合的车辆定位导航系统,其特征在于,相机采用主动同步方式,同步控制器(2)向相机发送同步控制信号,包括一个触发信号和一个时间戳信息,相机接收到触发信号后开始采集数据,完成一次数据采集后将采集的数据与时间戳信息配准后发送给数据采集器(3)。
8.根据权利要求6所述的一种多传感器融合的车辆定位导航系统,其特征在于,IMU惯性传感器采用被动同步方式,IMU惯性传感器完成一次数据采集后,将采集的数据发送给数据采集器(3),同时向同步控制器(2)发送一个同步信号,所述同步控制器(2)接收到同步信号后记录该同步信号的发生时间作为时间戳信息,并将时间戳信息发送给数据采集器(3),所述数据采集器(3)将接收到的数据和时间戳信息进行配准。
9.根据权利要求6所述的一种多传感器融合的车辆定位导航系统,其特征在于,激光雷达采用授时同步方式,同步控制器(2)向激光雷达同时发送脉冲信号和时间戳信息,激光雷达接收到脉冲信号后开始采集数据,完成一次数据采集后将采集的数据与时间戳信息配准后发送给数据采集器(3)。
10.根据权利要求6所述的一种多传感器融合的车辆定位导航系统,其特征在于,计算模块(4)进行车辆的定位导航时,基于预设置的坐标变换矩阵将传感器模块(1)中各个传感器的数据统一到一个坐标系下,所述坐标变换矩阵是基于传感器模块(1)中各个传感器在车辆上的安装位置计算得到的。
CN202110853709.6A 2021-07-28 2021-07-28 一种多传感器融合的车辆定位方法及系统 Pending CN113566833A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110853709.6A CN113566833A (zh) 2021-07-28 2021-07-28 一种多传感器融合的车辆定位方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110853709.6A CN113566833A (zh) 2021-07-28 2021-07-28 一种多传感器融合的车辆定位方法及系统

Publications (1)

Publication Number Publication Date
CN113566833A true CN113566833A (zh) 2021-10-29

Family

ID=78168127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110853709.6A Pending CN113566833A (zh) 2021-07-28 2021-07-28 一种多传感器融合的车辆定位方法及系统

Country Status (1)

Country Link
CN (1) CN113566833A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199240A (zh) * 2022-02-18 2022-03-18 武汉理工大学 无gps信号下二维码、激光雷达与imu融合定位系统及方法
CN114264301A (zh) * 2021-12-13 2022-04-01 青岛慧拓智能机器有限公司 车载多传感器融合定位方法、装置、芯片及终端
CN114379544A (zh) * 2021-12-31 2022-04-22 北京华玉通软科技有限公司 一种基于多传感器前融合的自动泊车系统、方法及装置
CN114964280A (zh) * 2021-12-06 2022-08-30 星即科技(上海)有限公司 基于多元异构传感器的车内手机定位导航技术
CN115060276A (zh) * 2022-06-10 2022-09-16 江苏集萃清联智控科技有限公司 一种多环境适应性自动驾驶车辆定位设备、系统及方法
CN115343299A (zh) * 2022-10-18 2022-11-15 山东大学 一种轻量化公路隧道集成检测系统及方法
CN115391422A (zh) * 2022-08-22 2022-11-25 禾多科技(北京)有限公司 车辆感知信息生成方法、装置、设备、介质和程序产品
CN116087984A (zh) * 2022-12-26 2023-05-09 南通润邦海洋工程装备有限公司 一种基于激光雷达的作业船防碰撞平台
CN116839570A (zh) * 2023-07-13 2023-10-03 安徽农业大学 一种基于传感器融合目标检测的作物行间作业导航方法

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102831766A (zh) * 2012-07-04 2012-12-19 武汉大学 基于多传感器的多源交通数据融合方法
CN106918830A (zh) * 2017-03-23 2017-07-04 安科机器人有限公司 一种基于多导航模块的定位方法及移动机器人
CN108801276A (zh) * 2018-07-23 2018-11-13 奇瑞汽车股份有限公司 高精度地图生成方法及装置
CN108958266A (zh) * 2018-08-09 2018-12-07 北京智行者科技有限公司 一种地图数据获取方法
CN109945856A (zh) * 2019-02-18 2019-06-28 天津大学 基于惯性/雷达的无人机自主定位与建图方法
CN110160542A (zh) * 2018-08-20 2019-08-23 腾讯科技(深圳)有限公司 车道线的定位方法和装置、存储介质、电子装置
CN110208842A (zh) * 2019-05-28 2019-09-06 长安大学 一种车联网环境下车辆高精度定位方法
CN110345944A (zh) * 2019-05-27 2019-10-18 浙江工业大学 融合视觉特征和imu信息的机器人定位方法
CN110428467A (zh) * 2019-07-30 2019-11-08 四川大学 一种相机、imu和激光雷达联合的机器人定位方法
CN110658828A (zh) * 2019-10-25 2020-01-07 桂林电子科技大学 一种地貌自主探测方法及无人机
CN110849362A (zh) * 2019-11-28 2020-02-28 湖南率为控制科技有限公司 一种基于车载惯性的激光雷达与视觉组合导航算法
CN110906923A (zh) * 2019-11-28 2020-03-24 重庆长安汽车股份有限公司 车载多传感器紧耦合融合定位方法、系统、存储介质及车辆
CN111595333A (zh) * 2020-04-26 2020-08-28 武汉理工大学 视觉惯性激光数据融合的模块化无人车定位方法及系统
CN112082565A (zh) * 2020-07-30 2020-12-15 西安交通大学 一种无依托定位与导航方法、装置及存储介质
CN112097758A (zh) * 2019-06-18 2020-12-18 阿里巴巴集团控股有限公司 定位方法、装置、机器人定位方法和机器人
CN112179362A (zh) * 2019-07-03 2021-01-05 深动科技(北京)有限公司 高精度地图数据采集系统和采集方法
CN112214019A (zh) * 2020-09-21 2021-01-12 国网浙江省电力有限公司 一种无人巡检设备无盲区智能反馈控制系统、方法、终端
CN112347840A (zh) * 2020-08-25 2021-02-09 天津大学 视觉传感器激光雷达融合无人机定位与建图装置和方法
CN112525202A (zh) * 2020-12-21 2021-03-19 北京工商大学 一种基于多传感器融合的slam定位导航方法及系统
CN112577517A (zh) * 2020-11-13 2021-03-30 上汽大众汽车有限公司 一种多元定位传感器联合标定方法和系统
CN112698302A (zh) * 2020-12-16 2021-04-23 南京航空航天大学 一种颠簸路况下的传感器融合目标检测方法
CN112693466A (zh) * 2021-01-29 2021-04-23 重庆长安汽车股份有限公司 一种车辆环境感知传感器性能测评系统及方法
CN112907625A (zh) * 2021-02-05 2021-06-04 齐鲁工业大学 应用于四足仿生机器人的目标跟随方法及系统
CN112923931A (zh) * 2019-12-06 2021-06-08 北理慧动(常熟)科技有限公司 一种基于固定路线下的特征地图匹配与gps定位信息融合方法
CN113009502A (zh) * 2021-03-22 2021-06-22 国网福建省电力有限公司漳州供电公司 多光谱激光雷达系统及其工作方法
CN113984044A (zh) * 2021-10-08 2022-01-28 杭州鸿泉物联网技术股份有限公司 一种基于车载多感知融合的车辆位姿获取方法及装置

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102831766A (zh) * 2012-07-04 2012-12-19 武汉大学 基于多传感器的多源交通数据融合方法
CN106918830A (zh) * 2017-03-23 2017-07-04 安科机器人有限公司 一种基于多导航模块的定位方法及移动机器人
CN108801276A (zh) * 2018-07-23 2018-11-13 奇瑞汽车股份有限公司 高精度地图生成方法及装置
CN108958266A (zh) * 2018-08-09 2018-12-07 北京智行者科技有限公司 一种地图数据获取方法
CN110160542A (zh) * 2018-08-20 2019-08-23 腾讯科技(深圳)有限公司 车道线的定位方法和装置、存储介质、电子装置
CN109945856A (zh) * 2019-02-18 2019-06-28 天津大学 基于惯性/雷达的无人机自主定位与建图方法
CN110345944A (zh) * 2019-05-27 2019-10-18 浙江工业大学 融合视觉特征和imu信息的机器人定位方法
CN110208842A (zh) * 2019-05-28 2019-09-06 长安大学 一种车联网环境下车辆高精度定位方法
CN112097758A (zh) * 2019-06-18 2020-12-18 阿里巴巴集团控股有限公司 定位方法、装置、机器人定位方法和机器人
CN112179362A (zh) * 2019-07-03 2021-01-05 深动科技(北京)有限公司 高精度地图数据采集系统和采集方法
CN110428467A (zh) * 2019-07-30 2019-11-08 四川大学 一种相机、imu和激光雷达联合的机器人定位方法
CN110658828A (zh) * 2019-10-25 2020-01-07 桂林电子科技大学 一种地貌自主探测方法及无人机
CN110849362A (zh) * 2019-11-28 2020-02-28 湖南率为控制科技有限公司 一种基于车载惯性的激光雷达与视觉组合导航算法
CN110906923A (zh) * 2019-11-28 2020-03-24 重庆长安汽车股份有限公司 车载多传感器紧耦合融合定位方法、系统、存储介质及车辆
CN112923931A (zh) * 2019-12-06 2021-06-08 北理慧动(常熟)科技有限公司 一种基于固定路线下的特征地图匹配与gps定位信息融合方法
CN111595333A (zh) * 2020-04-26 2020-08-28 武汉理工大学 视觉惯性激光数据融合的模块化无人车定位方法及系统
CN112082565A (zh) * 2020-07-30 2020-12-15 西安交通大学 一种无依托定位与导航方法、装置及存储介质
CN112347840A (zh) * 2020-08-25 2021-02-09 天津大学 视觉传感器激光雷达融合无人机定位与建图装置和方法
CN112214019A (zh) * 2020-09-21 2021-01-12 国网浙江省电力有限公司 一种无人巡检设备无盲区智能反馈控制系统、方法、终端
CN112577517A (zh) * 2020-11-13 2021-03-30 上汽大众汽车有限公司 一种多元定位传感器联合标定方法和系统
CN112698302A (zh) * 2020-12-16 2021-04-23 南京航空航天大学 一种颠簸路况下的传感器融合目标检测方法
CN112525202A (zh) * 2020-12-21 2021-03-19 北京工商大学 一种基于多传感器融合的slam定位导航方法及系统
CN112693466A (zh) * 2021-01-29 2021-04-23 重庆长安汽车股份有限公司 一种车辆环境感知传感器性能测评系统及方法
CN112907625A (zh) * 2021-02-05 2021-06-04 齐鲁工业大学 应用于四足仿生机器人的目标跟随方法及系统
CN113009502A (zh) * 2021-03-22 2021-06-22 国网福建省电力有限公司漳州供电公司 多光谱激光雷达系统及其工作方法
CN113984044A (zh) * 2021-10-08 2022-01-28 杭州鸿泉物联网技术股份有限公司 一种基于车载多感知融合的车辆位姿获取方法及装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114964280A (zh) * 2021-12-06 2022-08-30 星即科技(上海)有限公司 基于多元异构传感器的车内手机定位导航技术
CN114264301A (zh) * 2021-12-13 2022-04-01 青岛慧拓智能机器有限公司 车载多传感器融合定位方法、装置、芯片及终端
CN114264301B (zh) * 2021-12-13 2024-06-21 青岛慧拓智能机器有限公司 车载多传感器融合定位方法、装置、芯片及终端
CN114379544A (zh) * 2021-12-31 2022-04-22 北京华玉通软科技有限公司 一种基于多传感器前融合的自动泊车系统、方法及装置
CN114199240A (zh) * 2022-02-18 2022-03-18 武汉理工大学 无gps信号下二维码、激光雷达与imu融合定位系统及方法
CN115060276B (zh) * 2022-06-10 2023-05-12 江苏集萃清联智控科技有限公司 一种多环境适应性自动驾驶车辆定位设备、系统及方法
CN115060276A (zh) * 2022-06-10 2022-09-16 江苏集萃清联智控科技有限公司 一种多环境适应性自动驾驶车辆定位设备、系统及方法
CN115391422A (zh) * 2022-08-22 2022-11-25 禾多科技(北京)有限公司 车辆感知信息生成方法、装置、设备、介质和程序产品
CN115391422B (zh) * 2022-08-22 2023-05-26 禾多科技(北京)有限公司 车辆感知信息生成方法、装置、设备、介质和程序产品
CN115343299A (zh) * 2022-10-18 2022-11-15 山东大学 一种轻量化公路隧道集成检测系统及方法
CN116087984A (zh) * 2022-12-26 2023-05-09 南通润邦海洋工程装备有限公司 一种基于激光雷达的作业船防碰撞平台
CN116087984B (zh) * 2022-12-26 2024-02-23 南通润邦海洋工程装备有限公司 一种基于激光雷达的作业船防碰撞平台
CN116839570A (zh) * 2023-07-13 2023-10-03 安徽农业大学 一种基于传感器融合目标检测的作物行间作业导航方法
CN116839570B (zh) * 2023-07-13 2023-12-01 安徽农业大学 一种基于传感器融合目标检测的作物行间作业导航方法

Similar Documents

Publication Publication Date Title
CN113566833A (zh) 一种多传感器融合的车辆定位方法及系统
CN113485441B (zh) 结合无人机高精度定位和视觉跟踪技术的配网巡检方法
CN110926474B (zh) 卫星/视觉/激光组合的城市峡谷环境uav定位导航方法
WO2021248636A1 (zh) 一种自动驾驶对象探测和定位系统及方法
CN113359097A (zh) 一种毫米波雷达和相机联合标定的方法
EP3757606A2 (en) Dense mapping using range sensor multi-scanning and multi-view geometry from successive image frames
CN112455502B (zh) 基于激光雷达的列车定位方法及装置
CN113075686B (zh) 一种基于多传感器融合的电缆沟智能巡检机器人建图方法
CN112346103A (zh) 基于v2x的智能网联汽车动态协同定位方法与装置
CN114674311B (zh) 一种室内定位与建图方法及系统
CN112179362A (zh) 高精度地图数据采集系统和采集方法
CN111999744A (zh) 一种无人机多方位探测、多角度智能避障方法
CN115540849A (zh) 高空作业平台激光视觉与惯导融合定位与建图装置及方法
CN117974766B (zh) 基于时空依据的分布式双红外传感器多目标同一性判定方法
Huang et al. A high-precision and robust odometry based on sparse MMW radar data and a large-range and long-distance radar positioning data set
CN112235041A (zh) 实时点云的处理系统、方法及机载数据采集装置、方法
CN117173214A (zh) 一种基于路侧单目相机的高精度地图实时全局定位跟踪方法
CN116625359A (zh) 一种自适应融合单频rtk的视觉惯性定位方法和设备
CN113947141B (zh) 一种城市路口场景的路侧灯塔感知系统
CN113917875A (zh) 一种自主无人系统开放通用智能控制器、方法及存储介质
CN116358534A (zh) 一种大型规则地底圆形隧道环境综合定位感知方法
Ishii et al. Autonomous UAV flight using the Total Station Navigation System in Non-GNSS Environments
CN117553811B (zh) 基于路侧相机与车载gnss/ins的车路协同定位导航方法及系统
EP4166989A1 (en) Methods and systems for determining a position and an acceleration of a vehicle
KR102699235B1 (ko) 정밀측위를 위한 장치 및 그 제어방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination