CN113563494B - 一种硫化氢释放剂的荧光衍生物ir780-ha-adt及其制备方法和应用 - Google Patents

一种硫化氢释放剂的荧光衍生物ir780-ha-adt及其制备方法和应用 Download PDF

Info

Publication number
CN113563494B
CN113563494B CN202110815501.5A CN202110815501A CN113563494B CN 113563494 B CN113563494 B CN 113563494B CN 202110815501 A CN202110815501 A CN 202110815501A CN 113563494 B CN113563494 B CN 113563494B
Authority
CN
China
Prior art keywords
adt
cells
tca
thyroid cancer
hydrogen sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110815501.5A
Other languages
English (en)
Other versions
CN113563494A (zh
Inventor
段少峰
岑娟
夏一帆
崔杰
刘蒙丽
张欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN202110815501.5A priority Critical patent/CN113563494B/zh
Publication of CN113563494A publication Critical patent/CN113563494A/zh
Application granted granted Critical
Publication of CN113563494B publication Critical patent/CN113563494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0054Macromolecular compounds, i.e. oligomers, polymers, dendrimers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/145Heterocyclic containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1458Heterocyclic containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Oncology (AREA)
  • Polymers & Plastics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于生物制药领域,涉及一种硫化氢释放剂,特别是指一种硫化氢释放剂的荧光衍生物IR780‑HA‑ADT及其制备方法和应用。本申请通过化学合成的方法将IR780接枝到HA‑ADT上合成一种新型H2S供体荧光衍生物,通过体内外实验,证明HA‑ADT具有良好的抗甲状腺癌效果,证明IR780‑HA‑ADT有良好的肿瘤靶向富集及指示效果。还首次揭示了HA‑ADT对两种TCa细胞的体内外优势作用。结果表明,HA‑ADT可以通过抑制增殖、迁移和侵袭,诱导细胞凋亡、周期阻滞和自噬,较NaSH、GYY4137发挥更好的抗TCa作用。HA‑ADT及其荧光衍生物在TCa的治疗中具有特殊优势和开发潜力。

Description

一种硫化氢释放剂的荧光衍生物IR780-HA-ADT及其制备方法 和应用
技术领域
本发明属于生物制药领域,涉及一种硫化氢释放剂,特别是指一种硫化氢释放剂的荧光衍生物IR780-HA-ADT及其制备方法和应用。
背景技术
甲状腺癌是最常见的内分泌恶性肿瘤,在世界范围内发病率每年都在快速上升。2019年美国约有52070例甲状腺癌新确诊病例。甲状腺癌是一种甲状腺肿瘤,主要发生于滤泡或滤泡旁细胞。甲状腺癌按来源组织和形态可分为分化型甲状腺癌(DTC)、髓样甲状腺癌(MTC)、低分化型甲状腺癌(PDTC)和未分化型甲状腺癌(ATC)。DTC包括甲状腺乳头状癌(PTC)和甲状腺滤泡癌(FTC)。PTC、FTC和ATC主要来源于甲状腺滤泡细胞,而MTC来源于甲状腺滤泡旁细胞。PTC约占所有甲状腺癌的80%。目前,手术治疗和激素治疗是治疗PTC的主要方法,预后良好。然而,PTC具有潮湿生长和转移的特点,这将导致局部复发和转移的风险。此外,ATC约占所有甲状腺癌的1%,但ATC是最具侵袭性的,存活率低,预后差,化疗和放疗耐药,确诊后仅半年存活率为。而甲状腺癌患者的总生存期在近十年来并没有明显的提高,因此开发安全有效的诊疗药物是非常必要的。
硫化氢(H2S)被认为是继一氧化氮(NO)和一氧化碳(CO)之后的第三种气体传递素。H2S内源性主要由l -半胱氨酸的半胱硫氨酸γ-裂解酶(CSE)和半胱硫氨酸β-合成酶(CBS)产生,3-巯基丙酮酸硫转移酶(3-MST)与L-Cys的半胱氨酸转氨酶(CAT)在α-酮戊二酸存在下共同作用产生。越来越多的研究表明,内源性H2S产生酶已经在许多癌症中被发现,包括结肠癌、肝癌、卵巢癌、乳腺癌、胃癌、前列腺癌和甲状腺癌。许多癌症对硫化氢的反应遵循两期剂量反应:内源性H2S或相对低水平的外源性H2S可能具有促癌作用,而较高剂量或长时间暴露于H2S可能导致癌细胞死亡。据研究,内源性硫化的产量通常较低,因此很难准确阐明的生物学功能。在特定的触发条件下分解和释放H2S的化合物被称为H2S供体。硫化氢供体在早期的研究,通常在小分子化合物作为研究生物学的来源,如硫氢化钠、GYY4137、DATS、ADT,然而本身有一定的缺陷,比如释放速度,人生短暂,血液循环不良,溶解度低,缺乏目标,等等,所以不属于理想的硫化氢供体。因此,寻找一种靶向性强、溶解度高的新型硫化氢供体是十分必要的。
透明质酸(HA)是一种非硫酸化的糖胺聚糖,由两个双糖单元d -葡萄糖醛酸和n-乙酰- d -葡萄糖胺组成,通过β-1,3-和β-1,4-糖苷键连接。HA具有生物相容性、可生物降解性和非免疫原性。HA最显著的优势在于其对CD44的亲和力强,CD44是一种细胞表面蛋白,在许多癌细胞和癌症干细胞中都有过表达。CD44是HA的特异性生物受体。因此HA在抗癌治疗药物的应用中是有效的靶向部分。此外HA偶联药物可以提高疗效、生物分布、水溶性和靶向性。含紫杉醇、阿霉素、siRNA等抗癌药物的HA偶联物具有更强的靶向肿瘤能力,比游离抗癌药物的治疗效果更高。本研究设计并合成了HA-ADT,将HA与ADT-OH通过化学反应连接。然后在体外检测HA-ADT对人甲状腺癌细胞增殖、凋亡、迁移、侵袭、周期和自噬的作用机制;在体内研究了HA-ADT对携带人甲状腺癌异种移植裸鼠肿瘤生长的影响。
IR780碘化物是目前经 FDA 认可的脂溶性阴离子染料,同时兼具光热治疗和光声治疗的重要作用,对肿瘤组织有明显的靶向性。因此把IR780与HA-ADT相连,不仅可以增加其肿瘤靶向性,还可以诊疗兼顾,可视化诊断、治疗对HA-ADT敏感的肿瘤。
发明内容
为解决上述技术问题,本发明提出一种硫化氢释放剂的荧光衍生物IR780-HA-ADT及其制备方法和应用。
本发明的技术方案是这样实现的:
一种硫化氢释放剂的荧光衍生物IR780-HA-ADT,具有如下结构式:
Figure 257260DEST_PATH_IMAGE001
,式中x=4-6,y=1-2,z=14-20。
上述的荧光衍生物IR780-HA-ADT的制备方法,步骤如下:
(1)将IR780碘化物溶解在乙腈中,然后加入1,6-己二胺和N,N-二异丙基乙胺,TLC监测下黑暗反应4h,得反应液;其技术路线为:
Figure 767875DEST_PATH_IMAGE003
(2)将步骤(1)的反应液用硅胶柱去除溶剂,得中间产物;
(3)配制HA-ADT的蒸馏水均相溶液,加入4-二甲氨基吡啶和1-乙基-3-二甲氨基丙基)碳二亚胺盐酸盐,于0℃反应2h,然后加入中间产物的DMF溶液,黑暗调节下反应12h,得粗产物;反应技术路线如下:
Figure DEST_PATH_IMAGE005
式中:p=4-6,q=16-22,x=4-6,y=1-2,z=14-20。
(4)步骤(3)的粗产物在3.5 kDa透析管中透析48小时,再用0.45 μm孔径的微孔膜过滤并收集上清,经冷冻干燥得到荧光衍生物IR780-HA-ADT。
所述步骤(1)中IR780碘化物、1,6-己二胺和N,N-二异丙基乙胺的摩尔比为1:4:2。
所述步骤(2)中中间产物的结构式为:
Figure DEST_PATH_IMAGE006
所述步骤(3)中HA-ADT、4-二甲氨基吡啶、1-乙基-3-二甲氨基丙基)碳二亚胺盐酸和中间产物的摩尔比为10:1:20:0.5。
所述步骤(4)中透析的具体过程为先将反应后的粗产物用3.5kDA透析袋DMF透析,再用体积比为1︰1的水/ DMF透析。
所述的荧光衍生物IR780-HA-ADT在制备人甲状腺癌诊疗药物中的应用。
所述的荧光衍生物IR780-HA-ADT在制备抑制人甲状腺癌细胞增殖、生长或迁移药物中的应用。
所述的荧光衍生物IR780-HA-ADT在制备促进人甲状腺癌细胞凋亡或降低人甲状腺癌细胞迁移能力或侵袭能力药物中的应用。
上述的应用中,人甲状腺癌细胞为人甲状腺癌细胞TPC-1或甲状腺癌细胞ARO,荧光衍生物的起效浓度为200 µg/kg。
本发明具有以下有益效果:
1、本申请通过化学合成的方法将IR780接枝到HA-ADT上合成一种新型H2S供体荧光衍生物,通过体内外实验,证明HA-ADT具有良好的抗甲状腺癌效果,证明IR780-HA-ADT有良好的肿瘤靶向富集及指示效果。
2、本发明首次揭示了HA-ADT对两种TCa细胞的体内外优势作用。结果表明,HA-ADT可以通过抑制增殖、迁移和侵袭,诱导细胞凋亡、周期阻滞和自噬,较NaSH、GYY4137发挥更好的抗TCa作用。HA-ADT及其荧光衍生物在TCa的治疗中具有特殊优势和开发潜力。
2、本申的研究结果说明HA-ADT通过促进ROS释放显著诱导TCa细胞凋亡,自噬在细胞凋亡过程中起保护作用。同时,本申请还研究了HA-ADT对线粒体的影响,采用MitoSOX指示线粒体超氧化物生成。发现,与其他组相比,HA-ADT促进线粒体超氧化物释放(图5E-F)。用荧光探针Rh123检测MMP可知,如图5G-H所示,与其他各组相比,HA-ADT组MMP明显下降。western blotting检测凋亡蛋白的表达。如图5I所示,HA-ADT组Bax/Bcl-2、Bad/Bcl-xl比值均高于其他组。在TCa细胞中,cleaved caspase-3、cleaved caspase-9和cleaved PARP的蛋白水平表现出相似的变化趋势,而cleaved caspase-8的表达则表现出相反的变化趋势。这些结果明确表明HA-ADT可诱导线粒体介导的细胞凋亡。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为IR780-HA-ADT的合成路线。
图2为IR780-HA-ADT的细胞摄取。(A)流式细胞术分析ARO和TPC-1细胞在不同时间(0.5、1、2、4、6h)与IR-HA-ADT相互作用。(B)计算IR780的平均荧光强度(C)细胞摄取共焦图像对应的时间点。红色荧光表明IR780的存在,蓝色荧光表明DAPI染色阳性。标尺= 10μm。(D)通过Image J软件计算IR780的平均荧光强度。
图3为HA-ADT对人TCa细胞活力和增殖的影响。(A)不同浓度HA-ADT处理ARO和TPC-1细胞24、48、72h后MTT法测定细胞活力。结果以相对于当时未处理细胞的百分比(%)表示。(B) NaHS、GYY4137和HA-ADT分别溶解于ARO和TPC-1细胞培养上清中,终浓度为200 μM。CCK-8法测定细胞存活率,对照组细胞存活率为100%。(C) EdU检测各组ARO和TPC-1细胞DNA复制活性; 100×放大。(D)分析各组的增殖率。数据以三个独立实验的平均值±SEM表示;*P < 0.05, **P < 0.01与对照组比较;##与NaHS组比较P < 0.01;TTP < 0.01与GYY4137组比较。
图4为HA-ADT对人TCa细胞迁移和侵袭的影响。(A)创面愈合实验观察HA-ADT对细胞迁移的影响; 100×放大。(B、C) Transwell法检测ARO和TPC-1细胞的迁移和侵袭能力;200×放大。(D) ARO和TPC-1细胞的迁移速率。(E)迁移细胞的数量。(F)侵袭细胞的数量。(G) Western blotting分析各组MMP-2、MMP-9、TIMP-1、TIMP-2的表达水平;GAPDH作为对照。(H)利用Image J软件对各因素进行光密度分析。*P < 0.05, **P < 0.01与对照组比较;##P < 0.01与NaHS组比较;TTP < 0.01与GYY4137组比较。
图5为HA-ADT对人TCa细胞凋亡的影响。(A) TUNEL法检测细胞凋亡水平;100×放大。(C)流式细胞术检测PBS、NaHS、GYY4137、HA-ADT+NAC、HA-ADT和HA-ADT+3-MA处理的ARO和TPC-1细胞的凋亡率。(D)凋亡细胞百分比(%)。(E)流式细胞术检测ARO和TPC-1细胞线粒体ROS的产生。(F) 平均MitoSOX荧光强度。(G)流式细胞仪检测线粒体膜电位(MMP)。(H) 罗丹明123 (Rh123)荧光强度定量。(I)各组分别使用Bax、Bcl-2、Bad、Bcl-xl、cleavedcaspase-3、cleaved caspase-8、cleaved caspase-9和cleaved PARP抗体进行Westernblotting;GAPDH作为对照。(G)利用Image J软件对各因素进行光密度分析。*P < 0.05, **P < 0.01与对照组比较,##P < 0.01与NaHS组比较,##P < 0.01;与GYY4137组比较,TTP <0.01;@@P < 0.01与HA-ADT+NAC组比较;&&P < 0.01与HA-ADT组比较。
图6为HA-ADT对人TCa细胞自噬的影响。(A)用荧光显微镜观察PBS、NaHS、GYY4137、HA-ADT+NAC和HA-ADT处理ARO和TPC-1细胞后MDC的表达; 100×放大。(B)流式细胞术检测细胞自噬程度。(C) MDC荧光强度百分比(%)。(D)各组采用P62、Beclin-1 LC3A/B抗体进行Western blotting;GAPDH作为对照。(E)利用Image J软件对各因素进行光密度分析。数据以三个独立实验的平均值±SEM表示;*P < 0.05, **P < 0.01与对照组比较;TTP < 0.01与GYY4137组比较。@@P < 0.01与HA-ADT+NAC组比较。
图7为HA-ADT对人TCa细胞周期的影响。(A)流式细胞术检测细胞周期在ARO和TPC-1细胞中的分布。(B)细胞周期分布比例。(C) Western blotting检测各组细胞Cyclin A、CDK2、Cylin B1、CDK1、P21和P27的表达;GAPDH作为对照。(D)利用Image J软件对各因素进行光密度分析。*P < 0.05, **P < 0.01与对照组比较;##P < 0.01与NaHS组比较;TTP <0.01与GYY4137组比较。
图8为IR780-HA-ADT在荷瘤小鼠体内的荧光成像和靶向研究。(A)不同时间点皮下注射IR780-HA-ADT后荷瘤小鼠的近红外荧光成像。(B)肿瘤区域内相应时间点的荧光信号强度。(C,D)荷瘤小鼠的心脏、肝脏、脾脏、肺、肾和肿瘤中CD44和透明质酸酶-1的免疫组化图像。
图9为HA-ADT对裸鼠ARO和TPC-1异种移植瘤生长的影响。(A)肿瘤照片。(B,C)每天测量TPC-1和ARO异种移植瘤的肿瘤体积。(D,E)肿瘤生长抑制率。(F-I) HE、Ki67、MMP-2和MMP-9染色在ARO和TPC-1异种移植瘤中的代表性照片; 400×放大。(K- O)细胞阳性率统计图。(P) Western blotting检测瘤内Cleaved caspase-3、Cleaved caspase-9、PINK1、LC3A/B和CBS表达;GAPDH作为对照。(Q)利用Image J软件对各条带进行光密度分析。*P <0.05, **P < 0.01与对照组比较;##P < 0.01与NaHS组比较;与GYY4137组比较,TTP <0.01。@@P < 0.01与HA-ADT+NAC组比较。
图10为HA-ADT的安全性评估。(A、B)试验期间各组体重变化曲线及各组第1天(第0天)、最后1天(第21天)体重变化曲线。(C)各组荷瘤小鼠脏器指数按公式计算:脏器指数=脏器重量(mg)/体重(g) (D)各组心脏、肝脏、脾脏、肺、肾的HE图像;放大400×。
具体实施方式
本申请应用试验主要试剂、药品及样品:
人甲状腺癌细胞株TPC-1和ARO购自中国科学院细胞库(上海,中国);
透明质酸购自山东福瑞达公司。合成过程中所有其他试剂购自Sigma ChemicalCo.(St.Louis,MO)或Aladin Chemical Reagent Inc. of Shanghai。
NaHS购于美国Sigma公司;
GYY4137购于美国Sigma公司;
anti-CBS和anti-GAPDH抗体购自ProteinTech公司;
辣根过氧化物酶结合二抗购自CST;
TUNEL检测方法使用原位细胞死亡检测试剂盒(Beyotime Biotechnology,China, Shanghai);
MTT使用CCK‐8检测试剂盒(上海天宇生物技术研究所,中国上海);
细胞增殖检测EdU染色法(RiboBio, Guangzhou, Guangdong, China);
细胞凋亡检测YF®488-Annexin V和PI凋亡检测试剂盒(美国光大®公司,中国苏州);
其余未说明试剂、药品等均为实验室常用分析纯类制品,不再赘述。
主要仪器设备:
流式细胞仪检测细胞摄取效率(CytoFLEX LX, Beckman Coulter,帕萨迪纳,CA);
共聚焦激光扫描显微镜(CLSM, Leica TCS SP5,德国);
蔡司Axioskop 2 plus显微镜(Carl Zeiss, Tornwood, NY, USA);
荧光显微镜(Eclipse Ti,尼康,梅尔维尔,纽约,美国);
体内成像系统(美国IVIS Lumina XRMS Series III);
荧光倒置显微镜(型号:ICES-3),购自Nikon公司。
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
本实施例的硫化氢释放剂的荧光衍生物IR780-HA-ADT的制备方法,其技术路线如图1所示,制备步骤为:
(1)HA-ADT的合成
HA (1g,2.64mmol)溶于蒸馏水(ddH2O)中形成均相溶液。加入1-乙基-3-(3-二甲氨基丙基)carbodiimide盐酸盐(0.51g, 2.64 mmol)和4-二甲氨基吡啶(0.11 g, 0.89mmol),温度保持在0℃。2 h后加入ADT-OH的DMF溶液(0.4g 1.77mmol)。在0℃下反应15min,然后在室温下过夜。粗品在3.5 kDa透析管中对水透析24小时。用0.45 μm孔径微孔膜过滤上清,冷冻干燥得到HA-ADT(图1A)。用核磁共振氢谱测定分子结构和接枝率。合成路线详见图1(A)。
(2)荧光探针IR780-HA-ADT的合成
IR780碘化物(0.33g,0.5 mmol)溶解在乙腈中,加入1,6-己二胺(0.23g,2 mmol)和N,N-二异丙基乙胺(0.3g,1 mmol)。暗色反应4h, TLC监测。原料反应完成后,用硅胶柱(CH3OH: CH2Cl2 = 1:2)去除溶剂,得到ir780 - nh2,进行下一个反应。HA -ADT(0.29g,0.5 mmol)溶于蒸馏水中形成均相溶液。加入4-二甲氨基吡啶(0.006 g, 0.05 mmol)和1-乙基-3-二甲氨基丙基)碳二亚胺盐酸盐(0.19g,1 mmol),温度保持在0℃。2 h后加入IR780-NH2 (0.018g,0.025mmol) DMF溶液。反应在黑暗条件下进行12小时。粗产物在3.5kDa透析管中对水透析48小时。用0.45 μm孔径的微孔膜过滤上清,冷冻干燥得到IR780-HA-ADT。用核磁共振氢谱测定分子结构和接枝率。
通过1H NMR (D2O, 300 MHz)对产物进行表征:δ = 1.89 (s, NHCOCH3), 1.0-4.4 (m, HA-H), 6.76 (d, Ar-H), 7.80 (s, =CH), 7.88 (d, Ar-H)。通过比较一种芳香族的结合,发现ADT-OH与HA的接枝率为28%。此外,通过透析和冻干成功获得了想要的产物IR780-HA-ADT为蓝色海绵状固体,并通过1h NMR (D2O, 300 MHz)对其进行了表征。δ=1.89(年代,NHCOCH3), 1.0 - -4.4 (m, HA-H), 6.88 - -6.91 (d, Ar-H), 8.01 - -8.03 (d, Ar-H) 7.79(年代,IR780-H)。结果表明,IR780与HA的接枝率为0.1%。
应用例1
(1)细胞培养
TPC-1细胞维持在含有10%胎牛血清(FBS)、100µg/ml链霉素和100 U/ml青霉素的RPMI1640培养基中。ARO细胞在添加10%胎牛血清、100µg/ml链霉素和100 U/ml青霉素的Dulbecco’s modified Eagle’s medium (DMEM)中培养。细胞在37°C, 95%空气和5%二氧化碳的孵箱中生长。分别用200 μM NaHS、200 μM GYY4137和200 μM HA-ADT处理细胞。对照组给予PBS处理。处理24 h后,细胞用于后续实验。
(2)细胞摄取试验
用共聚焦显微镜和流式细胞术分别对的细胞摄取药物情况进行定性和定量研究。流式细胞实验中,用IR780-HA-ADT(含200 μM HA-ADT, 1µg/mL IR780)在37℃下处理细胞0.5、1、2、4和6h。PBS洗涤3次,500 μL PBS重悬,流式细胞仪检测细胞摄取效率(CytoFLEXLX, Beckman Coulter,CA)。药物作用后PBS洗涤2次,4%多聚甲醛溶液固定20分钟,DAPI染色15分钟,使用共聚焦激光扫描显微镜(CLSM, Leica TCS SP5,德国)获取荧光图像。IR780的激发波长为633 nm,记录的发射光谱在700 ~ 800 nm之间。
(3)伤口愈合实验
用无菌吸管尖划伤融合细胞形成伤口,并用PBS冲洗两次。在Olympus CKX41显微镜下观察和拍照,并使用Image J软件(美国Bethesda,MD, National Institute forHealth)测量迁移距离。细胞迁移速率(%)(MR) = [(A−B)/A] × 100,其中A是0小时的宽度,B是24小时时的宽度。
应用例2
为检测HA-ADT对人甲状腺癌细胞增殖的影响,发明人做了进一步的检测实验,相关过程介绍如下。
(1)细胞生存能力分析
使用CCK‐8检测试剂盒(上海天宇生物技术研究所,中国上海)和MTT法检测细胞活力。按照制造商说明使用EdU染色法(RiboBio, Guangzhou, Guangdong, China)评估细胞增殖。细胞增殖率(%)=(EdU阳性细胞数)/(细胞总数)×100%。
为了确定HA-ADT是否对TCa细胞有效,首先使用MTT法在体外评估HA-ADT对TCa细胞系、ARO和TPC-1细胞的抑制效果。上述结果表明,200 μM HA-ADT对TCa细胞的抑制作用呈时间依赖性(图3A)。CCK-8检测结果显示,与其他组相比,HA-ADT显著降低了TCa细胞的活力(图3B)。此外,采用EdU法进一步评价PBS、NaHS、GYY4137和HA-ADT对TCa细胞的增殖作用。HA-ADT对细胞增殖也有类似作用,如图3C-D所示。综上所述,HA-ADT抑制TCa细胞的活性和增殖。
(2)细胞摄取测定
细胞在37℃下用IR780-HA-ADT处理0.5、1、2、4和6h。然后,细胞用PBS洗涤三次,并重新悬浮在500微升PBS中。用流式细胞仪检测细胞摄取效率。对于共聚焦显微镜实验,药物处理后用PBS洗涤细胞两次,用4%多聚甲醛溶液固定20分钟,用DAPI染色15分钟。使用共焦激光扫描显微镜获得荧光图像(CLSM,徕卡SP5)。IR780的激发波长为633纳米,记录的发射光谱在700-800纳米之间。
流式细胞术检测IR780-HA-ADT在TCa细胞上的摄取情况。如图(图2A-B)所示,由于HA对细胞表面蛋白CD44的靶向作用,IR780-HA-ADT的平均荧光强度在ARO细胞中随着时间的推移逐渐增强,而在tpc -1细胞中在4h达到峰值。此外,用共聚焦激光扫描显微镜(CLSM)也检测了细胞摄取,这些结果显示了相似的细胞摄取趋势(图2 C - D)。
应用例3
为检测HA-ADT对人甲状腺癌细胞凋亡的影响,进行了TUNEL实验,相关过程介绍如下。
(1)采用TUNEL法确定HA-ADT对肿瘤细胞凋亡的影响,具体过程如下:
使用原位细胞死亡检测试剂盒进行TdT介导的DutP-生物素缺口末端标记(TUNEL)分析。使用荧光显微镜采集荧光图像,用图像分析软件计数TUNEL阳性细胞比例。
(2)AnnexinV/ PI双重染色检测细胞凋亡
使用Annexin V/PI凋亡检测试剂盒检测凋亡。细胞分别用PBS、NaHS、GYY4137、HA-ADT+NAC、HA-ADT和HA-ADT+3-MA处理24小时,然后在室温下用AnnixinV和PI染色15分钟。凋亡率用流式细胞仪检测。
如图5A-B所示,TUNEL检测结果证实HA-ADT组细胞凋亡指数较其他组明显升高。流式细胞术检测细胞凋亡情况,采用Annexin V/ PI双染色法。如图5C-D所示,与对照组、NaHS和GYY4137组相比,HA-ADT组早期和晚期凋亡细胞均增加。抗氧化剂(NAC)和HA-ADT处理组细胞凋亡减少,自噬抑制剂(3-MA)和HA-ADT处理组细胞凋亡增加。这些结果说明HA-ADT通过促进ROS释放显著诱导TCa细胞凋亡,自噬在细胞凋亡过程中起保护作用。同时,我们研究了HA-ADT对线粒体的影响,采用MitoSOX指示线粒体超氧化物生成。我们发现,与其他组相比,HA-ADT促进线粒体超氧化物释放(图5E-F)。用荧光探针Rh123检测MMP可知,如图5G-H所示,与其他各组相比,HA-ADT组MMP明显下降。western blotting检测凋亡蛋白的表达。如图5I所示,HA-ADT组Bax/Bcl-2、Bad/Bcl-xl比值均高于其他组。在TCa细胞中,cleavedcaspase-3、cleaved caspase-9和cleaved PARP的蛋白水平表现出相似的变化趋势,而cleaved caspase-8的表达则表现出相反的变化趋势。总之,这些结果明确表明HA-ADT可诱导线粒体介导的细胞凋亡。
用荧光显微镜和流式细胞术检测自噬情况。如图(图6A-C)所示,HA-ADT组的平均荧光强度较对照组、NaHS组和GYY4137组显著增加。在–HA-ADT处理的细胞中加入抗氧化剂n-乙酰半胱氨酸(NAC)显著减少了自噬空泡的存在,这表明自噬是在氧化应激反应中被激活的一种促生存机制。然后,我们用western blotting分析自噬蛋白的表达。如图(图6E-F)所示,与其他组相比,HA-ADT组的P62、Becline-1和LC3A/B蛋白水平升高。上述结果表明,HA-ADT可诱导TCa细胞自噬。
(3)线粒体超氧化物测定
使用MitoSOX测量线粒体超氧化物的含量。染色30分钟,流式细胞术检测荧光强度作为氧化应激评价。
(4)线粒体膜电位(MMP)测定
用罗丹明123测定线粒体膜电位。细胞分别用PBS、NaHS、GYY4137和HA-ADT处理24小时,用罗丹明123在37℃黑暗中孵育30分钟。用冰冷的PBS洗涤细胞两次,最后将细胞沉淀重悬于PBS中。用流式细胞仪测定Rh123含量。
(5)MDC染色
分别用PBS、NaHS、GYY4137、HA-ADT+NAC、HA-ADT处理细胞24 h,固定细胞,37℃下50μM MDC孵育30 min。荧光显微镜拍照。
(6)细胞周期
细胞分别用PBS、NaHS、GYY4137和HA-ADT处理24小时。然后收集细胞,在-20℃下用70%乙醇固定过夜,用含有RNase A的碘化丙啶(PI)染色15分钟。使用FlowJo软件测定G0/G1、S和G2/M期的细胞百分比。
为了验证HA-ADT是否诱导TCa细胞的细胞周期阻滞,我们检测了PBS、NaHS、GYY4137、HA-ADT处理后细胞周期不同阶段的细胞分布(%)。流式细胞术数据显示,与其他各组相比,HA-ADT使S期、G2期细胞数量增加,G1期细胞数量减少(图7A-B)。同时,westernblotting显示细胞周期的关键介质Cyclin B1、CDK1、Cyclin A和CDK2在药物处理后呈负调控,而P21和P27呈正调控(图7C-D)。上述结果说明,HA-ADT通过诱导S和G2细胞周期阻滞,显著抑制了TCa细胞的增殖。
应用例4
为检测HA-ADT对肿瘤细胞迁移、侵袭的影响,发明人做了Transwell法确定HA-ADT对肿瘤细胞迁移和采用Invasion法确定HA-ADT对肿瘤细胞侵袭的影响。
检测实验,相关过程介绍如下。
1×105cells在无血清的培养基中,涂布基质凝胶(BD Biosciences, San Jose,CA, USA)。然后加入600µl相应的含10% FBS的培养基。PBS、NaHS、GYY4137、HA-ADT分别处理24 h后,用棉签擦洗上侧残留细胞,4%多聚甲醛固定膜底面细胞,0.1%结晶紫染色。用显微镜(Carl Zeiss,Tornwood,NY,USA)计数。
为了确定HA-ADT是否抑制TCa细胞的迁移和侵袭特性,在PBS, NaHS, GYY4137和HA-ADT的存在下,对TCa细胞进行transwell和侵袭试验。如图4A-F所示,与其他组相比,HA-ADT显著降低了TCa细胞的迁移和侵袭能力。为了证明上述结果,我们对MMP和TIMP蛋白的表达进行了western blot分析,这两种蛋白在细胞侵袭和迁移中起着重要作用。如图4G-H所示,HA-ADT显著降低TCa细胞中MMP-2、MMP-9的表达,增加TIMP-1、TIMP-2的表达。这是其抑制迁移和侵袭的主要机制。
应用例5
为证明在体内HA-ADT能够抑制人甲状腺癌细胞的生长,进行了裸鼠成瘤实验,相关过程介绍如下。
雄性BALB/c裸鼠(4周)购自北京维达河实验动物科技有限公司(证书编号:中国科学技术出版社(京)2016-0006,北京)。动物实验由河南大学医学院实验动物医学伦理与福利委员会(HUSOM-2017-195)根据国家科学技术委员会制定的《实验动物条例》进行。
将ARO和TPC-1细胞(5×106)皮下注射入小鼠右侧。当肿瘤体积达到约100mm3时,进行进一步的研究,包括影像学和治疗实验。将移植瘤小鼠随机分为5组(每组6只),肿瘤体积约为100 mm3后,PBS、NaHS、GYY4137、HA-ADT+NAC和HA-ADT皮下注射(靠近移植瘤),每天1次,连续注射21d。实验期间,每天给小鼠称重并测量肿瘤体积。肿瘤体积计算公式如下:肿瘤体积=长×宽2×0.5。计算肿瘤体积倍增时间(TVDT)的公式如下:TVDT= (T - T0) ×log2/log(V2/V1),其中(T - T0)表示时间间隔,V2和V1表示两个测量时间的肿瘤体积。抑制率(IR)计算公式如下:IR(%) = [(A-B)/A] × 100,其中A为对照组平均肿瘤重量,B为治疗组平均肿瘤重量。
当肿瘤体积达到约100 mm3时,将IR780-HA-ADT(含200 μM HA-ADT, 1µg/mLIR780)注射到皮肤下(植入肿瘤附近)。使用体内成像系统(美国IVIS Lumina XRMS SeriesIII)在不同时间点(注射后5min、15min、30min、1h、2h、4h、6h、8h12h、1day、2day、3day、5day、7day)采集图像。IR780-HA-ADT的激发波长为735nm,发射光谱为780-900nm。
利用小动物成像技术结合荧光探针IR780评价HA-ADT的肿瘤靶向性能,利用荧光探针实时跟踪药物在机体内的转运和富集。
处死小鼠后,仔细切除心脏、肝、脾、肺、肾、肿瘤等主要器官,用10%缓冲甲醛固定,石蜡包埋。然后取4 μm厚切片,HE染色。此外,对肿瘤切片进行Ki67、MMP-2、MMP-9、CD44和透明质酸酶-1免疫染色。显微镜下拍摄图像。
肿瘤组织中谷胱甘肽过氧化物酶(GSH - PX)、超氧化物歧化酶(SOD)活性及丙二醛(MDA)含量的测定:肿瘤组织匀浆后3000g, 0℃,离心15分钟,制备上清。采用相应试剂盒(南京建成生物工程研究所,南京,中国)直接测定MDA、SOD活性和GSH-PX含量。Westernblotting从细胞和肿瘤组织中提取总蛋白。Western blotting检测靶蛋白表达水平。一抗包括:Anti-Bax、anti-Bad anti-Bcl-xl、anti-Bcl-2 anti-cleaved caspase3, anti-cleaved caspase8, anti-cleaved caspase9, anti-cleaved PARP, anti-MMP-2, anti-MMP-9, anti-TIMP-1, anti-TIMP-2, anti-cyclin, anti-cyclin B1, anti-CDK1,anti-CDK2, anti-p21, anti-p27, anti-p62, -Beclin-1, anti-LC3A / B, anti-PINK1, anti-CBS和anti-GAPDH均购自ProteinTech(美国芝加哥,IL)。辣根过氧化物酶结合二抗购自CST。通过增强化学发光系统(Thermo Fisher Scientific, Rockford, IL,USA)对蛋白质进行显影。使用Image J软件对条带进行半定量。将结果参照GAPDH的表达水平进行统计。多组间的差异采用spss17.0软件进行单因素方差分析,然后进行Tukey检验。P<0.05为差异有统计学意义。
利用小动物成像技术评价IR780 -HA-ADT的肿瘤靶向性能,实时跟踪药物在机体内的转运和富集。如图(图8A-B)所示,IR780-HA-ADT处理裸鼠后荧光信号在肿瘤区域的4h或6h达到最大值,然后依次下降。结果表明,HA-ADT能够在肿瘤区域特异性积累,这是由于透明质酸对过表达CD44受体的癌细胞具有较强的靶向性。此外,免疫组化实验也证实了其肿瘤靶向性的基础。如图(图8C-D)所示,肿瘤区域CD44和透明质酸酶-1的表达明显高于其他组织。以上结果表明,HA-ADT具有靶向肿瘤的作用,而IR780-HA-ADT有良好的荧光指示能力,可用于肿瘤的诊疗运用。
在皮下异种移植模型中,我们确定了HA-ADT对两种TCa异种移植瘤生长的抑制作用。与其他组相比,HA-ADT的作用最强(图9A-E)。此外,免疫组化分析显示,HA-ADT组Ki67、MMP2、MMP9表达降低,说明与其他组相比,HA-ADT组能有效抑制TCa异种移植物肿瘤的增殖、转移和侵袭。HE染色也表现出类似的趋势(图9F-L)。此外,免疫印迹结果提示,HA-ADT诱导增加caspase-3裂解,裂解caspase-9, PINK1, LC3A / B和CBS蛋白,这进一步证实了HA-ADT促进肿瘤细胞线粒体凋亡、激活线粒体自噬、促进了内源性硫化氢产生,相比其他组更具优势(图9P、Q)。此外,HA-ADT增加了TCa异种移植瘤的MDA含量,降低了GSH-PX和SOD酶活性(图9M、O)。同时,在HA-ADT处理的TCa异种移植瘤中加入抗氧化剂n -乙酰半胱氨酸(NAC),会取消其作用,提示其通过氧化应激发挥作用的机制。综上所述,在增殖、迁移、侵袭和自噬方面药物对在体抗肿瘤结果与体外实验结果一致,共同验证了HA-ADT对甲状腺癌的抑制作用和机制。
实施效果例分析
如图10A所示,无论实验前还是实验后,对照组和实验组的裸鼠体重均无统计学差异。此外,各组荷瘤裸鼠的器官指数也无统计学差异图10B。此外,在治疗21天后,对主要脏器(心、肝、脾、肺、肾)进行HE染色,进一步评价体内全身毒性。结果如图10C所示,所有治疗组均未发现明显的组织毒性或异常,进一步说明HA-ADT的体内安全性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种硫化氢释放剂的荧光衍生物IR780-HA-ADT在制备人甲状腺癌诊疗药物中的应用,其特征在于,具有如下结构式:
Figure DEST_PATH_IMAGE002
,式中x为4-6,y为1-2,z为14-20。
2.一种硫化氢释放剂的荧光衍生物IR780-HA-ADT在制备抑制人甲状腺癌细胞增殖、生长或迁移药物中的应用,其特征在于,具有如下结构式:
Figure DEST_PATH_IMAGE003
,式中x为4-6,y为1-2,z为14-20。
3.一种硫化氢释放剂的荧光衍生物IR780-HA-ADT在制备促进人甲状腺癌细胞凋亡或降低人甲状腺癌细胞迁移能力或侵袭能力药物中的应用,其特征在于,具有如下结构式:
Figure DEST_PATH_IMAGE004
,式中x为4-6,y为1-2,z为14-20。
4.根据权利要求2-3任一项所述的应用,其特征在于:人甲状腺癌细胞为人甲状腺癌细胞TPC-1或甲状腺癌细胞ARO,荧光衍生物的起效浓度为200 µg/kg。
CN202110815501.5A 2021-07-19 2021-07-19 一种硫化氢释放剂的荧光衍生物ir780-ha-adt及其制备方法和应用 Active CN113563494B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110815501.5A CN113563494B (zh) 2021-07-19 2021-07-19 一种硫化氢释放剂的荧光衍生物ir780-ha-adt及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110815501.5A CN113563494B (zh) 2021-07-19 2021-07-19 一种硫化氢释放剂的荧光衍生物ir780-ha-adt及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113563494A CN113563494A (zh) 2021-10-29
CN113563494B true CN113563494B (zh) 2022-09-09

Family

ID=78165556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110815501.5A Active CN113563494B (zh) 2021-07-19 2021-07-19 一种硫化氢释放剂的荧光衍生物ir780-ha-adt及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113563494B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118059262A (zh) * 2024-03-01 2024-05-24 江西科技师范大学 一种整合化疗、光疗和气体治疗的多功能可视化纳米药物递送平台及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105596294B (zh) * 2015-12-21 2019-05-17 中国科学院深圳先进技术研究院 一种纳米靶向载药胶束及其制备方法和一种抗癌药物及其制备方法
CN108329404B (zh) * 2018-03-15 2020-08-04 浙江大学 一种ir-780碘化物-壳聚糖硬脂酸嫁接物及制备与应用
CN109678987B (zh) * 2018-12-03 2020-12-25 河南大学 一种硫化氢释放剂ha-adt、其制备方法及应用
CN111892668B (zh) * 2020-07-03 2022-07-12 广东工业大学 一种化合物及其制备方法、荧光探针和抗肿瘤药物

Also Published As

Publication number Publication date
CN113563494A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
Kundu et al. Tumor targeted delivery of umbelliferone via a smart mesoporous silica nanoparticles controlled-release drug delivery system for increased anticancer efficiency
Zhang et al. Polysaccharides from Dendrobium officinale inhibit proliferation of osteosarcoma cells and enhance cisplatin-induced apoptosis
Pei et al. Selective STAT3 inhibitor alantolactone ameliorates osteoarthritis via regulating chondrocyte autophagy and cartilage homeostasis
CN113563494B (zh) 一种硫化氢释放剂的荧光衍生物ir780-ha-adt及其制备方法和应用
Bao et al. Radix Astragali polysaccharide RAP directly protects hematopoietic stem cells from chemotherapy-induced myelosuppression by increasing FOS expression
Liang et al. Translational selenium nanotherapeutics counter-acts multiple risk factors to improve surgery-induced cognitive impairment
Sun et al. Smart albumin-loaded Rose Bengal and doxorubicin nanoparticles for breast cancer therapy
Deepthi et al. Evaluation of cytotoxic potential of Digera muricata leaf extract on lung cancer cell line
Xue et al. A novel protoapigenone analog RY10-4 induces apoptosis of breast cancer cells by exacerbating mitochondrial Ca2+ influx through mitochondrial calcium uniporter
Peng et al. Dehydrocostus lactone inhibits the proliferation of esophageal cancer cells in vivo and in vitro through ROS-mediated apoptosis and autophagy
KR20190092512A (ko) 종양의 표적 진단 및 치료용 약물 제조에서의 vap 폴리펩타이드 및 이의 용도
Ye et al. Reduced malignant glioblastoma recurrence post-resection through the anti-CD47 antibody and Temozolomide co-embedded in-situ hydrogel system
Fu et al. Interfering biosynthesis by nanoscale metal-organic frameworks for enhanced radiation therapy
Chen et al. Ultrasmall PtAu2 nanoclusters activate endogenous anti-inflammatory and anti-oxidative systems to prevent inflammatory osteolysis
Xu et al. Targeted transplantation of engineered mitochondrial compound promotes functional recovery after spinal cord injury by enhancing macrophage phagocytosis
Zhang et al. An enzyme-instructed self-assembly system induces tumor acidosis via sequential-dual effect for cancer selective therapy
Kheraldine et al. Naked poly (amidoamine) dendrimer nanoparticles exhibit intrinsic embryotoxicity during the early stages of normal development
Su et al. Roles of PTEN gene methylation in Se-CQDs induced mitochondrial apoptosis of osteosarcoma cells
US20140194530A1 (en) Usage of oblongifolin c, a natural compound from garcinia yunnanensis hu, on treating cancer as metastasis inhibitor and autophagic flux inhibitor
Chen et al. Buyang Huanwu decoction promotes angiogenesis after cerebral ischemia through modulating caveolin-1-mediated exosome MALAT1/YAP1/HIF-1α axis
EP3777896A1 (en) Micelle comprising an inhibitor of nf-kb
KR20220124040A (ko) 해삼 생식선 추출물 또는 이로부터 유래된 화합물의 항암 용도
US20170035824A1 (en) Usage of oblongifolin c, a natural compound from garcinia yunnanensis hu, on treating cancer as metastasis inhibitor and autophagic flux inhibitor
Moulazadeh et al. Antioxidant Activity and Cytotoxic Effects of Hypnea musciformis on MCF7 and MDA-MB-231 Cell Lines: Effects of Silver Nanoparticle and L-carnitine on Mixed Vaginitis
Liu et al. Aucubin Alleviates Chronic Obstructive Pulmonary Disease by Activating Nrf2/HO-1 Signaling Pathway

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant