CN113549310B - A kind of low-smoke flame-retardant polylactic acid composite material and preparation method thereof - Google Patents
A kind of low-smoke flame-retardant polylactic acid composite material and preparation method thereof Download PDFInfo
- Publication number
- CN113549310B CN113549310B CN202110926604.9A CN202110926604A CN113549310B CN 113549310 B CN113549310 B CN 113549310B CN 202110926604 A CN202110926604 A CN 202110926604A CN 113549310 B CN113549310 B CN 113549310B
- Authority
- CN
- China
- Prior art keywords
- polylactic acid
- titanium carbide
- solution
- retardant
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000747 poly(lactic acid) Polymers 0.000 title claims abstract description 68
- 239000004626 polylactic acid Substances 0.000 title claims abstract description 68
- 239000003063 flame retardant Substances 0.000 title claims abstract description 49
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 239000002131 composite material Substances 0.000 title claims abstract description 40
- 239000000779 smoke Substances 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 239000002135 nanosheet Substances 0.000 claims abstract description 41
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical class C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000004114 Ammonium polyphosphate Substances 0.000 claims abstract description 36
- 235000019826 ammonium polyphosphate Nutrition 0.000 claims abstract description 36
- 229920001276 ammonium polyphosphate Polymers 0.000 claims abstract description 36
- 229960000228 cetalkonium chloride Drugs 0.000 claims abstract description 23
- SXPWTBGAZSPLHA-UHFFFAOYSA-M cetalkonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 SXPWTBGAZSPLHA-UHFFFAOYSA-M 0.000 claims abstract description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000741 silica gel Substances 0.000 claims abstract description 10
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 10
- 239000002994 raw material Substances 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 29
- 239000000499 gel Substances 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 20
- 239000006185 dispersion Substances 0.000 claims description 20
- 239000010703 silicon Substances 0.000 claims description 20
- 229910052710 silicon Inorganic materials 0.000 claims description 20
- 239000008367 deionised water Substances 0.000 claims description 15
- 229910021641 deionized water Inorganic materials 0.000 claims description 15
- 239000007787 solid Substances 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims description 6
- -1 hexadecyl diphosphate Methylbenzylammonium chloride Chemical compound 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 230000004048 modification Effects 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 239000003995 emulsifying agent Substances 0.000 claims description 3
- 238000003760 magnetic stirring Methods 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 2
- CBSOFSBFHDQRLV-UHFFFAOYSA-N N-methylbenzylamine hydrochloride Chemical compound [Cl-].C[NH2+]CC1=CC=CC=C1 CBSOFSBFHDQRLV-UHFFFAOYSA-N 0.000 claims 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 230000002588 toxic effect Effects 0.000 abstract description 7
- 231100000331 toxic Toxicity 0.000 abstract description 6
- 238000002485 combustion reaction Methods 0.000 abstract description 3
- 230000007246 mechanism Effects 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 abstract 1
- 238000007731 hot pressing Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000003517 fume Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000001784 detoxification Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 238000010907 mechanical stirring Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- BNUCUHMFGDFDHH-UHFFFAOYSA-N CCCCCCCCCCCCCCCCC1=C(C(C)(C)Cl)C=CC=C1.N Chemical compound CCCCCCCCCCCCCCCCC1=C(C(C)(C)Cl)C=CC=C1.N BNUCUHMFGDFDHH-UHFFFAOYSA-N 0.000 description 1
- 101100335429 Caenorhabditis elegans cfz-2 gene Proteins 0.000 description 1
- 101100083853 Homo sapiens POU2F3 gene Proteins 0.000 description 1
- 101100058850 Oryza sativa subsp. japonica CYP78A11 gene Proteins 0.000 description 1
- 101150059175 PLA1 gene Proteins 0.000 description 1
- 102100026466 POU domain, class 2, transcription factor 3 Human genes 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 231100000563 toxic property Toxicity 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/10—Encapsulated ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
- C08K2003/321—Phosphates
- C08K2003/322—Ammonium phosphate
- C08K2003/323—Ammonium polyphosphate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
技术领域technical field
本发明属于阻燃材料制备领域,具体涉及一种低烟阻燃聚乳酸复合材料及其制备方法。The invention belongs to the field of flame retardant material preparation, and particularly relates to a low-smoke flame-retardant polylactic acid composite material and a preparation method thereof.
背景技术Background technique
聚乳酸具有无毒、透明度高、强度高、生物相容性好和易于加工等优点,广泛应用于包装、电子电气工业、生物医学和运输等领域。但是聚乳酸极易燃烧,燃烧时会释放出大量的热量,同时产生大量有毒有害的烟气,不仅会严重威胁人身安全,还会造成严重的环境污染。此外,聚乳酸燃烧时也会伴随着严重的熔融滴落现象,极易造成火灾的迅速蔓延。这些缺点极大地限制了聚乳酸材料的应用。因此,有必要对聚乳酸进行相关处理以提升其火灾安全性能。Polylactic acid has the advantages of non-toxicity, high transparency, high strength, good biocompatibility and easy processing, and is widely used in packaging, electrical and electronic industry, biomedicine and transportation. However, polylactic acid is very easy to burn, it will release a lot of heat when burning, and at the same time generate a lot of toxic and harmful fumes, which will not only seriously threaten personal safety, but also cause serious environmental pollution. In addition, the burning of polylactic acid will also be accompanied by serious melting and dripping, which can easily cause the rapid spread of fire. These shortcomings greatly limit the application of polylactic acid materials. Therefore, it is necessary to treat polylactic acid to improve its fire safety performance.
目前,引入阻燃剂是提升聚合物材料火灾安全性能的有效措施。阻燃剂可分为膨胀型阻燃剂、金属氧化类阻燃剂和纳米阻燃剂等各种类型。硅凝胶微胶囊化的聚磷酸铵(SiAPP)是一种典型的膨胀型阻燃剂,其不仅能在凝聚相阶段催化形成致密的碳层,还能在气相阶段捕捉自由基和稀释可燃气体浓度,因此具有优异的阻燃效应。Gao等人将SiAPP引入至聚苯乙烯中,制备阻燃聚苯乙烯复合材料。结果表明,引入20.0% SiAPP使得聚苯乙烯的总热释放量降低37.8%。Ni等人发现引入12.5% SiAPP后,聚氨酯复合材料的LOI高达32.0%。同时,聚氨酯复合材料的热释放速率峰值较纯聚氨酯显著降低83.2%。虽然聚磷酸铵具有较高的阻燃效率,但是硅凝胶微胶囊化的聚磷酸铵的抑烟减毒效应并不明显。因此,有必要将硅凝胶微胶囊化的聚磷酸铵和其他阻燃剂复配使用,以进一步提升聚合物材料的火灾安全性能。At present, the introduction of flame retardants is an effective measure to improve the fire safety performance of polymer materials. Flame retardants can be divided into various types such as intumescent flame retardants, metal oxide flame retardants and nano flame retardants. Silicon gel microencapsulated ammonium polyphosphate (SiAPP) is a typical intumescent flame retardant, which can not only catalyze the formation of dense carbon layers in the condensed phase stage, but also capture free radicals and dilute combustible gases in the gas phase stage. concentration, so it has an excellent flame retardant effect. Gao et al. introduced SiAPP into polystyrene to prepare flame retardant polystyrene composites. The results show that the introduction of 20.0% SiAPP reduces the total heat release of polystyrene by 37.8%. Ni et al. found that after the introduction of 12.5% SiAPP, the LOI of the polyurethane composite was as high as 32.0%. At the same time, the peak heat release rate of the polyurethane composite was significantly lower than that of pure polyurethane by 83.2%. Although ammonium polyphosphate has high flame retardant efficiency, the smoke suppression and detoxification effect of silicon gel microencapsulated ammonium polyphosphate is not obvious. Therefore, it is necessary to use silicone gel microencapsulated ammonium polyphosphate with other flame retardants to further improve the fire safety performance of polymer materials.
近年来,碳化钛纳米片作为二维纳米片层材料,广泛应用于超级电容器、电磁屏蔽、电池等领域外。此外,碳化钛纳米片具有较好的热稳性和较低的导热性,可在聚合物热解时发挥优异的物理屏障功能,有效抑制聚合物的热解。同时,碳化钛在聚合物燃烧时可催化形成致密、连续的碳层,显著减少聚合物燃烧过程中释放的热量和有毒有害烟气。因此,硅凝胶微胶囊的聚磷酸铵优异的阻燃效果结合碳化钛纳米片高效的抑烟减毒效应,将会使得制备的阻燃聚合物复合材料具备较高的阻燃和抑烟减毒性能。In recent years, titanium carbide nanosheets, as two-dimensional nanosheet materials, have been widely used in supercapacitors, electromagnetic shielding, batteries and other fields. In addition, titanium carbide nanosheets have good thermal stability and low thermal conductivity, and can play an excellent physical barrier function during polymer pyrolysis, effectively inhibiting polymer pyrolysis. At the same time, titanium carbide can catalyze the formation of a dense and continuous carbon layer when the polymer is burned, which can significantly reduce the heat and toxic and harmful fumes released during the burning of the polymer. Therefore, the excellent flame retardant effect of ammonium polyphosphate of silicone gel microcapsules combined with the efficient smoke suppression and detoxification effect of titanium carbide nanosheets will make the prepared flame retardant polymer composites have higher flame retardant and smoke suppression. toxic properties.
发明内容SUMMARY OF THE INVENTION
本发明针对聚乳酸燃烧时会产生大量的热量和有毒烟气的缺点,提供了一种低烟阻燃聚乳酸复合材料及其制备方法,其可有效减少聚乳酸燃烧时生成的热量和有毒烟气,提升聚乳酸的火灾安全性能。Aiming at the shortcomings that a large amount of heat and toxic fumes are generated when polylactic acid is burned, the present invention provides a low-smoke flame-retardant polylactic acid composite material and a preparation method thereof, which can effectively reduce the heat and toxic fumes generated when polylactic acid is burned to improve the fire safety performance of polylactic acid.
为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种低烟阻燃聚乳酸复合材料,其所用原料按重量百分数计为:聚乳酸85%、硅凝胶微胶囊化的聚磷酸铵13-14.8%、十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片0.2-2%,三者之和为100%。A low-smoke flame-retardant polylactic acid composite material, the raw materials used in the weight percentage are: polylactic acid 85%, silicon gel microencapsulated ammonium polyphosphate 13-14.8%, cetyl dimethyl benzyl chloride Ammonium functionalized modified titanium carbide nanosheets are 0.2-2%, and the sum of the three is 100%.
其中,所述硅凝胶微胶囊化的聚磷酸铵的制备步骤如下:Wherein, the preparation steps of the silicon gel microencapsulated ammonium polyphosphate are as follows:
a. 将150毫升无水乙醇和50毫升去离子水加入至三口瓶中,机械搅拌混合并升温至45℃,得溶液A;a. Add 150 ml of absolute ethanol and 50 ml of deionized water into a three-necked flask, mix with mechanical stirring and heat up to 45°C to obtain solution A;
b. 将50克聚磷酸铵和0.5克乳化剂OP-10加入到溶液A中,并加入一定量氨水使溶液的pH调至9-10,将该混合溶液机械搅拌5分钟,得溶液B;b. 50 grams of ammonium polyphosphate and 0.5 grams of emulsifier OP-10 were added to solution A, and a certain amount of ammonia was added to adjust the pH of the solution to 9-10, and the mixed solution was mechanically stirred for 5 minutes to obtain solution B;
c. 将10克正硅酸四乙酯在30分钟内缓慢加入至溶液B中,然后机械搅拌4小时,得溶液C;c. 10 grams of tetraethyl orthosilicate was slowly added to solution B within 30 minutes, and then mechanically stirred for 4 hours to obtain solution C;
d. 待溶液C冷却后,过滤,然后用去离子水和无水乙醇洗涤固体,并将固体于80℃干燥箱中干燥24小时,得所述硅凝胶微胶囊化的聚磷酸铵(SiAPP)。d. After the solution C is cooled, filter, then wash the solid with deionized water and absolute ethanol, and dry the solid in a drying oven at 80 ° C for 24 hours to obtain the silica gel microencapsulated ammonium polyphosphate (SiAPP). ).
所述十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片的制备步骤如下:The preparation steps of the titanium carbide nanosheets functionalized and modified by hexadecyldimethylbenzylammonium chloride are as follows:
a. 将含碳化钛纳米片的分散液加入三口烧瓶中,然后在冰浴条件下超声搅拌10分钟,作为分散液A;a. Add the dispersion liquid containing titanium carbide nanosheets into the three-necked flask, and then ultrasonically stir for 10 minutes under ice bath conditions, as dispersion liquid A;
b. 将十六烷基二甲基苄基氯化铵按与碳化钛纳米片的质量比2:1逐滴加入至分散液A中,然后在氮气条件下搅拌2小时,得分散液B;b. Cetyl dimethyl benzyl ammonium chloride is added dropwise to dispersion A in a mass ratio of 2:1 to the titanium carbide nanosheets, and then stirred for 2 hours under nitrogen conditions to obtain dispersion B;
c. 将分散液B离心,然后用去离子水和无水乙醇洗涤固体,并将固体于80℃真空干燥箱中干燥24小时,即得所述十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片。c. Centrifuge the dispersion B, then wash the solid with deionized water and absolute ethanol, and dry the solid in a vacuum drying oven at 80°C for 24 hours to obtain the cetyldimethylbenzylammonium chloride Functionalized modified titanium carbide nanosheets.
所述含碳化钛纳米片的分散液通过以下步骤制备而成:The dispersion liquid containing titanium carbide nanosheets is prepared through the following steps:
a. 在磁力搅拌条件下将1.56克氟化锂、1克碳铝钛缓慢加入至20毫升盐酸中,并于35℃下反应48小时,得溶液A;a. Slowly add 1.56 g of lithium fluoride and 1 g of carbon-aluminum-titanium to 20 ml of hydrochloric acid under magnetic stirring, and react at 35°C for 48 hours to obtain solution A;
b. 用去离子水将溶液A水洗至中性后,加入一定量去离子水并冰浴超声搅拌30分钟,离心,取上层液,得到含碳化钛纳米片的分散液。b. After the solution A was washed with deionized water until neutral, a certain amount of deionized water was added and ultrasonically stirred in an ice bath for 30 minutes, centrifuged, and the upper layer was taken to obtain a dispersion liquid containing titanium carbide nanosheets.
上述低烟阻燃聚乳酸复合材料的制备方法,是按比例称取聚乳酸、硅凝胶微胶囊化的聚磷酸铵、十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片,将其置于密炼机中,在180℃条件下密炼10分钟,然后再于180℃的平板硫化机中热压成型,制得所述低烟阻燃聚乳酸复合材料。The preparation method of the above-mentioned low-smoke flame-retardant polylactic acid composite material is to weigh polylactic acid, silicon gel microencapsulated ammonium polyphosphate and cetyl dimethyl benzyl ammonium chloride functionalized modified carbonization in proportion. Titanium nanosheets were placed in an internal mixer, mixed at 180°C for 10 minutes, and then hot-pressed in a flat vulcanizer at 180°C to obtain the low-smoke flame-retardant polylactic acid composite material.
本发明具有以下优点与有益效果:The present invention has the following advantages and beneficial effects:
本发明集凝聚相阻燃和气相阻燃机制为一体,使制备得到的聚乳酸复合材料具有优异的阻燃和抑烟减毒性能,显著地提升了聚乳酸的火灾安全性能,且其制备成本较低,制作工序简单,具有良好应用前景。The invention integrates the condensed phase flame retardant and gas phase flame retardant mechanisms, so that the prepared polylactic acid composite material has excellent flame retardant and smoke suppression and detoxification properties, and the fire safety performance of polylactic acid is significantly improved, and its preparation cost low, the production process is simple, and has good application prospects.
附图说明Description of drawings
图1为低烟阻燃聚乳酸复合材料在燃烧过程中的热量和气体释放曲线:其中a为热释放速率;b为总热释放量;c为烟释放速率;d为总烟释放量。Figure 1 shows the heat and gas release curves of low-smoke flame-retardant PLA composites during combustion: a is the heat release rate; b is the total heat release; c is the smoke release rate; d is the total smoke release.
图2为比较例3所得PLA7样品热熔压后的图片。FIG. 2 is a picture of the PLA7 sample obtained in Comparative Example 3 after hot melt pressing.
具体实施方式Detailed ways
以下结合具体实施案例对本发明中的技术方案进行清楚、完整地描述。当然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域的普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。The technical solutions in the present invention will be clearly and completely described below with reference to specific implementation cases. Of course, the described embodiments are only some, but not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
硅凝胶微胶囊化的聚磷酸铵的制备步骤如下:The preparation steps of the silicon gel microencapsulated ammonium polyphosphate are as follows:
a. 将150毫升无水乙醇和50毫升去离子水加入至三口瓶中,机械搅拌混合并升温至45℃,得溶液A;a. Add 150 ml of absolute ethanol and 50 ml of deionized water into a three-necked flask, mix with mechanical stirring and heat up to 45°C to obtain solution A;
b. 将50克聚磷酸铵和0.5克乳化剂OP-10加入到溶液A中,并加入一定量氨水使溶液的pH调至9-10,将该混合溶液机械搅拌5分钟,得溶液B;b. 50 grams of ammonium polyphosphate and 0.5 grams of emulsifier OP-10 were added to solution A, and a certain amount of ammonia was added to adjust the pH of the solution to 9-10, and the mixed solution was mechanically stirred for 5 minutes to obtain solution B;
c. 将10克正硅酸四乙酯在30分钟内缓慢加入至溶液B中,然后机械搅拌4小时,得溶液C;c. 10 grams of tetraethyl orthosilicate was slowly added to solution B within 30 minutes, and then mechanically stirred for 4 hours to obtain solution C;
d. 待溶液C冷却后,过滤,然后用去离子水和无水乙醇洗涤固体,并将固体于80℃干燥箱中干燥24小时,得硅凝胶微胶囊化的聚磷酸铵(SiAPP)。d. After the solution C is cooled, filter, then wash the solid with deionized water and absolute ethanol, and dry the solid in a drying oven at 80 °C for 24 hours to obtain silicon gel microencapsulated ammonium polyphosphate (SiAPP).
十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片的制备步骤如下:The preparation steps of hexadecyldimethylbenzylammonium chloride functionalized modified titanium carbide nanosheets are as follows:
a. 在磁力搅拌条件下将1.56克氟化锂、1克碳铝钛缓慢加入至20毫升盐酸中,并于35℃下反应48小时,得溶液A;a. Slowly add 1.56 g of lithium fluoride and 1 g of carbon-aluminum-titanium to 20 ml of hydrochloric acid under magnetic stirring, and react at 35°C for 48 hours to obtain solution A;
b. 用去离子水将溶液A水洗至中性后,加入一定量去离子水并冰浴超声搅拌30分钟,离心,取上层液,得到含碳化钛纳米片的分散液;b. After the solution A was washed with deionized water to neutrality, a certain amount of deionized water was added and ultrasonically stirred in an ice bath for 30 minutes, centrifuged, and the upper layer was taken to obtain a dispersion liquid containing titanium carbide nanosheets;
c. 将所得含碳化钛纳米片的分散液加入三口烧瓶中,然后在冰浴条件下超声搅拌10分钟,作为分散液B;c. The obtained dispersion containing titanium carbide nanosheets was added to the three-necked flask, and then ultrasonically stirred for 10 minutes under ice bath conditions as dispersion B;
d. 将十六烷基二甲基苄基氯化铵按与碳化钛纳米片的质量比2:1逐滴加入至分散液B中,然后在氮气条件下搅拌2小时,得分散液C;d. Cetyldimethylbenzyl ammonium chloride is added dropwise to dispersion B in a mass ratio of 2:1 with the titanium carbide nanosheets, and then stirred for 2 hours under nitrogen conditions to obtain dispersion C;
e. 将分散液C离心,然后用去离子水和无水乙醇洗涤固体,并将固体于80℃真空干燥箱中干燥24小时,即得十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片。e. Centrifuge the dispersion C, then wash the solid with deionized water and absolute ethanol, and dry the solid in a vacuum drying oven at 80°C for 24 hours to obtain functionalized cetyldimethylbenzylammonium chloride Modified titanium carbide nanosheets.
实施例1:Example 1:
一种低烟阻燃聚乳酸复合材料,按照以下具体步骤进行制备:A low-smoke flame-retardant polylactic acid composite material is prepared according to the following specific steps:
a. 称取0.2份十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片、14.8份硅凝胶微胶囊化的聚磷酸铵和85份聚乳酸;a. Weigh 0.2 parts of cetyldimethylbenzyl ammonium chloride functionalized modified titanium carbide nanosheets, 14.8 parts of silica gel microencapsulated ammonium polyphosphate and 85 parts of polylactic acid;
b. 将称取的十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片、硅凝胶微胶囊化的聚磷酸铵和聚乳酸置于密炼机中,在180摄氏度条件下密炼10分钟,再将密炼后的样品置于180摄氏度的平板硫化机中热压成型,即制得低烟阻燃聚乳酸复合材料(PLA3)。b. Place the weighed cetyldimethylbenzyl ammonium chloride functionalized modified titanium carbide nanosheets, silicon gel microencapsulated ammonium polyphosphate and polylactic acid in an internal mixer, at 180 Banbury for 10 minutes at 180 degrees Celsius, and then place the sample after banburying in a flat vulcanizer at 180 degrees Celsius for hot pressing to form a low-smoke flame-retardant polylactic acid composite (PLA3).
实施例2:Example 2:
一种低烟阻燃聚乳酸复合材料,按照以下具体步骤进行制备:A low-smoke flame-retardant polylactic acid composite material is prepared according to the following specific steps:
a. 称取0.5份十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片、14.5份硅凝胶微胶囊化的聚磷酸铵和85份聚乳酸;a. Weigh 0.5 parts of cetyldimethylbenzyl ammonium chloride functionalized modified titanium carbide nanosheets, 14.5 parts of silica gel microencapsulated ammonium polyphosphate and 85 parts of polylactic acid;
b. 将称取的十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片、硅凝胶微胶囊化的聚磷酸铵和聚乳酸置于密炼机中,在180摄氏度条件下密炼10分钟,再将密炼后的样品置于180摄氏度的平板硫化机中热压成型,即制得低烟阻燃聚乳酸复合材料(PLA4)。b. Place the weighed cetyldimethylbenzyl ammonium chloride functionalized modified titanium carbide nanosheets, silicon gel microencapsulated ammonium polyphosphate and polylactic acid in an internal mixer, at 180 Banbury for 10 minutes under the condition of degrees Celsius, and then place the sample after banburying in a flat vulcanizer at 180 degrees Celsius for hot pressing to form a low-smoke flame-retardant polylactic acid composite (PLA4).
实施例3:Example 3:
一种低烟阻燃聚乳酸复合材料,按照以下具体步骤进行制备:A low-smoke flame-retardant polylactic acid composite material is prepared according to the following specific steps:
a. 称取1份十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片、14份硅凝胶微胶囊化的聚磷酸铵和85份聚乳酸;a. Weigh 1 part of cetyldimethylbenzyl ammonium chloride functionalized modified titanium carbide nanosheets, 14 parts of silica gel microencapsulated ammonium polyphosphate and 85 parts of polylactic acid;
b. 将称取的十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片、硅凝胶微胶囊化的聚磷酸铵和聚乳酸置于密炼机中,在180摄氏度条件下密炼10分钟,再将密炼后的样品置于180摄氏度的平板硫化机中热压成型,即制得低烟阻燃聚乳酸复合材料(PLA5)。b. Place the weighed cetyldimethylbenzyl ammonium chloride functionalized modified titanium carbide nanosheets, silicon gel microencapsulated ammonium polyphosphate and polylactic acid in an internal mixer, at 180 Banbury for 10 minutes at 180 degrees Celsius, and then place the sample after banburying in a flat vulcanizer at 180 degrees Celsius for hot pressing to form a low-smoke flame-retardant polylactic acid composite (PLA5).
实施例4:Example 4:
一种低烟阻燃聚乳酸复合材料,按照以下具体步骤进行制备:A low-smoke flame-retardant polylactic acid composite material is prepared according to the following specific steps:
a. 称取2份十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片、13份硅凝胶微胶囊化的聚磷酸铵和85份聚乳酸;a. Weigh 2 parts of cetyldimethylbenzyl ammonium chloride functionalized modified titanium carbide nanosheets, 13 parts of silicon gel microencapsulated ammonium polyphosphate and 85 parts of polylactic acid;
b. 将称取的十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片、硅凝胶微胶囊化的聚磷酸铵和聚乳酸置于密炼机中,在180摄氏度条件下密炼10分钟,再将密炼后的样品置于180摄氏度的平板硫化机中热压成型,即制得低烟阻燃聚乳酸复合材料(PLA6)。b. Place the weighed cetyldimethylbenzyl ammonium chloride functionalized modified titanium carbide nanosheets, silicon gel microencapsulated ammonium polyphosphate and polylactic acid in an internal mixer, at 180 Banbury for 10 minutes at 180 degrees Celsius, and then place the sample after banburying in a flat vulcanizer at 180 degrees Celsius for hot pressing to form a low-smoke flame-retardant polylactic acid composite (PLA6).
比较例1:Comparative Example 1:
一种纯聚乳酸,按照以下步骤进行制备:A kind of pure polylactic acid is prepared according to the following steps:
a. 称取100份聚乳酸;a. Weigh 100 parts of polylactic acid;
b. 将称取的聚乳酸置于密炼机中,在180摄氏度条件下密炼10分钟,再将密炼后的样品置于180摄氏度的平板硫化机中热压成型,即制得纯聚乳酸(PLA1)。b. Place the weighed polylactic acid in an internal mixer, mix it for 10 minutes at 180 degrees Celsius, and then place the mixed sample in a flat vulcanizer at 180 degrees Celsius for hot pressing to form pure polylactic acid. Lactic acid (PLA1).
比较例2:Comparative Example 2:
一种阻燃聚乳酸复合材料,按照以下步骤进行制备:A flame retardant polylactic acid composite material is prepared according to the following steps:
a. 称取15份硅凝胶微胶囊化的聚磷酸铵和85份聚乳酸;a. Weigh 15 parts of silicon gel microencapsulated ammonium polyphosphate and 85 parts of polylactic acid;
b. 将称取的硅凝胶微胶囊化的聚磷酸铵和聚乳酸置于密炼机中,在180摄氏度条件下密炼10分钟,然后再将密炼后的样品置于180摄氏度的平板硫化机中热压成型,即制得阻燃聚乳酸复合材料(PLA2)。b. Place the weighed silicon gel microencapsulated ammonium polyphosphate and polylactic acid in an internal mixer, mix at 180 degrees Celsius for 10 minutes, and then place the mixed samples on a flat plate at 180 degrees Celsius The flame retardant polylactic acid composite material (PLA2) is obtained by hot pressing in a vulcanizing machine.
比较例3:Comparative Example 3:
一种阻燃聚乳酸复合材料,按照以下步骤进行制备:A flame retardant polylactic acid composite material is prepared according to the following steps:
a. 称取5份十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片、10份硅凝胶微胶囊化的聚磷酸铵和85份聚乳酸;a. Weigh 5 parts of cetyldimethylbenzyl ammonium chloride functionalized modified titanium carbide nanosheets, 10 parts of silicon gel microencapsulated ammonium polyphosphate and 85 parts of polylactic acid;
b. 将称取的十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片、硅凝胶微胶囊化的聚磷酸铵和聚乳酸置于密炼机中,在180摄氏度条件下密炼10分钟,再将密炼后的样品置于180摄氏度的平板硫化机中热压成型,即制得阻燃聚乳酸复合材料(PLA7)。b. Place the weighed cetyldimethylbenzyl ammonium chloride functionalized modified titanium carbide nanosheets, silicon gel microencapsulated ammonium polyphosphate and polylactic acid in an internal mixer, at 180 Banbury for 10 minutes under the condition of Celsius degrees, and then place the sample after banburying in a flat vulcanizer at 180 degrees Celsius for hot pressing to form a flame-retardant polylactic acid composite (PLA7).
对实施例1~4和比较例1~2制备的材料进行火灾安全性能分析。分析设备:CFZ-2型水平垂直燃烧测定仪和锥形量热仪;锥形量热仪热辐射值为35kW/m2。结果见表1-2及图1。Fire safety performance analysis was carried out on the materials prepared in Examples 1-4 and Comparative Examples 1-2. Analysis equipment: CFZ-2 horizontal and vertical combustion measuring instrument and cone calorimeter; the thermal radiation value of the cone calorimeter is 35kW/m 2 . The results are shown in Table 1-2 and Figure 1.
表1 低烟阻燃聚乳酸复合材料的UL-94测试数据Table 1 UL-94 test data of low smoke flame retardant PLA composites
表2 低烟阻燃聚乳酸复合材料在热流密度为35kW/m2条件下的锥形量热仪测试数据Table 2 Cone calorimeter test data of low-smoke flame-retardant PLA composites under the condition of heat flux density of 35kW/m2
从表1可以看出,引入硅凝胶微胶囊化的聚磷酸铵和十六烷基二甲基苄基功能化改性的碳化钛纳米片后,所得聚乳酸复合材料燃烧后均未出现熔融滴落的现象,并且所有聚乳酸复合材料的UL-94都达到了V-0等级。尤其是引入13%硅凝胶微胶囊化的聚磷酸铵和2%十六烷基二甲基苄基功能化改性的碳化钛纳米片制备的聚乳酸复合材料的LOI值高达33.3%。It can be seen from Table 1 that after the introduction of silicon gel microencapsulated ammonium polyphosphate and cetyldimethylbenzyl functionalized modified titanium carbide nanosheets, the obtained polylactic acid composites did not melt after burning. dripping phenomenon, and all PLA composites achieved a V-0 rating of UL-94. In particular, the LOI value of the polylactic acid composite prepared by introducing 13% silica gel microencapsulated ammonium polyphosphate and 2% cetyldimethylbenzyl functionalized modified titanium carbide nanosheets was as high as 33.3%.
由表2和图1可以计算得出,与纯聚乳酸相比,引入13.0%硅凝胶微胶囊化的聚磷酸铵和2.0%十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片制备的聚乳酸复合材料的热释放速率峰值和总热释放量分别降低了49.8%和31.9%;烟释放速率峰值和总烟释放量分别减少了60.8%和52.7%。It can be calculated from Table 2 and Figure 1 that compared with pure polylactic acid, the functional modification of 13.0% silica gel microencapsulated ammonium polyphosphate and 2.0% cetyldimethylbenzylammonium chloride was introduced. The peak heat release rate and total heat release of PLA composites prepared from titanium carbide nanosheets were reduced by 49.8% and 31.9%, respectively; the peak smoke release rate and total smoke release were reduced by 60.8% and 52.7%, respectively.
而由图2可见,当将十六烷基二甲基苄基氯化铵功能化改性的碳化钛纳米片添加量增加至2.0%以及硅凝胶微胶囊化的聚磷酸铵的添加量降低至10.0%,由于改性碳化钛纳米片与硅凝胶微胶囊化的聚磷酸铵之间相互催化的拮抗作用,导致复合材料样品在密炼和热熔压过程中熔滴异常严重,无法制备完整的聚乳酸复合材料。As can be seen from Figure 2, when the addition amount of titanium carbide nanosheets functionalized with cetyldimethylbenzyl ammonium chloride was increased to 2.0% and the addition amount of silica gel microencapsulated ammonium polyphosphate decreased up to 10.0%, due to the antagonism of the mutual catalysis between the modified titanium carbide nanosheets and the silica gel microencapsulated ammonium polyphosphate, the composite samples were extremely severe in the process of banburying and hot-melt pressing, and could not be prepared. Complete PLA composite.
从以上数据分析可知,由于改性碳化钛的阻隔和催化效应、含磷阻燃剂的成炭和自由基中断效应以及改性碳化钛与含磷阻燃剂的协同效应,使制得的聚乳酸复合材料燃烧时释放的热量和有毒烟气有效减少,提升了聚乳酸的火灾安全性能。From the above data analysis, it can be seen that due to the barrier and catalytic effects of modified titanium carbide, the carbon formation and free radical interruption effects of phosphorus-containing flame retardants, and the synergistic effect of modified titanium carbide and phosphorus-containing flame retardants, the obtained polymer The heat and toxic fumes released when the lactic acid composite material is burned are effectively reduced, which improves the fire safety performance of polylactic acid.
以上对本发明所提供的一种低烟阻燃聚乳酸复合材料及其制备方法进行了详细的介绍。本文中应用了具体的实施例对本发明的制备以及应用进行了阐述,而以上实施例的说明只是用于帮助理解本发明的方法以及核心思想。应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干修饰与改进,这些修饰与改进也应该落入本发明权利要求的保护范围内。The low-smoke flame-retardant polylactic acid composite material provided by the present invention and the preparation method thereof are introduced in detail above. The preparation and application of the present invention are described herein by using specific embodiments, and the descriptions of the above embodiments are only used to help understand the method and core idea of the present invention. It should be pointed out that for those skilled in the art, without departing from the principle of the present invention, several modifications and improvements can be made to the present invention, and these modifications and improvements should also fall into the protection of the claims of the present invention within the range.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110926604.9A CN113549310B (en) | 2021-08-12 | 2021-08-12 | A kind of low-smoke flame-retardant polylactic acid composite material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110926604.9A CN113549310B (en) | 2021-08-12 | 2021-08-12 | A kind of low-smoke flame-retardant polylactic acid composite material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113549310A CN113549310A (en) | 2021-10-26 |
CN113549310B true CN113549310B (en) | 2022-06-10 |
Family
ID=78105599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110926604.9A Active CN113549310B (en) | 2021-08-12 | 2021-08-12 | A kind of low-smoke flame-retardant polylactic acid composite material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113549310B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114507380B (en) * | 2022-01-24 | 2022-11-18 | 华南理工大学 | A kind of phosphorus-nitrogen single-component intumescent flame retardant modified by MXene nanosheets and its preparation method and application |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107880316A (en) * | 2017-11-07 | 2018-04-06 | 常州福隆工控设备有限公司 | A kind of preparation method of the anti-molten drop fire retardant of thermostabilization |
CN108250729B (en) * | 2017-12-30 | 2020-10-30 | 安徽东远新材料有限公司 | Preparation method of flame-retardant rigid polyurethane foam plastic |
CN110105746A (en) * | 2019-05-24 | 2019-08-09 | 青岛科技大学 | A kind of fire retardant and the application in thermoplastic polyurethane elastomer is fire-retardant |
CN111349355B (en) * | 2020-04-21 | 2022-01-11 | 武汉工程大学 | Modified ammonium polyphosphate for improving flame retardant property of fireproof coating and preparation method thereof |
CN111621137B (en) * | 2020-06-22 | 2021-12-21 | 福州大学 | Low-smoke low-toxicity flame-retardant thermoplastic polyurethane composite material and preparation method thereof |
CN113088066B (en) * | 2021-04-07 | 2022-03-08 | 福州大学 | Flame-retardant thermoplastic polyurethane composite material |
-
2021
- 2021-08-12 CN CN202110926604.9A patent/CN113549310B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113549310A (en) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hou et al. | Multielement flame-retardant system constructed with metal poss–organic frameworks for epoxy resin | |
Cheng et al. | Application of metallic phytates to poly (vinyl chloride) as efficient biobased phosphorous flame retardants | |
Bi et al. | Hollow superstructure in situ assembled by single‐layer janus nanospheres toward electromagnetic shielding flame‐retardant polyurea composites | |
Gao et al. | A phosphate covalent organic framework: synthesis and applications in epoxy resin with outstanding fire performance and mechanical properties | |
Bi et al. | Joint Exfoliation of MXene by Dimensional Mismatched SiC/ZIF‐67 Toward Multifunctional Flame Retardant Thermoplastic Polyurethane | |
Li et al. | Preparation and properties of polybutylene‐terephthalate/graphene oxide in situ flame‐retardant material | |
CN106009044A (en) | Surface modifying method of hollow glass beads and flame-retardant application thereof | |
Yu et al. | Striking effect of nanosized carbon black modified by grafting sodium sulfonate on improving the flame retardancy of polycarbonate | |
CN113717511B (en) | Mxene-based flame-retardant unsaturated resin material and preparation method thereof | |
Zhang et al. | A graphene@ Cu-MOF hybrid synthesized by mechanical ball milling method and its flame retardancy and smoke suppression effect on EP | |
Chai et al. | An eco-friendly, bio-inspired and synergistic flame retardant system with outstanding water tolerance and ultra-low addition for silicone rubber | |
CN105670231B (en) | The preparation method of inflatable carbonitride fire retarding epoxide resin | |
CN112831174A (en) | Preparation and application of ZnO@MOF@polyphosphazene flame retardant | |
Zhang et al. | Effect of ammonium polyphosphate/cobalt phytate system on flame retardancy and smoke & toxicity suppression of rigid polyurethane foam composites | |
CN114395167B (en) | A carbon microsphere@hydrotalcite@polyphosphazene hybrid flame retardant and its preparation method | |
CN113549310B (en) | A kind of low-smoke flame-retardant polylactic acid composite material and preparation method thereof | |
Zhou et al. | Synergistic flame retardancy of piperazine pyrophosphate/magnesium hydroxide/fly ash cenospheres-doped rigid polyurethane foams | |
CN111621137B (en) | Low-smoke low-toxicity flame-retardant thermoplastic polyurethane composite material and preparation method thereof | |
Dun et al. | A simple and efficient magnesium hydroxide modification strategy for flame-retardancy epoxy resin | |
CN113667277A (en) | Low-heat-release, low-smoke and high-flame-retardant epoxy resin material and preparation method thereof | |
Wang et al. | Constructing piperazine pyrophosphate@ LDH@ rGO with hierarchical core-shell structure for improving thermal conductivity, flame retardancy and smoke suppression of epoxy resin thermosets | |
Xiang et al. | Phosphorus and nitrogen supramolecule for fabricating flame-retardant, transparent and robust polyvinyl alcohol film | |
Yin et al. | A novel P/Fe/Si-doped porphyrin with excellent flame retardancy and ultrastrong toughening effect on epoxy resin | |
CN114230978B (en) | A kind of flame-retardant epoxy resin based on phosphorus-containing nickel silicate whiskers and preparation method | |
Yang et al. | Synergistic effect of expandable graphite and aluminum hypophosphite in flame‐retardant ethylene vinyl acetate composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |