CN113544748A - Cross reality system - Google Patents
Cross reality system Download PDFInfo
- Publication number
- CN113544748A CN113544748A CN201980080054.4A CN201980080054A CN113544748A CN 113544748 A CN113544748 A CN 113544748A CN 201980080054 A CN201980080054 A CN 201980080054A CN 113544748 A CN113544748 A CN 113544748A
- Authority
- CN
- China
- Prior art keywords
- map
- persistent
- frame
- coordinate frame
- user
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002085 persistent effect Effects 0.000 claims abstract description 300
- 230000009466 transformation Effects 0.000 claims abstract description 75
- 238000000034 method Methods 0.000 claims description 180
- 238000003860 storage Methods 0.000 claims description 77
- 238000013528 artificial neural network Methods 0.000 claims description 41
- 238000009877 rendering Methods 0.000 claims description 32
- 230000033001 locomotion Effects 0.000 claims description 28
- 238000013519 translation Methods 0.000 claims description 11
- 238000012935 Averaging Methods 0.000 claims description 6
- 238000007670 refining Methods 0.000 claims description 3
- 210000003128 head Anatomy 0.000 description 189
- 238000012545 processing Methods 0.000 description 84
- 230000007613 environmental effect Effects 0.000 description 78
- 238000010586 diagram Methods 0.000 description 75
- 101100400452 Caenorhabditis elegans map-2 gene Proteins 0.000 description 66
- 238000001914 filtration Methods 0.000 description 47
- 230000008569 process Effects 0.000 description 31
- 238000001514 detection method Methods 0.000 description 30
- 101150064138 MAP1 gene Proteins 0.000 description 29
- 230000008447 perception Effects 0.000 description 27
- 230000000875 corresponding effect Effects 0.000 description 20
- 230000015654 memory Effects 0.000 description 20
- 230000008859 change Effects 0.000 description 19
- 210000001747 pupil Anatomy 0.000 description 17
- 238000005259 measurement Methods 0.000 description 15
- 230000000007 visual effect Effects 0.000 description 15
- 238000011176 pooling Methods 0.000 description 14
- 238000000844 transformation Methods 0.000 description 14
- 238000012549 training Methods 0.000 description 13
- 210000001525 retina Anatomy 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 10
- 230000001131 transforming effect Effects 0.000 description 10
- 230000014616 translation Effects 0.000 description 10
- 239000013598 vector Substances 0.000 description 10
- 230000002688 persistence Effects 0.000 description 9
- 238000011084 recovery Methods 0.000 description 9
- 238000004441 surface measurement Methods 0.000 description 9
- 230000000712 assembly Effects 0.000 description 8
- 238000000429 assembly Methods 0.000 description 8
- 230000003190 augmentative effect Effects 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 238000004422 calculation algorithm Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 8
- 230000004807 localization Effects 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 230000000717 retained effect Effects 0.000 description 8
- 230000003993 interaction Effects 0.000 description 7
- 230000005484 gravity Effects 0.000 description 6
- 235000019587 texture Nutrition 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 101100206190 Arabidopsis thaliana TCP20 gene Proteins 0.000 description 4
- 101100082494 Oryza sativa subsp. japonica PCF1 gene Proteins 0.000 description 4
- 101100045761 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) TFC4 gene Proteins 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 241000282994 Cervidae Species 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 230000004418 eye rotation Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 101100264195 Caenorhabditis elegans app-1 gene Proteins 0.000 description 2
- 230000004931 aggregating effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 210000000613 ear canal Anatomy 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 235000019615 sensations Nutrition 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 241000256837 Apidae Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000019580 granularity Nutrition 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000013138 pruning Methods 0.000 description 1
- 238000013442 quality metrics Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/006—Mixed reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
- G06F3/04815—Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/462—Salient features, e.g. scale invariant feature transforms [SIFT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/20—Scenes; Scene-specific elements in augmented reality scenes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/49—Segmenting video sequences, i.e. computational techniques such as parsing or cutting the sequence, low-level clustering or determining units such as shots or scenes
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Medical Informatics (AREA)
- Health & Medical Sciences (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Computer Graphics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Biology (AREA)
- Human Computer Interaction (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Processing Or Creating Images (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
A cross reality system provides an immersive user experience by storing persistent spatial information about a physical world that one or more user devices can access to determine a location in the physical world, and that an application can access to specify a location of a virtual object in the physical world. Persistent spatial information enables users to have a shared virtual as well as physical experience when interacting with the cross-reality system. In addition, persistent spatial information may be used in maps of the physical world, thereby enabling one or more devices to access and locate into previously stored maps, reducing the need to map physical space prior to use of a cross-reality system therein. The persistent spatial information may be stored as a persistent coordinate frame, which may include a transformation with respect to a reference orientation and information derived from an image in a location corresponding to the persistent coordinate frame.
Description
Cross Reference to Related Applications
The present patent application claims priority and benefit of U.S. provisional patent application serial No. 62/742,237, entitled COORDINATE FRAME PROCESSING AUGMENTED REALITY (COORDINATE FRAME PROCESSING AUGMENTED REALITY), filed on 2018 on month 10 and 5, which is hereby incorporated by reference in its entirety. This patent application also claims priority and benefit OF U.S. provisional patent application serial No. 62/812,935, filed on 2019 on 1/3 and entitled "MERGING multiple INDIVIDUALLY MAPPED ENVIRONMENTS (merge a planar OF indirect map), which is hereby incorporated by reference in its entirety. U.S. provisional patent application serial No. 62/815,955, filed on 8/3.2019 and entitled "viewing device OR devices with ONE OR MORE COORDINATE FRAME TRANSFORMERS (VIEWING DEVICE OR VIEWING DEVICES HAVING ONE OR MORE COORDINATE FRAME TRANSFORMERS"), which is incorporated herein by reference in its entirety. This patent application also claims priority and benefit OF U.S. provisional patent application serial No. 62/868,786, filed on 28.6.2019 and entitled "ranking and merging multiple ENVIRONMENT MAPS (RANKING AND MERGING A public OF environnment MAPS"), which is hereby incorporated by reference in its entirety. This patent application also claims priority and benefit OF U.S. provisional patent application serial No. 62/870,954, filed on 5.7.2019 and entitled "ranking and merging multiple ENVIRONMENT MAPS (RANKING AND MERGING A public OF environnment MAPS"), which is hereby incorporated by reference in its entirety. This patent application also claims priority and benefit of U.S. provisional patent application serial No. 62/884,109, filed on 7.8.2019 and entitled "viewing system (A VIEWING SYSTEM"), which is hereby incorporated by reference in its entirety.
Technical Field
The present application relates generally to cross reality systems.
Background
The computer may control the human user interface to create an X Reality (X Reality, XR or cross Reality) environment in which some or all of the XR environment perceived by the user is generated by the computer. These XR environments can be Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) environments, some or all of which can be generated by a computer portion using data describing the environment. For example, the data may describe virtual objects that may be rendered in a manner that is perceived or perceived by a user as part of the physical world and may interact with the virtual objects. These virtual objects may be experienced by a user as data is rendered and presented through a user interface device, such as, for example, a head mounted display device. The data may be displayed for the user to see, or may control audio played for the user to hear, or may control a tactile (or tactile) interface, thereby enabling the user to experience a touch sensation that the user feels or perceives as feeling a virtual object.
XR systems can be used for many applications across the fields of scientific visualization, medical training, engineering and prototyping, remote manipulation and remote presentation, and personal entertainment. In contrast to VR, AR and MR comprise one or more virtual objects related to real objects of the physical world. The experience of virtual objects interacting with real objects significantly enhances the user's enjoyment of using the XR system and also opens the door for various applications that present information about how to change the reality of the physical world and that is easy to understand.
To realistically render virtual content, the XR system may build a representation of the physical world surrounding the users of the system. For example, this representation may be constructed by processing images acquired with sensors on a wearable device that forms part of the XR system. In such systems, a user may perform an initialization routine by looking around the room or other physical environment in which the user intends to use the XR system until the system obtains sufficient information to build a representation of the environment. As the system operates and the user moves in the environment or to other environments, sensors on the wearable device may acquire other information to expand or update the representation of the physical world.
Disclosure of Invention
Some embodiments relate to an electronic system comprising: one or more sensors configured to capture information about a three-dimensional, 3D environment. The captured information includes a plurality of images. The electronic system includes at least one processor configured to execute computer-executable instructions to generate a map of at least a portion of the 3D environment based on the plurality of images. The computer-executable instructions further comprise instructions for: identifying a plurality of features in the plurality of images; selecting a plurality of key frames from the plurality of images, the selecting based at least in part on the plurality of features of the selected key frames; generating one or more coordinate frames based at least in part on the identified features of the selected keyframes; and storing the one or more coordinate frames as one or more persistent coordinate frames in association with the map of the 3D environment.
In some embodiments, the one or more sensors comprise a plurality of pixel circuits arranged in a two-dimensional array such that each image of the plurality of images comprises a plurality of pixels. Each feature corresponds to a plurality of pixels.
In some embodiments, identifying the plurality of features in the plurality of images comprises: selecting a number of pixel groups smaller than a predetermined maximum as the identified feature based on a measure of similarity to a pixel group depicting a persistent object portion.
In some embodiments, storing the one or more coordinate frames comprises storing, for each of the one or more coordinate frames:
a descriptor representing at least a subset of the features in the selected keyframe from which the coordinate frame was generated.
In some embodiments, storing the one or more coordinate frames comprises storing, for each of the one or more coordinate frames: at least a subset of the features in the selected keyframes from which the coordinate frame is generated.
In some embodiments, storing the one or more coordinate frames comprises storing, for each of the one or more coordinate frames: a transformation between a coordinate frame of the map of the 3D environment and the persistent coordinate frame; and geographic information indicating the location within the 3D environment of the selected keyframes from which the coordinate frame was generated.
In some embodiments, the geographic information comprises a WiFi fingerprint of the location.
In some embodiments, the computer-executable instructions include instructions for computing feature descriptors for individual features with an artificial neural network.
In some embodiments, the first artificial neural network is a first artificial neural network. The computer-executable instructions include instructions for implementing a second artificial neural network configured to compute a frame descriptor representing a key frame based at least in part on feature descriptors computed for identified features in the key frame.
In some embodiments, the computer-executable instructions further comprise: an application programming interface configured to provide information characterizing a persistent coordinate frame of the one or more persistent coordinate frames to an application executing on the portable electronic system; instructions for refining the map of the 3D environment based on a second plurality of images; adjusting one or more of the persistent coordinate frames based at least in part on the second plurality of images; instructions for providing notification of the adjusted persistent coordinate frame through the application programming interface.
In some embodiments, adjusting the one or more persistent coordinate frames comprises: adjusting translation and rotation of the one or more persistent coordinate frames relative to an origin of the map of the 3D environment.
In some embodiments, the electronic system comprises a wearable device, and the one or more sensors are mounted on the wearable device. The map is a tracking map computed on the wearable device. The origin of the map is determined based on the location where the device is powered on.
In some embodiments, the electronic system comprises a wearable device, and the one or more sensors are mounted on the wearable device. The computer-executable instructions further comprise instructions for: tracking motion of the portable device; and controlling timing of execution of the instructions for generating one or more coordinate frames and/or the instructions for storing one or more persistent coordinate frames based on the tracked motion indicating that the motion of the wearable device exceeds a threshold distance, wherein the threshold distance is between two meters and twenty meters.
Some embodiments relate to a method of operating an electronic system to render virtual content in a 3D environment including a portable device. The method includes, with one or more processors: maintaining, on the portable device, a coordinate frame local to the portable device based on output of one or more sensors on the portable device; retrieving a stored coordinate frame from the stored spatial information about the 3D environment; calculating a transformation between a coordinate frame local to the portable device and the acquired stored coordinate frame; receiving a specification of a virtual object and a position of the virtual object relative to the selected stored coordinate frame, the virtual object having a coordinate frame native to the virtual object; and rendering the virtual object on a display of the portable device at a location determined based at least in part on the calculated transformation and the received location of the virtual object.
In some embodiments, obtaining the stored coordinate frame comprises: the coordinate frame is obtained through an application programming interface API.
In some embodiments, the portable device comprises a first portable device comprising a first processor of the one or more processors. The system further includes a second portable device including a second processor of the one or more processors; wherein the processor on each of the first device and the second device: acquiring the same stored coordinate frame; calculating a transformation between the corresponding device local coordinate frame and the same acquired stored coordinate frame; receiving the specification of the virtual object; and rendering the virtual objects on the respective displays.
In some embodiments, each of the first device and the second device comprises: a camera configured to output a plurality of camera images; a keyframe generator configured to transform the plurality of camera images into a plurality of keyframes; a persistent gesture calculator configured to generate a persistent gesture by averaging the plurality of keyframes; a tracking map and a persistent pose transformer configured to transform the tracking map into the persistent pose to determine a persistent pose relative to an origin of the tracking map; a persistent pose and persistent coordinate frame PCF transformer configured to transform the persistent pose to a PCF; and a map publisher configured to transmit spatial information including the PCF to a server.
In some embodiments, the method comprises: executing an application to generate the specification of the virtual object and the position of the virtual object relative to the selected stored coordinate frame.
In some embodiments, maintaining on the portable device a coordinate frame local to the portable device comprises: for each of the first portable device and the second portable device, capturing a plurality of images about the 3D environment from the one or more sensors of the portable device, calculating one or more persistent gestures based at least in part on the plurality of images, and generating spatial information about the 3D environment based at least in part on the calculated one or more persistent gestures. The method further comprises the following steps: transmitting the generated spatial information to a remote server for each of the first and second portable devices; and retrieving the stored coordinate frame comprises: receiving the stored coordinate frame from the remote server.
In some embodiments, computing the one or more persistent gestures based at least in part on the plurality of images comprises: extracting one or more features from each of the plurality of images; generating a descriptor for each of the one or more features; generating a key frame for each image of the plurality of images based at least in part on the descriptor; and generating the one or more persistent gestures based at least in part on the one or more keyframes.
In some embodiments, generating the one or more persistent gestures comprises: selectively generating a persistent gesture based on the portable device traveling a predetermined distance from the location of the other persistent gestures.
In some embodiments, each of the first device and the second device comprises: a download system configured to download the stored coordinate frame from a server.
Some embodiments relate to an electronic system for maintaining persistent spatial information about a 3D environment for rendering virtual content on each of a plurality of portable devices. The electronic system includes: a networked computing device. The networked computing device includes: at least one processor; at least one storage device connected to the processor; a map storage routine executable with the at least one processor to receive a plurality of maps from a portable device of the plurality of portable devices and store map information on the at least one storage device, wherein each map of the plurality of received maps comprises at least one coordinate frame; and a map transmitter executable with the at least one processor to: receiving location information from a portable device of the plurality of portable devices; selecting one or more maps from the stored maps; and transmitting information from the selected one or more maps to the portable device of the plurality of portable devices, wherein the transmitted information includes a coordinate frame of a map of the selected one or more maps.
In some embodiments, the coordinate frame comprises a computer data structure. The computer data structure includes: a coordinate frame comprising information characterizing a plurality of features of an object in the 3D environment.
In some embodiments, the information characterizing the plurality of features comprises: a descriptor characterizing a region of the 3D environment.
In some embodiments, each of the at least one coordinate frame comprises: a persistent point characterized by a feature detected in sensor data representing the 3D environment.
In some embodiments, each coordinate frame of the at least one coordinate frame comprises a persistent gesture.
In some embodiments, each coordinate frame of the at least one coordinate frame comprises a persistent coordinate frame.
The foregoing summary is provided by way of illustration and is not intended to be limiting.
Drawings
The drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:
FIG. 1 is a schematic diagram illustrating an example of a simplified Augmented Reality (AR) scene, in accordance with some embodiments;
FIG. 2 is a schematic diagram of an exemplary simplified AR scenario illustrating an exemplary use case of an XR system, according to some embodiments;
FIG. 3 is a schematic diagram illustrating data flow for a single user in an AR system configured to provide a user with an experience of AR content interacting with the physical world, in accordance with some embodiments;
FIG. 4 is a schematic diagram illustrating an exemplary AR display system that displays virtual content for a single user, in accordance with some embodiments;
FIG. 5A is a schematic diagram that illustrates the AR display system rendering AR content as a user moves through a physical world environment while the user is wearing the AR display system, in accordance with some embodiments;
FIG. 5B is a schematic diagram illustrating a viewing optics assembly and accompanying components according to some embodiments;
FIG. 6A is a schematic diagram illustrating an AR system using a world reconstruction system, in accordance with some embodiments;
figure 6B is a schematic diagram illustrating components of an AR system that maintains a model of a navigable world, in accordance with some embodiments.
FIG. 7 is a schematic diagram of a trace graph formed by a device traversing a path through the physical world.
FIG. 8 is a schematic diagram illustrating a user of a virtual content aware cross reality (XR) system, according to some embodiments;
Fig. 9 is a block diagram of components of a first XR device of the XR system of fig. 8 transforming between coordinate systems, in accordance with some embodiments;
FIG. 10 is a schematic diagram illustrating exemplary transformation of an origin coordinate frame into a destination coordinate frame for proper rendering of local XR content, in accordance with some embodiments;
FIG. 11 is a top plan view showing a pupil-based coordinate frame according to some embodiments;
FIG. 12 is a top plan view showing a camera coordinate frame including all pupil positions, in accordance with some embodiments;
FIG. 13 is a schematic diagram of the display system of FIG. 9 according to some embodiments;
FIG. 14 is a block diagram illustrating creation of a persistent coordinate system (PCF) and attachment of XR content to the PCF in accordance with some embodiments;
FIG. 15 is a flow diagram illustrating a method of establishing and using a PCF in accordance with some embodiments;
fig. 16 is a block diagram of the XR system of fig. 8 including a second XR device, in accordance with some embodiments;
FIG. 17 is a schematic diagram illustrating a room and key frames established for various regions in the room, in accordance with some embodiments;
FIG. 18 is a schematic diagram illustrating the establishment of a keyframe based persistent gesture, in accordance with some embodiments;
FIG. 19 is a schematic diagram illustrating the establishment of a Persistent Coordinate Frame (PCF) based on persistent gestures, in accordance with some embodiments;
20A-20C are diagrams illustrating examples of creating PCFs in accordance with some embodiments;
FIG. 21 is a block diagram illustrating a system for generating global descriptors for a single image and/or map, in accordance with some embodiments;
FIG. 22 is a flow diagram illustrating a method of computing an image descriptor according to some embodiments;
FIG. 23 is a flow diagram illustrating a localization method using image descriptors according to some embodiments;
FIG. 24 is a flow diagram illustrating a method of training a neural network, in accordance with some embodiments;
FIG. 25 is a block diagram illustrating a method of training a neural network, in accordance with some embodiments;
FIG. 26 is a schematic diagram illustrating an AR system configured to rank and merge multiple environment graphs, in accordance with some embodiments;
FIG. 27 is a simplified block diagram illustrating a plurality of specification maps stored on a remote storage medium according to some embodiments;
FIG. 28 is a schematic diagram illustrating a method of selecting a specification map, for example, to locate a new tracking map in one or more specification maps and/or to obtain PCFs from the specification map, in accordance with some embodiments;
FIG. 29 is a flow diagram illustrating a method of selecting a plurality of ranked environment maps, according to some embodiments;
Figure 30 is a schematic diagram illustrating an exemplary map ranking portion of the AR system of figure 26, in accordance with some embodiments;
FIG. 31A is a schematic diagram illustrating an example of regional attributes of a Tracking Map (TM) and an environmental map in a database, in accordance with some embodiments;
FIG. 31B is a schematic diagram illustrating an example of determining the geographic location of a Tracking Map (TM) for the geographic location filtering of FIG. 29, in accordance with some embodiments;
FIG. 32 is a schematic diagram illustrating an example of the geographic location filtering of FIG. 29, in accordance with some embodiments;
fig. 33 is a diagram illustrating an example of Wi-Fi BSSID filtering of fig. 29, in accordance with some embodiments;
FIG. 34 is a schematic diagram illustrating an example of the positioning of FIG. 29, in accordance with some embodiments;
fig. 35 and 36 are block diagrams of XR systems configured to rank and merge multiple environment maps, according to some embodiments.
FIG. 37 is a block diagram illustrating a method of creating an environmental map of a physical world in canonical form, in accordance with some embodiments;
fig. 38A and 38B are schematic diagrams illustrating an environment map created in canonical form by updating the tracking map of fig. 7 with a new tracking map, according to some embodiments.
39A-39F are schematic diagrams illustrating examples of merging maps according to some embodiments;
FIG. 40 is a two-dimensional representation of a three-dimensional first local tracking map (map 1) that may be generated by the first XR device of FIG. 9, in accordance with some embodiments;
figure 41 is a block diagram illustrating uploading of map 1 from a first XR device to the server of figure 9, in accordance with some embodiments;
FIG. 42 is a schematic diagram illustrating the XR system of FIG. 16 showing a second user having initiated a second session using a second XR device of the XR system after the first user has terminated the first session, in accordance with some embodiments;
fig. 43A is a block diagram illustrating a new session for the second XR device of fig. 42, in accordance with some embodiments;
fig. 43B is a block diagram illustrating creation of a tracking map for the second XR device of fig. 42, in accordance with some embodiments;
FIG. 43C is a block diagram illustrating downloading of a specification map from a server to the second XR device of FIG. 42, according to some embodiments;
FIG. 44 is a schematic diagram illustrating a localization attempt to localize a second tracking map (map 2), which may be generated by the second XR device of FIG. 42, to a canonical map, in accordance with some embodiments;
FIG. 45 is a schematic diagram illustrating a locate attempt to locate the second tracking map of FIG. 44 (map 2), which may be further developed and has XR content associated with the PCF of map 2, to a canonical map, in accordance with some embodiments;
46A-46B are schematic diagrams illustrating successful positioning of map 2 of FIG. 45 to a canonical map, according to some embodiments;
FIG. 47 is a schematic diagram illustrating a specification map generated by including one or more PCFs from the specification map of FIG. 46A into map 2 of FIG. 45, in accordance with some embodiments;
FIG. 48 is a schematic diagram illustrating the canonical map of FIG. 47 and a further expansion of map 2 on a second XR device, in accordance with some embodiments;
figure 49 is a block diagram illustrating uploading of map 2 from a second XR device to a server, in accordance with some embodiments;
FIG. 50 is a block diagram illustrating merging map 2 with a canonical map, in accordance with some embodiments;
figure 51 is a block diagram illustrating the transfer of a new specification map from a server to a first XR device and a second XR device, in accordance with some embodiments;
FIG. 52 is a block diagram illustrating a two-dimensional representation of map 2 and a head coordinate frame of a second XR device referencing map 2, in accordance with some embodiments;
FIG. 53 is a block diagram that illustrates, in two dimensions, adjustments of a head coordinate frame that may occur in six degrees of freedom, in accordance with some embodiments;
fig. 54 is a block diagram illustrating a specification map on a second XR device in which the voice is located relative to the PCF of map 2, in accordance with some embodiments;
FIGS. 55 and 56 are perspective and block diagrams illustrating use of the XR system when the first user has terminated the first session and the first user has initiated the second session using the XR system, in accordance with some embodiments;
figures 57 and 58 are perspective and block diagrams illustrating use of the XR system when three users are simultaneously using the XR system in the same session, in accordance with some embodiments;
FIG. 59 is a flow diagram illustrating a method of restoring and resetting a head pose, according to some embodiments; and
FIG. 60 is a block diagram of a machine in the form of a computer that may find application in the system of the present invention, according to some embodiments.
Detailed Description
Described herein are methods and apparatus for providing an X reality (XR or cross reality) scene. In order to provide a realistic XR experience for multiple users, the XR system must know the physical environment of the user in order to correctly correlate the location of virtual objects relative to the actual objects. The XR system may construct an environmental map of the scene, which may be created from images and/or depth information collected from sensors that are part of an XR device worn by a user of the XR system.
The inventors have recognized and appreciated that it may be beneficial to have an XR system in which each XR device develops a local map of its physical environment by integrating information from one or more images collected during a scan at one point in time. In some embodiments, the coordinate system of the map is tied to the orientation of the device at the time the scan was initiated. This orientation may change from moment to moment when the user interacts with the XR system, whether temporally different instances are associated with different users (each having their own wearable device with sensors that scan the environment), or with the same user using the same device at different times. The inventors have recognized and appreciated techniques for operating an XR system based on persistent spatial information that overcome the limitations of XR systems in which each user device relies solely on spatial information that it collects relative to orientations that differ for different user situations (e.g., time snapshots) or sessions (e.g., time between open and closed) of the system. These techniques may provide single or multiple users with XR scenarios that are computationally more efficient and immersive experiences, for example, by enabling any of the multiple users of the XR system to create, store, and retrieve persistent spatial information.
The persistent spatial information may be represented by a persistent map, which may enable one or more functions that enhance the XR experience. The persistent map may be stored in a remote storage medium (e.g., a cloud). For example, a wearable device worn by a user, after being turned on, may retrieve from persistent storage, such as cloud storage, an appropriate stored map that was previously created and stored. The previously stored map may be based on data about the environment collected with the sensors on the user wearable device during a previous session. Retrieving the stored map may enable use of the wearable device without employing sensors on the wearable device to scan the physical world. Alternatively or additionally, the system/device may similarly retrieve an appropriate stored map when entering a new region of the physical world.
The stored map may be represented in a canonical form, and each XR device may be associated with its local frame of reference. In a multi-device XR system, a stored map accessed by one device may have been created and stored by another device and/or may be constructed by aggregating data collected by sensors about the physical world on multiple wearable devices that have previously existed in at least a portion of the physical world represented by the stored map.
Additionally, sharing data about the physical world among multiple devices may enable a shared user experience of virtual content. For example, both XR devices accessing the same stored map may be located relative to the stored map. Once located, the user device may render the virtual content having the location specified by reference to the stored map by translating the location into a frame or reference maintained by the user device. The user device may use the local frame of reference to control display of the user device to render virtual content in the specified location.
To support these and other functions, XR systems may include components that develop, maintain, and use persistent spatial information (including one or more stored maps) based on data about the physical world collected with sensors on the user device. These components may be distributed across the XR system, for example, by some operation on the head-mounted portion of the user device. Other components may operate on the computer associated with a user coupled to the head-mounted portion through a local or personal area network. Still others may operate at remote locations, such as at one or more servers accessible through a wide area network.
These components may include, for example, components that can identify information of sufficient quality to be stored as or in a persistent map from information about the physical world collected by one or more user devices. One example of such a component is a map merge component, described in more detail below. Such components may, for example, receive input from a user device and determine the suitability of portions of the input that will be used to update the persistent map. The map merge component can, for example, divide a local map created by a user device into multiple portions, determine the mergeability of one or more portions with a persistent map, and merge portions that meet the qualified mergeability criteria into the persistent map. The map merge component can also promote portions that are not merged with the persistent map to a separate persistent map, for example.
As another example, these components may include components that may help determine an appropriate persistent map that may be retrieved and used by the user device. An example of such a component, described in more detail below, is a map ranking component. For example, such components may receive input from a user device and identify one or more persistent maps that may represent regions of the physical world in which the device operates. For example, a map ranking component can help select a persistent map that the local device is to use when rendering virtual content, collecting data about the environment, or performing other actions. Alternatively or additionally, the map ranking component can help identify persistent maps that are updated as one or more user devices collect additional information about the physical world.
Other components may determine a transformation that converts information captured or described with respect to one frame of reference to another frame of reference. For example, a sensor may be attached to a head mounted display such that data read from the sensor indicates a location of an object in the physical world relative to a wearer's head pose. One or more transformations may be applied to relate the location information to a coordinate frame associated with the persistent environment map. Similarly, data indicating where to render the virtual object when expressed in the coordinate frame of the persistent environment map may be transformed one or more times to be placed in the frame of reference of the display on the user's head. As described in more detail below, there may be a plurality of such transformations. These transformations may be partitioned across the components of the XR system so that they can be efficiently updated or applied in a distributed system.
In some embodiments, a persistent map may be constructed from information collected by multiple user devices. XR devices may capture local spatial information and construct separate tracking maps using information collected by sensors of each XR device at various locations and times. Each tracking map may include points, each of which may be associated with a feature of a real object that may include multiple features. In addition to possibly providing input to create and maintain a persistent map, a tracking map may also be used to track the movement of users in a scene, thereby enabling the XR system to estimate the head pose of the respective user based on the tracking map.
This interdependence between the creation of the map and the estimation of the head pose constitutes a significant challenge. A large amount of processing may be required to create a map and estimate the head pose at the same time. As the object moves through the scene (e.g., moves a cup over a table) and as the user moves through the scene, the process must be completed quickly because the time delay degrades the realism of the XR experience to the user. XR devices, on the other hand, may provide limited computing resources because the XR devices should be lightweight for the user to comfortably wear. More sensors cannot be employed to compensate for the lack of computational resources because adding sensors also undesirably increases weight. In addition, more sensors or more computing resources may generate heat, which may cause deformation of the XR device.
The inventors have recognized and appreciated XR scenarios for techniques for operating an XR system to provide a more immersive user experience, such as estimating head pose at a frequency of 1kHz, lower rates of computing resource usage associated with XR devices, such as four Video Graphics Array (VGA) cameras that may be configured to operate at 30Hz, one Inertial Measurement Unit (IMU) operating at 1kHz, the computing power of a single Advanced RISC Machine (ARM) core, less than 1GB of memory, and less than 100Mbp of network bandwidth. These techniques relate to reducing the processing required to generate and maintain maps and estimate head pose, and to providing and consuming data with low computational overhead.
These techniques may include hybrid tracking, so that the XR system may utilize both: (1) patch-based tracking of distinguishable points between successive images of the environment (e.g., frame-to-frame tracking), and (2) matching of a point of interest of a current image to a descriptor-based map of known real-world locations of the corresponding point of interest (e.g., map-to-frame tracking). In frame-to-frame tracking, the XR system may track particular points of interest (e.g., break points), such as corner points, between images captured in the real-world environment. For example, the display system may identify the location of a visual point of interest in the current image that is included in (e.g., located in) the previous image. This identification may be accomplished using, for example, a photometric error minimization process. In map-to-frame tracking, the XR system may access map information indicating the real-world location of the point of interest and match the point of interest included in the current image with the point of interest indicated in the map information. Information about the points of interest may be stored as descriptors in the map database. The XR system can calculate its pose based on the matched visual features. U.S. patent application serial No. 16/221,065 describes hybrid tracking and is incorporated herein by reference in its entirety.
These techniques may include reducing the amount of data processed in constructing the map, such as by constructing a sparse map with a set of map construction points and keyframes and/or dividing the map into blocks to enable block-wise updates. The map construction points may be associated with points of interest in the environment. The key frames may include information selected from data captured by the camera. U.S. patent application serial No. 16/520,582 describes determining and/or evaluating a map of locations and is incorporated herein by reference in its entirety.
In some embodiments, persistent spatial information may be represented in a manner that may be easily shared among users and among distributed components comprising an application. For example, information about the physical world may be represented as a Persistent Coordinate Frame (PCF). The PCF may be defined based on one or more points representing identified features in the physical world. The features may be selected such that they may be the same between user sessions of the XR system. PCFs may exist sparsely providing less than all of the information available about the physical world so that they can be efficiently processed and transferred. Techniques for processing persistent spatial information may include: a dynamic map is created based on one or more coordinate systems in real space across one or more sessions, and a Persistent Coordinate Framework (PCF) is generated on the sparse map, which may be exposed to the XR application via, for example, an Application Programming Interface (API). These functions may be supported by techniques for ranking and merging multiple maps created by one or more XR devices. Persistent spatial information may also enable rapid recovery and reset of head gestures on each of one or more XR devices in a computationally efficient manner.
Furthermore, these techniques may enable efficient comparison of spatial information. In some embodiments, the image frames may be represented by digital descriptors. The descriptor may be computed by a transformation that maps a set of features identified in the image to the descriptor. The transformation may be performed in a trained neural network. In some embodiments, the set of features provided as inputs to the neural network may be a filtered set of features extracted from the image using, for example, techniques that preferentially select features that may be persistent.
Representing image frames as descriptors enables, for example, efficient matching of new image information with stored image information. The XR system may be stored with the persistent map descriptor for one or more frames below the persistent map. Local image frames acquired by the user device may similarly be converted into such descriptors. By selecting a stored map with descriptors similar to descriptors of local image frames, one or more persistent maps that may represent the same physical space as the user device may be selected with relatively little processing. In some embodiments, descriptors may be computed for key frames in the local map and the persistent map, further reducing processing when comparing maps. Such efficient comparison may be used, for example, to simplify finding persistent maps for loading into the local device, or to find persistent maps for updating based on image information acquired with the local device.
The techniques described herein may be used with or separately from many types of devices and for many types of scenes, including wearable or portable devices providing augmented or mixed reality scenes with limited computing resources. In some embodiments, the techniques may be implemented by one or more services forming part of an XR system.
Overview of AR System
Fig. 1 and 2 show scenes with virtual content, which are displayed together with a part of the physical world. For purposes of illustration, an AR system is used as an example of an XR system. Fig. 3-6B illustrate an exemplary AR system including one or more processors, memory, sensors, and a user interface that may operate in accordance with the techniques described herein.
Referring to fig. 1, an outdoor AR scene 354 is depicted in which a user of AR technology sees a physical world park-like setting 356 featuring people, trees, buildings in the background, and a concrete platform 358. In addition to these items, users of AR technology also perceive that they "see" a robotic statue 357 standing on a physical world concrete platform 358, as well as a flying cartoon-like avatar character 352 that appears to be the bumblebee's avatar, even though these elements (e.g., avatar character 352 and robotic statue 357) are not present in the physical world. Due to the extreme complexity of the human visual perception and nervous system, creating an AR technology that facilitates comfortable, natural-feeling, rich virtual image element presentation among other virtual or physical world image elements is challenging.
Such an AR scene may be implemented by a system that establishes a map of the physical world based on tracking information, enables a user to place AR content in the physical world, determines a location to place the AR content in the map of the physical world, preserves the AR scene so that the placed AR content may be reloaded for display in the physical world during, for example, different AR experience sessions, and enables multiple users to share the AR experience. The system can create and update a digital representation of the physical world surfaces surrounding the user. The representation may be used to render virtual content to appear to be completely or partially occluded by physical objects between the user and the rendering location of the virtual content, to place virtual objects in a physics-based interaction, and for virtual character path planning and navigation, or for other operations in which information about the physical world is used.
Fig. 2 depicts another example of an indoor AR scene 400 showing an exemplary use case of an XR system, in accordance with some embodiments. The exemplary scene 400 is a living room with walls, a bookshelf on one side of a wall, floor lamps at the corners of the room, a floor, a sofa, and a coffee table on the floor. In addition to these physical objects, users of AR technology may perceive virtual objects such as images on the wall behind the sofa, birds flying through the door, deer looking at the bookshelf, and adornments in the form of windmills placed on the coffee table.
For images on walls, AR technology requires not only information about the wall surface, but also about objects and surfaces in the room (such as the shape of the lights), which can obscure the image to render the virtual object correctly. For flying birds, AR technology requires information about all objects and surfaces around a room in order to render the birds with realistic physical effects to avoid objects and surfaces or to avoid bouncing when the birds collide. For deer, AR technology requires information about a surface (such as a floor or coffee table) to calculate the placement of the deer. For a windmill, the system may recognize that it is an object separate from the table and may determine that it is movable, while a corner of a rack or a corner of a wall may be determined to be stationary. This distinction can be used to determine which portions of the scene are used or updated in each of the various operations.
The virtual object may be placed in a previous AR experience session. When a new session of AR experience begins in the living room, AR technology requires that virtual objects be accurately displayed in a previously placed and actually visible location from a different perspective. For example, the windmill should be shown standing on a book, rather than floating above a table at a different location without a book. Such floating may occur if the location of the user of the new AR experience session is not accurately located in the living room. As another example, if a user views a windmill from a different perspective than when the windmill is placed, AR technology requires that the corresponding side of the windmill be displayed.
A scene may be presented to a user via a system that includes multiple components including a user interface that may stimulate one or more user sensations, such as vision, sound, and/or touch. Additionally, the system may include one or more sensors that may measure parameters of a physical portion of the scene, including the user's position and/or motion within the physical portion of the scene. Further, the system may include one or more computing devices and associated computer hardware, such as memory. These components may be integrated into a single device or may be distributed across multiple interconnected devices. In some embodiments, some or all of these components may be integrated into a wearable device.
Fig. 3 depicts an AR system 502 configured to provide an experience of AR content interacting with a physical world 506, in accordance with some embodiments. The AR system 502 may include a display 508. In the illustrated embodiment, the display 508 may be worn by the user as part of a headset so that the user may wear the display on their eyes like a pair of goggles or glasses. At least a portion of the display may be transparent so that the user may observe the see-through reality 510. The see-through reality 510 may correspond to a portion of the physical world 506 that is within the current viewpoint of the AR system 502, which may correspond to the viewpoint of the user if the user wears a headset incorporating the display and sensors of the AR system to obtain information about the physical world.
AR content may also be presented on the display 508 overlaid on the see-through reality 510. To provide accurate interaction between AR content and the see-through reality 510 on the display 508, the AR system 502 may include a sensor 522 configured to capture information about the physical world 506.
The sensors 522 may include one or more depth sensors that output a depth map 512. Each depth map 512 may have a plurality of pixels, each of which may represent a distance from a surface in the physical world 506 relative to the depth sensor in a particular direction. The raw depth data may come from a depth sensor to create a depth map. The depth map may be updated as fast as the depth sensor can form a new image, which may be hundreds or thousands of times per second. However, this data may be noisy and incomplete, and has holes shown as black pixels on the depth map shown.
The system may include other sensors, such as image sensors. The image sensor may acquire monocular or stereo information that may be processed to otherwise represent the physical world. For example, the image may be processed in the world reconstruction component 516 to create a mesh representing connected portions of objects in the physical world. Metadata about such objects (including, for example, color and surface texture) can similarly be acquired using sensors and stored as part of the world reconstruction.
The system may also obtain information about the user's head pose (or "pose") relative to the physical world. In some embodiments, the head pose tracking component of the system may be used to calculate head pose in real time. The head pose tracking component may represent the head pose of the user in a coordinate system having six degrees of freedom including, for example, translation of three perpendicular axes (e.g., forward/backward, up/down, left/right) and rotation about the three perpendicular axes (e.g., pitch, yaw, and roll). In some embodiments, sensor 522 may include an inertial measurement unit that may be used to calculate and/or determine head pose 514. The head pose 514 for the depth map may indicate the current viewpoint of the sensor capturing the depth map in six degrees of freedom, for example, but the headset 514 may be used for other purposes such as relating image information to a particular portion of the physical world or relating the location of a display worn on the user's head to the physical world. In some embodiments, the head pose information may be derived in other ways than by the IMU (such as analyzing objects in an image).
In some embodiments, the head pose information may be derived in other ways than by the IMU (such as analyzing objects in an image). For example, the head pose tracking component may calculate the relative position and orientation of the AR device with respect to the physical object based on visual information captured by the camera and inertial information captured by the IMU. The head pose tracking component may then calculate a head pose of the AR device, for example, by comparing the calculated relative position and orientation of the AR device with respect to the physical object to features of the physical object. In some embodiments, the comparison may be made by identifying features in images captured with one or more sensors 522, the one or more sensors 522 being stable over time, such that changes in the position of the features in images captured over time may be correlated with changes in the head pose of the user.
In some embodiments, the AR device may construct a map from feature points identified in successive images in a series of image frames captured as the user moves throughout the physical world with the AR device. Although each image frame may be taken from a different pose as the user moves, the system may adjust the orientation of the features of each successive image frame to match the orientation of the initial image frame by matching the features of the successive image frame to the previously captured image frame. The translation of successive image frames such that points representing the same feature will match corresponding feature points in previously collected image frames may be used to align each successive image frame to match the orientation of the previously processed image frame. The frames in the generated map may have a common orientation established when the first image frame is added to the map. The map has multiple sets of feature points in a common frame of reference, and the map can be used to determine the pose of the user in the physical world by matching features in the current image frame to the map. In some embodiments, the map may be referred to as a tracking map.
In addition to being able to track the user's gestures in the environment, the map may also enable other components of the system (e.g., world reconstruction component 516) to determine the location of the physical object relative to the user. The world reconstruction component 516 may receive the depth map 512 and the head pose 514, as well as any other data, from the sensors and integrate the data into a reconstruction 518. The reconstruction 518 may be more complete and less noisy than the sensor data. The world reconstruction component 516 may update the reconstruction 518 using spatial and temporal averages of sensor data from multiple viewpoints over time.
The reconstruction 518 may include a representation of the physical world in one or more data formats (including, for example, voxels, grids, planes, etc.). The different formats may represent alternative representations of the same portion of the physical world or may represent different portions of the physical world. In the example shown, to the left of the reconstruction 518, a portion of the physical world is presented as a global surface; to the right of the reconstruction 518, portions of the physical world are presented as a grid.
In some embodiments, the map maintained by head pose component 514 may be sparse relative to other maps of the physical world that may be maintained. Rather than providing information about the location of the surface and possibly other features, the sparse map may indicate the location of points of interest and/or structures (e.g., corners or edges). In some embodiments, the map may include image frames captured by the sensor 522. These frames may be reduced to features that may represent points of interest and/or structures. In conjunction with each frame, information about the user's gestures from which the frame was taken may also be stored as part of the map. In some embodiments, each image acquired by the sensor may or may not be stored. In some embodiments, as the images are collected by the sensor, the system may process the images and select a subset of the image frames for further computation. The selection may be based on one or more criteria that limit the addition of information but ensure that the map contains useful information. The system may add a new image frame to the map, for example, based on an overlap with a previous image frame that has been added to the map, or based on an image frame that contains a sufficient number of features determined to be likely to represent a stationary object. In some embodiments, the selected image frame or a set of features from the selected image frame may be used as a key frame of a map, which is used to provide spatial information.
The AR system 502 may integrate sensor data over time from multiple perspectives of the physical world. As the device including the sensor moves, the posture (e.g., position and orientation) of the sensor may be tracked. Since the frame pose of the sensor and its relationship to other poses are known, each of these multiple viewpoints of the physical world may be fused together to form a single combined reconstruction of the physical world, which may be used as an abstraction (abstrate) layer of the map and provide spatial information. By using spatial and temporal averaging (i.e., averaging data from multiple viewpoints over time) or any other suitable method, the reconstruction may be more complete and less noisy than the raw sensor data.
In the embodiment shown in fig. 3, the map represents a portion of the physical world in which a user of a single wearable device is present. In that case, the head pose associated with the frame in the map may be represented as a local head pose, indicating an orientation relative to the initial orientation of the single device at the beginning of the session. For example, the head pose may be tracked relative to the initial head pose when the device is turned on, or otherwise operated to scan the environment to establish a representation of the environment.
In conjunction with content characterizing that portion of the physical world, the map may include metadata. The metadata may indicate, for example, a time at which sensor information used to form the map was captured. Alternatively or additionally, the metadata may indicate the location of the sensor at the time the information used to form the map was captured. The location may be directly represented, such as with information from a GPS chip, or indirectly represented, such as with a Wi-Fi signature that indicates the strength of signals received from one or more wireless access points while collecting sensor data, and/or the BSSID of the wireless access point to which the user device is connected while collecting sensor data.
The reconstruction 518 may be used for AR functions, such as generating a surface representation of the physical world for occlusion processing or physics-based processing. The surface representation may change as the user moves or as objects in the real world change. Aspects of the reconstruction 518 may be used, for example, by a component 520 that produces a global surface representation of changes in world coordinates, which may be used by other components.
AR content may be generated based on this information, such as by AR application 504. The AR application 504 may be, for example, a game program that performs one or more functions based on information about the physical world, such as visual occlusion, physical-based interaction, and environmental reasoning. It may perform these functions by querying different formats of data from the reconstruction 518 generated by the world reconstruction component 516. In some embodiments, the component 520 may be configured to output an update when a representation in a region of interest of the physical world changes. For example, the region of interest may be set to approximate a portion of the physical world in the vicinity of the system user, such as a portion within the user's field of view, or projected (predicted/determined) to come within the user's field of view.
The AR application 504 may use this information to generate and update AR content. Virtual portions of AR content may be presented on the display 508 in conjunction with the see-through reality 510, thereby creating a realistic user experience.
In some embodiments, the AR experience may be provided to the user by an XR device, which may be a wearable display device, which may be part of a system that may include remote processing and/or remote data storage and/or, in some embodiments, other wearable display devices worn by other users. To simplify the illustration, fig. 4 shows an example of a system 580 (hereinafter "system 580") that includes a single wearable device. The system 580 includes a head mounted display device 562 (hereinafter "display device 562"), as well as various mechanical and electronic modules and systems that support the functionality of the display device 562. The display device 562 may be coupled to a frame 564, which frame 564 may be worn by a display system user or viewer 560 (hereinafter "user 560") and configured to position the display device 562 in front of the user 560. According to various embodiments, the display devices 562 may be displayed sequentially. The display device 562 may be monocular or binocular. In some embodiments, the display device 562 may be an example of the display 508 in fig. 3.
In some embodiments, the speaker 566 is coupled to the frame 564 and positioned near the ear canal of the user 560. In some embodiments, another speaker, not shown, is positioned near another ear canal of the user 560 to provide stereo/moldable sound control. The display device 562 is operatively coupled to a local data processing module 570, such as by a wired wire or wireless connection 568, the local data processing module 570 may be mounted in various configurations, such as fixedly attached to the frame 564, fixedly attached to a helmet or hat worn by the user 560, embedded in headphones, or otherwise removably attached to the user 560 (e.g., in a backpack configuration, in a belt-coupled configuration).
The local data processing module 570 may include a processor and digital memory, such as non-volatile memory (e.g., flash memory), both of which may be used to assist in the processing, caching, and storage of data. The data includes: a) data captured from sensors (e.g., which may be operatively coupled to the frame 564) or otherwise attached to the user 560, such as an image capture device (such as a camera), a microphone, an inertial measurement unit, an accelerometer, a compass, a GPS unit, a radio, and/or a gyroscope; and/or b) data retrieved and/or processed using the remote processing module 572 and/or the remote data store 574, which may be communicated to the display device 562 after such processing or retrieval.
In some embodiments, the wearable device may communicate with a remote component. The local data processing module 570 may be operatively coupled to a remote processing module 572 and a remote data store 574, respectively, by communication links 576, 578 (such as via wired or wireless communication links) such that the remote modules 572, 574 are operatively coupled to each other and may serve as resources for the local data processing module 570. In some embodiments, the head pose tracking components described above may be implemented at least in part in the local data processing module 570. In some embodiments, the world reconstruction component 516 of fig. 3 may be implemented at least in part in the local data processing module 570. For example, the local data processing module 570 may be configured to execute computer-executable instructions to generate a map and/or a physical world representation based at least in part on at least a portion of the data.
In some embodiments, processing may be distributed across local and remote processors. For example, local processing may be used to construct a map (e.g., a tracking map) on a user device based on sensor data collected with sensors on the user device. Such maps may be used by applications on the user device. Additionally, previously created maps (e.g., canonical maps) may be stored in remote data store 574. Where an appropriate stored or persistent map is available, it may be used instead of or in addition to a tracking map created locally on the device.
In some embodiments, the tracking map may be localized to a stored map such that a correspondence is established between the tracking map, which may be oriented relative to the location of the wearable device when the user turns on the system, and a canonical map, which may be oriented relative to one or more persistent features.
In some embodiments, a persistent map may be loaded on a user device to allow the user device to render virtual content without the delay associated with scanning a location to build a tracking map of the user's entire environment from sensor data acquired during the scan. In some embodiments, the user device may access the remote persistent map (e.g., stored in the cloud) without downloading the persistent map on the user device.
Alternatively or additionally, tracking maps may be merged with previously stored maps to expand or improve the quality of those maps. The process of determining whether a suitable previously created environment map is available and/or merging the tracking map with one or more stored environment maps may be accomplished in the local data processing module 570 or the remote processing module 572.
In some embodiments, the local data processing module 570 may include one or more processors (e.g., a Graphics Processing Unit (GPU)) configured to analyze and process data and/or image information. In some embodiments, the local data processing module 570 may comprise a single processor (e.g., a single core or multi-core ARM processor), which would limit the computational budget of the local data processing module 570, but enable a smaller device. In some embodiments, the world reconstruction component 516 may generate the physical world representation in real-time over a non-predefined space using a smaller computational budget than a single Advanced RISC Machine (ARM) core, such that the remaining computational budget of the single ARM core may be accessed for other purposes, such as, for example, fetching a grid.
In some embodiments, remote data store 574 may include digital data storage facilities that may be available through the internet or other networked configurations in a "cloud" resource configuration. In some embodiments, all data is stored and all computations are performed in the local data processing module 570, allowing fully autonomous use from the remote module. In some embodiments, all data is stored and all or most of the calculations are performed in remote data store 574, allowing for smaller devices. For example, world reconstructions may be stored in whole or in part in the repository 574.
In embodiments where data is stored remotely and accessible over a network, the data may be shared by multiple users of the augmented reality system. For example, the user device may upload their tracking maps to augment a database of environmental maps. In some embodiments, the tracking map upload occurs at the end of a user session with the wearable device. In some embodiments, the tracking map upload may occur continuously, semi-continuously, intermittently at a predefined time, after a predefined period of time from a previous upload, or when triggered by an event. The tracking map uploaded by any user device, whether based on data from that user device or any other user device, can be used to expand or improve previously stored maps. Likewise, the persistent map downloaded to the user device may be based on data from the user device or any other user device. In this way, users can easily obtain high quality environmental maps to improve their experience in AR systems.
In some embodiments, the local data processing module 570 is operatively coupled to a battery 582. In some embodiments, the battery 582 is a removable power source, such as above a counter battery. In other embodiments, battery 582 is a lithium ion battery. In some embodiments, the battery 582 includes both an internal lithium ion battery that can be charged by the user 560 during periods of non-operation of the system 580, and a removable battery, such that the user 560 can operate the system 580 for longer periods of time without having to connect to a power source to charge the lithium ion battery, or without having to shut down the system 580 to replace the battery.
Fig. 5A shows a user 530 wearing an AR display system that renders AR content as the user 530 is moving through a physical world environment 532 (hereinafter "environment 532"). Information captured by the AR system along the path of movement of the user may be processed into one or more tracking maps. The user 530 positions the AR display system at the location 534, and the AR display system records environmental information of the navigable world relative to the location 534 (e.g., a digital representation of a real object in the physical world, which may be stored and updated as changes are made to the real object in the physical world). This information may be stored as gestures in conjunction with images, features, directional audio input, or other desired data. The location 534 is aggregated to a data input 536, e.g., as part of a tracking map, and processed at least by a navigable world module 538, which navigable world module 538 can be implemented, for example, by processing on a remote processing module 572 of fig. 4. In some embodiments, the navigable world module 538 may include a head pose component 514 and a world reconstruction component 516 such that the processed information may indicate the location of the object in the physical world in conjunction with other information related to the physical object used in rendering the virtual content.
The passable world module 538 determines, at least in part, the location and manner in which the AR content 540 may be placed in the physical world as determined from the data input 536. AR content is "placed" in the physical world by presenting both the physical world presentation and the AR content via the user interface, the AR content is rendered as if interacting with objects in the physical world, and the objects in the physical world are presented as if the AR content obscured the user's view of these objects when appropriate. In some embodiments, AR content may be placed by determining the shape and location of AR content 540 by appropriately selecting portions of fixed elements 542 (e.g., tables) from the reconstruction (e.g., reconstruction 518). As an example, the fixed element may be a table and the virtual content may be positioned such that it appears as if on the table. In some embodiments, AR content may be placed within a structure in the field of view 544, which may be a current field of view or an estimated future field of view. In some embodiments, the AR content may persist relative to a model 546 (e.g., a grid) of the physical world.
As depicted, fixed element 542 serves as a proxy (e.g., digital copy) for any fixed element within the physical world that may be stored in the navigable world module 538, such that the user 530 can perceive content on the fixed element 542 without the system having to map to the fixed element 542 each time the user 530 sees the fixed element 542. Thus, the fixed element 542 may be a mesh model from a previous modeling session, or may be determined by a separate user but still stored by the navigable world module 538 for future reference by multiple users. Accordingly, the navigable world module 538 may identify the environment 532 from previously mapped environments and display AR content without requiring the device of the user 530 to first map all or a portion of the environment 532, thereby saving computational processes and cycles and avoiding any latency of rendered AR content.
A grid model 546 of the physical world may be created by the AR display system, and appropriate surfaces and metrics for interacting and displaying AR content 540 may be stored by navigable world module 538 for future retrieval by user 530 or other users without having to completely or partially recreate the model. In some embodiments, data input 536 is input such as geographic location, user identification, and current activity to indicate to the navigable world module 538 which fixed element 542 of the one or more fixed elements is available, which AR content 540 was last placed on the fixed element 542, and whether that same content is displayed (such AR content is "persistent" content regardless of how the user views a particular navigable world model).
Even in embodiments where the objects are considered stationary (e.g., kitchen desks), the navigable world module 538 may update those objects in the physical world model from time to time new to account for the possibility of changes in the physical world. The model of the fixed object may be updated with a very low frequency. Other objects in the physical world may be moving or otherwise not considered stationary (e.g., kitchen chairs). To render an AR scene with a sense of realism, the AR system may update the locations of these non-stationary objects at a much higher frequency than the frequency used to update the stationary objects. To be able to accurately track all objects in the physical world, the AR system may acquire information from a plurality of sensors (including one or more image sensors).
Fig. 5B is a schematic view of viewing optical assembly 548 and accompanying components. In some embodiments, two eye tracking cameras 550 directed at the user's eyes 549 detect metrics of the user's eyes 549 such as eye shape, eyelid occlusion, pupil direction, and glints on the user's eyes 549.
In some embodiments, one of the sensors may be a depth sensor 551, such as a time-of-flight sensor, that emits signals into the world and detects reflections of those signals from nearby objects to determine distance to a given object. The depth sensor may quickly determine whether objects have entered the user's field of view, for example, due to movement of those objects or changes in the user's posture. However, information regarding the location of the object in the user field of view may alternatively or additionally be collected by other sensors. The depth information may be obtained, for example, from a stereoscopic image sensor or a plenoptic sensor.
In some embodiments, the world camera 552 records views larger than the periphery to map the environment 532 and/or otherwise create a model of the environment 532 and detect inputs that may affect AR content. In some embodiments, the world camera 552 and/or the camera 553 may be a grayscale and/or color image sensor that may output grayscale and/or color image frames at fixed time intervals. The camera 553 may further capture a physical world image within the user's field of view at a particular time. Even if the value of a pixel of a frame-based image sensor does not change, sampling of its pixel can be repeated. Each of the world camera 552, camera 553, and depth sensor 551 has a respective field of view 554, 555, and 556 to collect data from and record a physical world scene, such as the physical world environment 532 depicted in fig. 34A.
It is to be understood that the viewing optical assembly 548 can include some of the components shown in FIG. 34B, and can include components in place of or in addition to those shown. For example, in some embodiments, the viewing optics assembly 548 may include two world cameras 552 instead of four. Alternatively or additionally, cameras 552 and 553 need not capture visible light images of their entire field of view. The viewing optics assembly 548 can include other types of components. In some embodiments, the viewing optics assembly 548 can include one or more Dynamic Visual Sensors (DVS) whose pixels can asynchronously respond to relative changes in light intensity that exceed a threshold.
In some embodiments, based on time-of-flight information, the viewing optics assembly 548 may not include a depth sensor 551. For example, in some embodiments, the viewing optics assembly 548 can include one or more plenoptic cameras whose pixels can capture light intensity and angles of incident light from which depth information can be determined. For example, a plenoptic camera may include an image sensor covered with a Transmissive Diffractive Mask (TDM). Alternatively or additionally, the plenoptic camera may comprise an image sensor comprising angle sensitive pixels and/or phase detection autofocus Pixels (PDAF) and/or a Micro Lens Array (MLA). Such a sensor may be used as a depth information source instead of or in addition to the depth sensor 551.
It should also be understood that the configuration of components in fig. 5B is provided as an example. The viewing optics assembly 548 may include components having any suitable configuration that may be set to provide a user with a maximum field of view that is practical for a particular set of components. For example, if the viewing optics assembly 548 has one world camera 552, the world camera may be placed in the center region of the viewing optics assembly rather than the sides.
Information from sensors in the viewing optics assembly 548 can be coupled to one or more processors in the system. The processor may generate data of virtual content that may be rendered to make a user aware of interactions with objects in the physical world. The rendering may be accomplished in any suitable manner, including generating image data depicting both physical and virtual objects. In other embodiments, physical and virtual content may be depicted in one scene by modulating the opacity of a display device that a user browses in the physical world. Opacity can be controlled to create the appearance of a virtual object and also to prevent the user from seeing objects in the physical world that are occluded by the virtual object. In some embodiments, the image data may include only virtual content that may be modified such that the virtual content is perceived by the user as interacting realistically with the physical world (e.g., clipping content to account for occlusions) when viewed through the user interface.
The location at which the display content on the optical assembly 548 is viewed to create the impression that the object is located at a particular location may depend on the physical properties of the viewing optical assembly. Furthermore, the pose of the user's head relative to the physical world and the direction in which the user's eyes are gazed at may affect where in the physical world the display content will appear at a particular location on the viewing optics. Sensors as described above can collect this information and/or provide information from which the information can be calculated so that a processor receiving the sensor input can calculate the location at which the object should be rendered on the viewing optical assembly 548 to create a desired appearance for the user.
Regardless of how the content is presented to the user, a model of the physical world may be used so that the characteristics of the virtual objects that may be affected by the physical objects, including the shape, position, motion, and visibility of the virtual objects, may be correctly calculated. In some embodiments, the model may include a reconstruction of the physical world, such as reconstruction 518.
The model may be created from data collected from sensors on the user's wearable device. However, in some embodiments, a model may be created from data collected from multiple users, which may be aggregated in a computing device remote from all users (and which may be "in the cloud").
The model may be created, at least in part, by a world reconstruction system, such as, for example, the world reconstruction component 516 of FIG. 3 depicted in more detail in FIG. 6A. The world reconstruction component 516 can include a perception module 660, which perception module 660 can generate, update, and store a representation of a portion of the physical world. In some embodiments, the perception module 660 may represent the portion of the physical world within the reconstruction range of the sensor as a plurality of voxels. Each voxel may correspond to a 3D cube of a predetermined volume in the physical world and include surface information indicating whether a surface is present in the volume represented by the voxel. Voxels may be assigned a value indicating whether their corresponding volume has been determined to include the surface of the physical object, determined to be empty or not yet measured with the sensor, and thus its value is unknown. It should be appreciated that the values indicative of voxels determined to be empty or unknown need not be explicitly stored, as the values of voxels may be stored in the computer memory in any suitable manner, including without storing information of voxels determined to be empty or unknown.
In addition to generating information for persistent world representations, the perception module 660 may also identify and output indications of changes in the area surrounding the user of the AR system. The indication of such a change may trigger an update to the volumetric data stored as part of the persistent world, or trigger other functions, such as triggering the trigger component 604 that generates AR content to update the AR content.
In some embodiments, the perception module 660 may identify the change based on a Symbolic Distance Function (SDF) model. The perception module 660 may be configured to receive sensor data such as, for example, a depth map 660a and a head pose 660b, and then fuse the sensor data into an SDF model 660 c. The depth map 660a may directly provide the SDF information, and the image may be processed to obtain the SDF information. The SDF information represents the distance from the sensor used to capture the information. Since those sensors may be part of the wearable unit, the SDF information may represent the physical world from the perspective of the wearable unit and thus from the perspective of the user. Head pose 660b may enable SDF information to be correlated with voxels in the physical world.
In some embodiments, the perception module 660 may generate, update, and store representations of portions of the physical world within a perception scope. The perception range may be determined based at least in part on a reconstruction range of the sensor, which may be determined based at least in part on a limitation of an observation range of the sensor. As a particular example, an active depth sensor operating using active IR pulses may operate reliably over a range of distances, creating a viewing range of the sensor, which may range from a few centimeters or tens of centimeters to a few meters.
In some embodiments, a representation of the physical world (such as the representation shown in fig. 6A) may provide relatively dense information about the physical world as compared to a sparse map (such as the feature point-based tracking map described above).
In some embodiments, the perception module 660 may include a module that generates a representation of the physical world in various formats including, for example, a grid 660d, planes, and semantics 660 e. The representation of the physical world may be stored across local storage media and remote storage media. The representation of the physical world may be described in different coordinate frames depending on, for example, the location of the storage medium. For example, a representation of the physical world stored in the device may be described in a coordinate frame local to the device. The representation of the physical world may have a corresponding representation (counterpart) stored in the cloud. The corresponding representation in the cloud may be described in a coordinate frame shared by all devices in the XR system.
In some embodiments, these modules may generate the representation based on data within the sensing range of the one or more sensors at the time the representation is generated, as well as data captured at a previous time and information in the persistent world module 662. In some embodiments, these components may operate with respect to depth information captured with a depth sensor. However, the AR system may include a visual sensor, and such a representation may be generated by analyzing monocular or binocular visual information.
In some embodiments, these modules may operate over a region of the physical world. When the perception module 660 detects a change in the physical world in a sub-region of the physical world, those modules may be triggered to update the sub-region of the physical world. Such changes may be detected, for example, by detecting a new surface or other criteria (e.g., changing the values of a sufficient number of voxels representing a sub-region) in the SDF model 660 c.
The world reconstruction component 516 can include a component 664 that can receive a representation of the physical world from the perception module 660. Information about the physical world can be extracted by these components based on, for example, a request for use from an application. In some embodiments, information may be pushed to the usage component, such as via an indication of a change in the pre-identified area or a change in the physical world representation within a perceptual range. The component 664 can include, for example, game programs and other components that perform processing for visual occlusion, physical-based interaction, and environmental reasoning.
In response to a query from the component 664, the perception module 660 may send a representation for the physical world in one or more formats. For example, when the component 664 indicates that the use is for visual occlusion or physical-based interaction, the perception module 660 can send a representation of the surface. When the component 664 indicates that the use is for context inference, the awareness module 660 can send the mesh, plane, and semantics of the physical world.
In some embodiments, the perception module 660 may include components that format information to provide the component 664. An example of such a component may be a light projection component 660 f. Using a component (e.g., component 664) may, for example, query information about the physical world from a particular viewpoint. The ray casting component 660f may be selected from the viewpoint from one or more representations of the physical world data within the field of view.
It should be understood from the above description that the perception module 660 or another component of the AR system may process the data to create a 3D representation of a portion of the physical world. The data to be processed may be reduced by: culling portions of the 3D reconstructed volume based at least in part on the camera view frustum and/or the depth image; extracting and retaining plane data; capturing, retaining, and updating 3D reconstruction data in blocks that allow local updates while maintaining neighbor consistency; providing occlusion data to an application that generates such a scene, wherein the occlusion data is derived from a combination of one or more depth data sources; and/or performing multi-stage mesh reduction. The reconstruction may contain data of varying degrees of complexity including, for example, raw data (e.g., real-time depth data), fused volumetric data (e.g., voxels), and computed data (e.g., meshes).
In some embodiments, the components of the navigable world model may be distributed, with some portions executing locally on the XR device and some portions executing remotely, such as on a network-connected server or in the cloud. The distribution of information processing and storage between the local XR device and the cloud may affect the functionality and user experience of the XR system. For example, reducing processing on the local device by distributing the processing to the cloud may extend battery life and reduce heat generated on the local device. However, allocating too much processing to the cloud may create undesirable delays that result in an unacceptable user experience.
FIG. 6B depicts a distributed component architecture 600 configured for spatial computing, in accordance with some embodiments. The distributed component architecture 600 may include a navigable world component 602 (e.g., PW 538 in fig. 5A), a Lumin OS 604, an API 606, an SDK 608, and an application 610. The lumines os 604 may include a Linux based kernel with custom drivers compatible with XR devices. API 606 may include an application programming interface that grants XR applications (e.g., application 610) access to spatial computing features of the XR device. The SDK 608 may include a software development suite that allows for the creation of XR applications.
One or more components in architecture 600 can create and maintain a model of the navigable world. In this example, the sensor data is collected on the local device. The processing of the sensor data may be performed partially locally on the XR device, partially in the cloud. PW 538 may include an environment map created based at least in part on data captured by AR devices worn by multiple users. During a session of an AR experience, various AR devices (such as the wearable device described above in connection with fig. 4) may create a tracking map, which is one type of map.
In some embodiments, the apparatus may include components to build sparse maps and dense maps. The tracking map may be used as a sparse map and may include head poses of AR devices scanning an environment and information about objects detected within the environment at each head pose. Those head gestures may be maintained locally for each device. For example, the head pose on each device may be the initial head pose relative to the time the device opened its session. As a result, each tracking map may be local to the device that created it. The dense map may include surface information, which may be represented by a mesh or depth information. Alternatively or additionally, the dense map may include higher level information derived from surface or depth information, such as the location and/or features of planes and/or other objects.
In some embodiments, the creation of a dense map may be independent of the creation of a sparse map. For example, the creation of dense and sparse maps may be performed in separate processing pipelines within the AR system. For example, separate processing may enable different types of map generation or processing to be performed at different rates. For example, the refresh rate of sparse maps may be faster than the refresh rate of dense maps. However, in some embodiments, the processing of dense and sparse maps may be relevant even if performed in different pipelines. For example, a change in the physical world revealed in a sparse map may trigger an update of a dense map, and vice versa. Furthermore, even if created independently, these maps can be used together. For example, a coordinate system derived from a sparse map may be used to define the position and/or orientation of objects in a dense map.
The sparse map and/or the dense map may be persisted for reuse by the same device and/or shared with other devices. Such persistence may be achieved by storing information in the cloud. The AR device may send the tracking map to the cloud, for example, to merge with an environment map selected from persistent maps previously stored in the cloud. In some embodiments, the selected persistent map may be sent from the cloud to the AR device for merging. In some embodiments, the persistent map may be oriented relative to one or more persistent coordinate frames. Such maps may be used as canonical maps, as they may be used by any of a number of devices. In some embodiments, the model of the navigable world may include or be created from one or more canonical maps. Even if some operations are performed based on the coordinate frame local to the device, the device may use the canonical map by determining a transformation between the coordinate frame local to the device and the canonical map.
The canonical map may originate from a Tracking Map (TM) (e.g., TM 1102 in fig. 31A), which may be promoted to a canonical map. The canonical map may be persisted so that a device accessing the canonical map, once determining a transformation between its local coordinate system and the coordinate system of the canonical map, may use the information in the canonical map to determine the location of objects represented in the canonical map in the physical world around the device. In some embodiments, the TM may be a head pose sparse map created by the XR device. In some embodiments, a specification map may be created when an XR device sends one or more TMs to a cloud server to be merged with additional TMs captured by the XR device at different times or by other XR devices.
A canonical map or other map may provide information about various portions of the physical world represented by the data that was processed to create the respective map. Fig. 7 depicts an exemplary tracking map 700 according to some embodiments. The tracking map 700 may provide a plan view 706 of the physical objects in the corresponding physical world, represented by points 702. In some embodiments, map point 702 may represent a feature of a physical object that may include multiple features. For example, each corner of the table may be a feature represented by a point on a map. These features may be derived by processing the images, for example the images may be acquired with sensors of a wearable device in an augmented reality system. For example, features may be derived by: the image frames output by the sensors are processed to identify features based on large gradients in the images or other suitable criteria. Further processing may limit the number of features in each frame. For example, the process may select features that may represent persistent objects. One or more heuristics may be applied to the selection.
The tracking map 700 may include data about points 702 collected by the device. For each image frame having data points included in the tracking map, the gesture may be stored. The pose may represent an orientation from which the image frames are captured, such that feature points within each image frame may be spatially correlated. The pose may be determined by positioning information, such as may be derived by sensors on the wearable device (such as IMU sensors). Alternatively or additionally, the gesture may be determined by matching the image frame to other image frames depicting overlapping portions of the physical world. By finding such a positional correlation, which can be achieved by matching subsets of feature points in the two frames, a relative pose between the two frames can be calculated. The relative pose may be sufficient for a tracking map, as the map may be relative to a coordinate system local to the device that is established based on the initial pose of the device at the time the tracking map was initially built.
Not all feature points and image frames collected by the device may be retained as part of the tracking map, as much information collected with the sensors is likely to be redundant. Instead, only certain frames may be added to the map. Those frames may be selected based on one or more criteria, such as the degree of overlap with an already existing image frame in the map, the number of new features they contain, or a quality metric for the features in the frame. Image frames that are not added to the tracking map may be discarded or may be used to modify the location of the feature. As another alternative, all or most of the image frames represented as a set of features may be retained, but a subset of these frames may be designated as keyframes for further processing.
The keyframes may be processed to produce a key assembly (keyrigs) 704. The keyframes may be processed to produce a three-dimensional set of feature points and saved as a key assembly 704. For example, such processing may require comparing image frames taken simultaneously from two cameras to determine the 3D locations of the feature points stereoscopically. Metadata may be associated with these key frames and/or key assemblies (e.g., gestures).
The environment map may have any of a variety of formats depending on, for example, the storage location of the environment map, including, for example, local storage and remote storage of the AR device. For example, on wearable devices with limited memory, maps in remote storage may have higher resolution than maps in local storage. To send higher resolution maps from the remote storage to the local storage, the maps may be downsampled or otherwise converted to an appropriate format, for example by reducing the number of gestures per region of the physical world stored in the map and/or the number of feature points stored for each gesture. In some embodiments, a slice or portion from a remotely stored high resolution map may be sent to local storage, where the slice or portion is not downsampled.
The database of environment maps may be updated when a new tracking map is created. In order to determine which of a potentially very large number of environment maps in the database is to be updated, the updating may include efficiently selecting one or more environment maps stored in the database that are relevant to the new tracking map. The selected one or more environmental maps may be ranked by relevance, and one or more of the highest ranked maps may be selected for processing to merge the higher ranked selected environmental maps with the new tracking map to create one or more updated environmental maps. When the new tracking map represents a portion of the physical world for which there is no pre-existing environment map to update, the tracking map may be stored in the database as a new environment map.
Viewing independent displays
Methods and apparatus for providing virtual content using an XR system independent of the position of the eyes viewing the virtual content are described herein. Traditionally, virtual content is re-rendered upon any movement of the display system. For example, if a user wearing a display system views a virtual representation of a three-dimensional (3D) object on a display and walks around the area where the 3D object appears, the 3D object should be re-rendered for each viewpoint so that the user has the experience that he or she is walking around the object occupying real space. However, re-rendering consumes a significant amount of the computational resources of the system and results in artifacts due to latency.
The inventors have recognized and appreciated that head gestures (e.g., position and orientation of a user wearing an XR system) may be used to render virtual content that is independent of eye rotation within the user's head. In some embodiments, a dynamic map of a scene may be generated based on multiple coordinate frames in real space across one or more sessions such that virtual content interacting with the dynamic map may be robustly rendered independent of eye rotation within a user's head and/or independent of sensor deformation caused by heat generated, for example, during high-speed, computationally intensive operations. In some embodiments, the configuration of the plurality of coordinate frames may enable a first XR device worn by the first user and a second XR device worn by the second user to identify a common location in the scene. In some embodiments, the configuration of the multiple coordinate frames may enable a user wearing the XR device to view virtual content at the same location of the scene.
In some embodiments, the tracking map may be built in a world coordinate frame, which may have a world origin. The world origin may be a first pose of the XR device when the XR device is powered on. The world origin may be aligned with gravity, so that developers of XR applications may do gravity alignment without additional work. Different tracking maps may be constructed in different world coordinate frames because the tracking maps may be captured by the same XR device in different sessions and/or different XR devices worn by different users. In some embodiments, a session for an XR device may start from device power-on to device shutdown. In some embodiments, the XR device may have a head coordinate frame, which may have a head origin. The head origin may be the current pose of the XR device at the time the image was taken. The difference between the head pose of the world coordinate frame and the head pose of the head coordinate frame may be used to estimate the tracking route.
In some embodiments, the XR device may have a camera coordinate frame, which may have a camera origin. The camera origin may be a current pose of one or more sensors of the XR device. The inventors have recognized and appreciated that the configuration of the camera coordinate frame enables robust display of virtual content independent of eye rotation within the head of the user. This configuration also enables robust display of virtual content regardless of sensor deformation due to, for example, heat generated during operation.
In some embodiments, the XR device may have a head unit with a head-mounted frame to which the user may secure his head, and may include two waveguides, one in front of each eye of the user. The waveguide may be transparent such that ambient light from the real-world object may be transmitted through the waveguide and the user may see the real-world object. Each waveguide may transmit the projected light from the projector to a respective eye of the user. The projected light may form an image on the retina of the eye. Thus, the retina of the eye receives ambient light and projected light. The user can simultaneously see the real-world object and one or more virtual objects created by the projected light. In some embodiments, the XR device may have sensors that detect real world objects around the user. These sensors may be, for example, cameras that capture images that may be processed to identify the location of real world objects.
In some embodiments, the XR system may assign a coordinate frame to the virtual content as opposed to appending the virtual content to a world coordinate frame. Such a configuration enables the description of virtual content without having to consider where the virtual content is rendered to the user, but the virtual content may be attached to a more permanent frame location, such as the Permanent Coordinate Frame (PCF) described with respect to, for example, fig. 14-20C, to be rendered at a specified location. When the location of the object changes, the XR device may detect the change in the environmental map and determine the movement of the head unit worn by the user relative to the real world object.
Fig. 8 illustrates a user experiencing virtual content rendered by the XR system 10 in a physical environment, in accordance with some embodiments. The XR system may include a first XR device 12.1 worn by a first user 14.1, a network 18, and a server 20. The user 14.1 is in a physical environment with real objects in the form of a table 16.
In the example shown, the first XR device 12.1 comprises a head unit 22, a belt pack 24 and a cable connection 26. The first user 14.1 secures the head unit 22 to his head and secures a waist pack 24 remote from the head unit 22 to his waist. A cable connection 26 connects the head unit 22 to the belt pack 24. Head unit 22 includes technology for displaying one or more virtual objects to first user 14.1 while allowing first user 14.1 to see a real object, such as table 16. The belt pack 24 includes primarily the processing and communication capabilities of the first XR device 12.1. In some embodiments, the processing and communication capabilities may reside, in whole or in part, in the head unit 22 such that the waist pack 24 may be removed or may be located in another device such as a backpack.
In the example shown, the belt pack 24 is connected to the network 18 via a wireless connection. Server 20 is connected to network 18 and maintains data representing local content. The belt pack 24 downloads data representing local content from the server 20 via the network 18. The belt pack 24 provides data to the head unit 22 via a cable connection 26. Head unit 22 may include a display having a light source, such as a laser light source or a Light Emitting Diode (LED) light source, and a waveguide to guide the light.
In some embodiments, the first user 14.1 may mount the head unit 22 to his head and the waist pack 24 to his waist. The belt pack 24 may download image data from the server 20 via the network 18. The first user 14.1 can see the table 16 through the display of the head unit 22. A projector forming part of the head unit 22 may receive image data from the belt pack 24 and generate light based on the image data. The light may travel through one or more waveguides forming part of the display of head unit 22. The light may then exit the waveguide and propagate onto the retina of the eye of the first user 14.1. The projector may generate light in a pattern that is replicated on the retina of the eye of the first user 14.1. The light falling on the retina of the eye of the first user 14.1 may have a depth of field selected so that the first user 14.1 perceives an image at a preselected depth behind the waveguide. In addition, the two eyes of the first user 14.1 may receive slightly different images, so that the brain of the first user 14.1 perceives one or more three-dimensional images at a selected distance from the head unit 22. In the example shown, the first user 14.1 perceives virtual content 28 above the table 16. The scale of the virtual content 28 and its location and distance from the first user 14.1 is determined by the data representing the virtual content 28 and the various coordinate frames used to display the virtual content 28 to the first user 14.1.
In the example shown, the virtual content 28 is not visible from the perspective of the figure and is visible to the first user 14.1 using the first XR device 12.1. The virtual content 28 may initially reside as a data structure within the visual data and algorithms in the belt pack 24. Then, when the projector of the head unit 22 generates light based on the data structure, the data structure may manifest itself as light. It should be appreciated that although virtual content 28 is not present in three dimensional space in front of the first user 14.1, virtual content 28 is still represented in fig. 1 in three dimensional space to illustrate the wearer perception of head unit 22. Visualizations of computer data in three-dimensional space may be used in this description to show how data structures perceived by one or more users as contributing to rendering relate to each other within the data structure in the belt pack 24.
Figure 9 illustrates components of a first XR device 12.1 according to some embodiments. The first XR device 12.1 may include a head unit 22, as well as various components forming part of the visual data and algorithms, including, for example, a rendering engine 30, various coordinate frames 32, various origin and destination coordinate frames 34, and various origin-to-destination coordinate frame transducers 36. The various coordinate systems may be based on intrinsic properties of the XR device, or may be determined by reference to other information, such as the persistent gestures or persistent coordinate systems described herein.
The head unit 22 may include a head-mounted frame 40, a display system 42, a real object detection camera 44, a motion tracking camera 46, and an inertial measurement unit 48.
The head mounted frame 40 may have a shape that is securable to the head of the first user 14.1 in fig. 8. The display system 42, the real object detection camera 44, the motion tracking camera 46, and the inertial measurement unit 48 may be mounted to the head-mounted frame 40, and thus move with the head-mounted frame 40.
Coordinate system 32 may include a local data system 52, a world frame system 54, a head frame system 56, and a camera frame system 58.
The local data system 52 may include a data channel 62, a local framework determination routine 64, and local framework storage instructions 66. The data channel 62 may be an internal software routine, a hardware component such as an external cable or radio frequency receiver, or a hybrid component such as an open port. The data channel 62 may be configured to receive image data 68 representing virtual content.
The local framework determination routine 64 may be connected to the data channel 62. The local frame determination routine 64 may be configured to determine a local coordinate frame 70. In some embodiments, the local frame determination routine may determine the local coordinate frame based on real world objects or real world locations. In some embodiments, the local coordinate frame may be based on a top edge relative to a bottom edge of the browser window, a head or foot of a character, a node on an outer surface of a prism or bounding box that encloses the virtual content, or any other suitable location that places a coordinate frame that defines a facing direction of the virtual content and where the virtual content is placed (e.g., a node such as a place node or PCF node), etc.
The local frame store instructions 66 may be coupled to the local frame determination routine 64. Those skilled in the art will appreciate that software modules and routines are "connected" to one another through subroutines, calls, and the like. The local frame store instructions 66 may store the local coordinate frame 70 as a local coordinate frame 72 within the origin and destination coordinate frames 34. In some embodiments, the origin and destination coordinate frames 34 may be one or more coordinate frames that may be manipulated or transformed to persist virtual content between sessions. In some embodiments, the session may be a time period between the start-up and shut-down of the XR device. The two sessions may be two on and off periods for a single XR device, or two different XR devices.
In some embodiments, the origin and destination coordinate frames 34 may be coordinate frames involved in one or more transformations required for the first user's XR device and the second user's XR device to identify a common location. In some embodiments, the destination coordinate frame may be the output of a series of calculations and transformations applied to the target coordinate frame so that the first and second users view the virtual content in the same location.
The real object detection camera 44 may include one or more cameras that may capture images from different sides of the head mounted frame 40. The motion tracking camera 46 may include one or more cameras that may capture images on the sides of the head-mounted frame 40. A set of one or more cameras may be used instead of two sets of one or more cameras representing the real object detection camera 44 and the motion tracking camera 46. In some embodiments, the cameras 44, 46 may capture images. As described above, these cameras can collect data used to construct tracking maps.
The inertial measurement unit 48 may include a plurality of devices for detecting movement of the head unit 22. The inertial measurement unit 48 may include a gravity sensor, one or more accelerometers, and one or more gyroscopes. The sensors of the inertial measurement unit 48 in combination track the motion of the head unit 22 in at least three orthogonal directions and about at least three orthogonal axes.
In the illustrated example, the world frame system 54 includes a world surface determination routine 78, a world frame determination routine 80, and world frame storage instructions 82. A world surface determination routine 78 is connected to the real object detection camera 44. The world surface determination routine 78 accepts images and/or key frames based on images captured by the real object detection camera 44 and processes the images to identify surfaces in the images. A depth sensor (not shown) may determine the distance to the surface. Thus, these surfaces are represented by data in three dimensions including their size, shape, and distance from the real object detection camera.
In some embodiments, world coordinate frame 84 may be based on the origin at which the head gesture session is initiated. In some embodiments, the world coordinate frame may be located where the device was launched, or if the head gesture was lost during the launch session, the world coordinate frame may be located in a new place. In some embodiments, the world coordinate frame may be the origin at the beginning of the head gesture session.
In the illustrated example, a world frame determination routine 80 is connected to the world surface determination routine 78 and determines a world coordinate frame 84 based on the position of the surface determined by the world surface determination routine 78. World frame storage instructions 82 are connected to the world frame determination routine 80 to receive a world coordinate frame 84 from the world frame determination routine 80. The world frame store instructions 82 store a world coordinate frame 84 as a world coordinate frame 86 within the origin and destination coordinate frames 34.
The head frame system 56 may include a head frame determination routine 90 and head frame storage instructions 92. The head frame determination routine 90 may be connected to the motion tracking camera 46 and the inertial measurement unit 48. The head frame determination routine 90 may use data from the motion tracking camera 46 and the inertial measurement unit 48 to calculate a head coordinate frame 94. For example, the inertial measurement unit 48 may have a gravity sensor that determines the direction of gravity relative to the head unit 22. The motion tracking camera 46 may continuously capture images used by the head frame determination routine 90 to refine the head coordinate frame 94. When the first user 14.1 in fig. 8 moves their head, the head unit 22 moves. The motion tracking camera 46 and the inertial measurement unit 48 may continuously provide data to the head frame determination routine 90 so that the head frame determination routine 90 may update the head coordinate frame 94.
Head frame storage instructions 92 may be coupled to the head frame determination routine 90 to receive a head coordinate frame 94 from the head frame determination routine 90. The head frame store instructions 92 may store a head coordinate frame 94 as a head coordinate frame 96 in the origin and destination coordinate frames 34. The head frame store instructions 92 may repeatedly store the updated head coordinate frame 94 as the head coordinate frame 96 as the head frame determination routine 90 recalculates the head coordinate frame 94. In some embodiments, the head coordinate frame may be the position of the wearable XR device 12.1 relative to the local coordinate frame 72.
In some embodiments, the camera coordinate frame 100 may include all pupil positions of the left eye of the first user 14.1 in fig. 8. The pupil position of the left eye is located within the camera coordinate frame 100 when the left eye is moving from left to right or up and down. In addition, the pupil position of the right eye is located within the camera coordinate frame 100 of the right eye. In some embodiments, the camera coordinate frame 100 may include the position of the camera relative to the local coordinate frame when the image was taken.
The origin-to-destination coordinate frame transformer 36 may include a local-to-world coordinate transformer 104, a world-to-head coordinate transformer 106, and a head-to-camera coordinate transformer 108. The local-to-world coordinate transformer 104 may receive the local coordinate frame 72 and transform the local coordinate frame 72 to the world coordinate frame 86. The transformation of local coordinate frame 72 to world coordinate frame 86 may be represented as a local coordinate frame within world coordinate frame 86 transformed to world coordinate frame 110.
World-to-head coordinate transformer 106 may transform from world coordinate frame 86 to head coordinate frame 96. World-to-head coordinate transformer 106 may transform the local coordinate frame transformed to world coordinate frame 110 to head coordinate frame 96. The transformation may be represented as a local coordinate frame that is transformed within the head coordinate frame 96 to a head coordinate frame 112.
The head-to-camera coordinate transformer 108 may transform from the head coordinate frame 96 to the camera coordinate frame 100. The head-to-camera coordinate transformer 108 may transform the local coordinate frame transformed to the head coordinate frame 112 to a local coordinate frame within the camera coordinate frame 100 transformed to the camera coordinate frame 114. The local coordinate frame transformed to the camera coordinate frame 114 may be input into the rendering engine 30. Rendering engine 30 may render image data 68 representing local content 28 based on the local coordinate frame transformed to camera coordinate frame 114.
FIG. 10 is a spatial representation of various origin and destination coordinate frames 34. The local coordinate frame 72, the world coordinate frame 86, the head coordinate frame 96 and the camera coordinate frame 100 are shown in this figure. In some embodiments, the local coordinate frame associated with XR content 28 may have a position and rotation relative to the local and/or world coordinate frames and/or PCFs (e.g., a node and facing direction may be provided) when the virtual content is placed in the real world so that the user may view the virtual content. Each camera may have its own camera coordinate frame 100 containing all pupil positions of one eye. Reference numerals 104A and 106A denote transformations by the local-to-world coordinate transformer 104, the world-to-head coordinate transformer 106, and the head-to-camera coordinate transformer 108 in fig. 9, respectively.
Fig. 11 depicts a camera rendering protocol for transforming from a head coordinate frame to a camera coordinate frame, in accordance with some embodiments. In the example shown, the pupil of a single eye moves from position a to position B. A virtual object to appear stationary will be projected onto the depth plane of one of the two positions a or B depending on the position of the pupil (assuming the camera is configured to use a pupil-based coordinate frame). As a result, using a pupil coordinate frame that is transformed to a head coordinate frame will result in jitter of a stationary virtual object when the eye moves from position a to position B. This situation is called view-dependent display or projection.
As shown in fig. 12, the camera coordinate frame (e.g., CR) is placed and contains all pupil positions, and the object projection will now be consistent regardless of pupil positions a and B. The head coordinate frame is transformed into a CR frame, which is referred to as a view-independent display or projection. Image re-projection may be applied to the virtual content to account for changes in eye position, however, since the rendering is still in the same position, jitter may be minimized.
Fig. 13 illustrates display system 42 in more detail. The display system 42 includes a stereo analyzer 144, the stereo analyzer 144 being connected to the rendering engine 30 and forming part of the visual data and algorithms.
In use, a user mounts the head-mounted frame 40 to their head. The components of the head-mounted frame 40 may, for example, include a strap (not shown) wrapped around the back of the user's head. Left and right waveguides 170A and 170B are then positioned in front of the user's left and right eyes 220A and 220B.
The rendering engine 30 inputs the image data it receives into the stereo analyzer 144. The image data is three-dimensional image data of the local content 28 in fig. 8. The image data is projected onto a plurality of virtual planes. Stereo analyzer 144 analyzes the image data to determine a left image data set and a right image data set based on the image data for projection onto each depth plane. The left image data set and the right image data set are data sets representing two-dimensional images that are projected in three dimensions to give a sense of depth to a user.
In a similar manner, stereo analyzer 144 inputs the right image dataset into right projector 166B. Right projector 166B transmits a right light pattern represented by pixels in the form of rays 224B and 226B. Rays 224B and 226B reflect within right waveguide 170B and exit through pupil 228B. Light rays 224B and 226B then enter through pupil 230B of right eye 220B and fall on retina 232B of right eye 220B. The pixels of light rays 224B and 226B are perceived as pixels 134B and 236B behind right waveguide 170B.
The patterns created on retinas 232A and 232B are perceived as left and right images, respectively. The left and right images are slightly different from each other due to the function of the stereo analyzer 144. The left and right images are perceived as a three-dimensional rendering in the user's mind.
As mentioned, the left waveguide 170A and the right waveguide 170B are transparent. Light from a real object, such as a table 16 on the side of left and right waveguides 170A and 170B opposite eyes 220A and 220B, may be projected through left and right waveguides 170A and 170B and fall on retinas 232A and 232B.
Persistent Coordinate Frame (PCF)
Methods and apparatus for providing spatial persistence between user instances within a shared space are described herein. Without spatial persistence, virtual content that a user places in the physical world in a session may not exist in the user's view in a different session or may be misplaced. Without spatial persistence, virtual content placed in the physical world by one user may not exist or may be misplaced in the view of the second user, even if the second user intends to share the same physical spatial experience with the first user.
The inventors have recognized and appreciated that spatial persistence may be provided by a Persistent Coordinate Frame (PCF). The PCF may be defined based on one or more points representing features (e.g., corners, edges) identified in the physical world. The features may be selected such that they appear the same from one user instance of the XR system to another.
Furthermore, drift during tracking that causes a calculated tracking path (e.g., a camera trajectory) to deviate from an actual tracking path may cause the position of the virtual content to be misaligned when rendered relative to a local map based only on the tracking map. As the XR device collects more information of the scene over time, the tracking map of the space may be refined to correct for drift. However, if the virtual content is placed on the real object and saved relative to the world coordinate frame of the device derived from the tracking map prior to map refinement, the virtual content may be displaced as if the real object had moved during the map refinement process. The PCF may be updated according to the map refinement because the PCF is defined based on the feature and is updated as the feature moves during the map refinement.
The PCF may include six degrees of freedom, translation and rotation with respect to the map coordinate system. PCFs may be stored in local storage media and/or remote storage media. Depending on, for example, the storage location, translations and rotations of the PCF may be calculated relative to the map coordinate system. For example, a PCF used locally by a device may have translations and rotations with respect to the world coordinate frame of the device. The PCF in the cloud may have translations and rotations with respect to the canonical coordinate frame of the canonical map.
PCFs may provide a sparse representation of the physical world, providing less than all of the information available about the physical world so that they may be efficiently processed and transferred. Techniques for processing persistent spatial information may include creating a dynamic map based on one or more coordinate systems in real space across one or more sessions, generating a Persistent Coordinate Framework (PCF) on the sparse map, which may be exposed to an XR application through, for example, an Application Programming Interface (API).
FIG. 14 is an additional block diagram illustrating creation of a Persistent Coordinate Frame (PCF) and XR content to the PCF according to some embodiments. Each block may represent digital information stored in a computer memory. In the case of the application 1180, the data may represent computer-executable instructions. In the case of virtual content 1170, the digital information may define a virtual object, for example, as specified by the application 1180. In the case of other blocks, the digital information may characterize certain aspects of the physical world.
In the illustrated embodiment, one or more PCFs are created from images captured by sensors on the wearable device. In the embodiment of fig. 14, the sensor is a visual image camera. These cameras may be the same cameras used to form the tracking map. Thus, some of the processing suggested by FIG. 14 may be performed as part of updating the tracking map. However, FIG. 14 shows that information providing persistence is generated in addition to tracking maps.
To derive the 3D PCF, two images from two cameras mounted to the wearable device in a configuration capable of stereo image analysis are processed together 1110. Fig. 14 shows image 1 and image 2, each of image 1 and image 2 coming from one of the cameras. For simplicity, a single image from each camera is shown. However, each camera may output a stream of image frames, and the process of fig. 14 may be performed for multiple image frames in the stream.
Thus, image 1 and image 2 may each be one frame of a sequence of image frames. The process shown in fig. 14 may be repeated for successive image frames in the sequence until the image frame containing the feature points provides a suitable image to form persistent spatial information from the image. Alternatively or additionally, the process of FIG. 14 may be repeated when the user moves such that the user is no longer close enough to the previously identified PCF to reliably use the PCF to determine a location relative to the physical world. For example, the XR system may maintain a current PCF for the user. When the distance exceeds a threshold, the system may switch to a new current PCF that is closer to the user, which may be generated using image frames acquired at the user's current location according to the process of fig. 14.
Even when a single PCF is generated, the stream of image frames can be processed to identify image frames that describe content in the physical world that may be stable and easily identifiable by devices near the area of the physical world depicted in the image frames. In the embodiment of FIG. 14, the process begins with the identification of a feature 1120 in the image. For example, a feature may be identified by finding a location in the image that exceeds a threshold or other gradient of the feature, which may, for example, correspond to a corner of an object. In the illustrated embodiment, the features are points, but other identifiable features, such as edges, may alternatively or additionally be used.
In the illustrated embodiment, a fixed number N of features 1120 are selected for further processing. Those feature points may be selected based on one or more criteria, such as the magnitude of the gradient or proximity to other feature points. Alternatively or additionally, feature points may be heuristically selected, for example, based on a characteristic that suggests that the feature points are persistent. For example, heuristics may be defined based on characteristics of feature points that may correspond to corners of a window or door or a large piece of furniture. Such heuristics may take into account the feature points themselves and their surroundings. As a particular example, the number of feature points per image may be between 100 and 500 or between 150 and 250, e.g., 200.
Regardless of the number of feature points selected, descriptors 1130 may be calculated for the feature points. In this example, the descriptor is calculated for each selected feature point, but the descriptor may be calculated for a group of feature points or a subset of feature points or all features within the image. The descriptors characterize feature points such that feature points representing the same object in the physical world are assigned similar descriptors. Descriptors may enable alignment of two frames, such as may occur when one map is positioned relative to another. Instead of searching for the relative orientation of the frames that minimizes the distance between the feature points of the two images, an initial alignment of the two frames can be made by identifying feature points with similar descriptors. The alignment of the image frames may be based on alignment points with similar descriptors, which may require less processing than computing the alignment of all feature points in the image.
The descriptor may be computed as a mapping of feature points to descriptors, or in some embodiments, as a mapping of patches of the image around the feature points to descriptors. The descriptor may be a numerical quantity. U.S. patent application 16/190,948 describes computed descriptors of feature points and is incorporated herein by reference in its entirety.
In the example of fig. 14, a descriptor 1130 is calculated for each feature point in each image frame. Based on the descriptors and/or feature points and/or the image itself, the image frame may be identified as a keyframe 1140. In the illustrated embodiment, the keyframes are image frames that meet a certain criterion, which are then selected for further processing. For example, when making a tracking map, the image frames that add meaningful information to the map may be selected as key frames that are integrated into the map. On the other hand, image frames that substantially overlap with the area where the image frame has been integrated into the map may be discarded so that they do not become key frames. Alternatively or additionally, keyframes may be selected based on the number and/or type of feature points in the image frames. In the embodiment of fig. 14, the keyframes 1150 selected for inclusion in the tracking map may also be considered as keyframes for determining PCFs, although different or additional criteria for selecting keyframes for generating PCFs may be used.
Although fig. 14 shows the key frames being used for further processing, the information obtained from the images may be processed in other forms. For example, feature points such as in a critical assembly may be processed alternatively or additionally. Moreover, although the keyframes are described as being derived from a single image frame, there need not be a one-to-one relationship between the keyframes and the acquired image frames. For example, a keyframe may be acquired from multiple image frames, such as by stitching or otherwise aggregating the image frames together, such that only features that appear in the multiple images remain in the keyframe.
The key frames may include image information and/or metadata associated with the image information. In some embodiments, the images captured by the cameras 44, 46 (fig. 9) may be computed as one or more keyframes (e.g., keyframes 1, 2). In some embodiments, the keyframes may include camera poses. In some embodiments, the keyframes may include one or more camera images captured in a camera pose. In some embodiments, the XR system may determine that a portion of a camera image captured in a camera pose is useless, and therefore not include the portion in the keyframe. Thus, using keyframes to align new images with early knowledge of the scene may reduce XR system computing resource usage. In some embodiments, a keyframe may include an image and/or image data at a location with a direction/angle. In some embodiments, a keyframe may include a location and a direction from which one or more map points may be observed. In some embodiments, the key frame may include a coordinate frame with an ID. U.S. patent application No. 15/877,359, which is hereby incorporated by reference in its entirety, describes key frames.
Some or all of the keyframes 1140 may be selected for further processing, such as generating a persistent gesture 1150 for the keyframes. The selection may be based on the characteristics of all or a subset of the feature points in the image frame. These characteristics may be determined from processing the descriptors, features, and/or the image frames themselves. As a particular example, the selection may be based on clusters of feature points identified as likely to be related to the persistent object.
Each key frame is associated with a pose of the camera that acquired the key frame. For keyframes selected for processing into persistent gestures, the gesture information may be saved along with other metadata about the keyframes, such as WiFi fingerprints and/or GPS coordinates at the time of acquisition and/or at the location of acquisition.
Persistent gestures are a source of information that a device can use to orient itself with respect to previously acquired information about the physical world. For example, if the keyframe from which the persistent gesture was created is incorporated into a map of the physical world, the device may orient itself with respect to the persistent gesture using a sufficient number of feature points in the keyframe associated with the persistent gesture. The device may align its current image taken of the surrounding environment with the persistent gesture. The alignment may be based on matching the current image with the image 1110, the features 1120, and/or the descriptors 1130, or any subset of the image or those features or descriptors that caused the persistent gesture. In some embodiments, the current image frame that matches the persistent gesture may be another keyframe that has been incorporated into the tracking map of the device.
Information regarding persistent gestures may be stored in a format that facilitates sharing among multiple applications, which may execute on the same or different devices. In the example of FIG. 14, some or all of the persistent gestures may be reflected as a Persistent Coordinate Frame (PCF) 1160. Like the persistent gesture, the PCF may be associated with a map and may include a set of features or other information that the device may use to determine its orientation relative to the PCF. The PCF may include a transformation that defines a transformation relative to the origin of its map, such that by associating its location with the PCF, the device may determine its location relative to any object in the physical world reflected in the map.
Since PCFs provide a mechanism for determining a location relative to a physical object, an application (e.g., application 1180) may define the location of a virtual object relative to one or more PCFs, which serve as anchors for virtual content 1170. For example, fig. 14 shows that App 1 has associated its virtual content 2 with PCF 1, 2. Likewise, application 2 has associated its virtual content 3 with PCF 1, 2. App 1 is also shown to associate its fictitious content 1 with PCF 4, 5, and App 2 is shown to associate its fictitious content 4 with PCF 3. In some embodiments, PCF 3 may be based on image 3 (not shown), and PCFs 4, 5 may be based on image 4 and image 5 (not shown), similar to how PCFs 1, 2 are based on image 1 and image 2. When rendering this virtual content, the device may apply one or more transformations to compute information, such as the position of the virtual content relative to the display of the device and/or the position of the physical object relative to the desired position of the virtual content. Using PCF as a reference may simplify such calculations.
In some embodiments, a persistent gesture may be a coordinate location and/or direction with one or more associated keyframes. In some embodiments, the persistent gesture may be automatically created after the user has traveled a distance (e.g., three meters). In some embodiments, the persistent gesture may be used as a reference point during positioning. In some embodiments, the persistent gesture may be stored in the navigable world (e.g., navigable world module 538).
In some embodiments, the new PCF may be determined based on an allowable predetermined distance between neighboring PCFs. In some embodiments, one or more persistent gestures may be computed into the PCF when the user travels a predetermined distance (e.g., five meters). In some embodiments, a PCF may be associated with one or more world coordinate frames and/or canonical coordinate frames in the navigable world, for example. In some embodiments, the PCF may be stored in a local database and/or a remote database, depending on, for example, security settings.
FIG. 15 illustrates a method 4700 of establishing and using a persistent coordinate frame according to some embodiments. Method 4700 can begin with capturing (act 4702) images (e.g., image 1 and image 2 in fig. 14) of a scene using one or more sensors of an XR device. Multiple cameras may be used and one camera may generate multiple images, for example in the form of a stream.
Figure 16 illustrates visual data and algorithms for the first XR device 12.1 and the second XR device 12.2 and the server 20, in accordance with some embodiments. The components shown in fig. 16 may operate to perform some or all of the operations associated with generating, updating, and/or using spatial information (such as persistent gestures, persistent coordinate frames, tracking maps, or canonical maps) as described herein. Although not shown, the first XR device 12.1 may be configured the same as the second XR device 12.2. The server 20 may have a map storage routine 118, a specification map 120, a map transmitter 122, and a map merging algorithm 124.
A second XR device 12.2, which may be in the same scene as the first XR device 12.1, may include a Permanent Coordinate Frame (PCF) integration unit 1300, an application 1302 that generates image data 68 that may be used to render virtual objects, and a frame embedding generator 308 (see fig. 21). In some embodiments, the map download system 126, PCF identification system 128, map 2, location module 130, specification map merger 132, specification map 133, and map publisher 136 may be aggregated as a navigable world cell 1304. The PCF integration unit 1300 may be connected to the navigable world unit 1304 and other components of the second XR device 12.2 to allow retrieval, generation, use, upload and download of the PCF.
Maps including PCFs may enable more persistence in a changing world. In some embodiments, locating a tracking map that includes matching features, such as images, may include selecting features representing persistent content from a map made up of PCFs, which enables fast matching and/or location. For example, in a world where people enter and exit a scene and objects such as doors move relative to the scene, less storage space and transmission rates are required and the scene can be mapped using individual PCFs and their relationships to each other (e.g., an integrated constellation of PCFs).
In some embodiments, PCF integration unit 1300 may include PCF 1306, PCF tracker 1308, persistent pose acquirer 1310, PCF checker 1312, PCF generation system 1314, coordinate frame calculator 1316, persistent pose calculator 1318, and three translators including tracking map and persistent pose translator 1320, persistent pose and PCF translator 1322, and PCF and image data translator 1324, previously stored in a data store on a storage unit of second XR device 12.2.
In some embodiments, PCF tracker 1308 may have an on prompt and an off prompt selectable by application 1302. The application 1302 may be executable by a processor of the second XR device 12.2, for example, to display virtual content. Application 1302 may have a call to open PCF tracker 1308 via an open prompt. When PCF tracker 1308 is on, PCF tracker 1308 may generate a PCF. Application 1302 may have a subsequent invocation that may shut down PCF tracker 1308 via a shut down prompt. When PCF tracker 1308 is off, PCF tracker 1308 terminates PCF generation.
In some embodiments, server 20 may include a plurality of persistent gestures 1332 and a plurality of PCFs 1330 that have been previously saved in association with specification map 120. Map transmitter 122 may transmit specification map 120 to second XR device 12.2 along with persistent gesture 1332 and/or PCF 1330. Persistent gesture 1332 and PCF 1330 may be stored on second XR device 12.2 in association with specification map 133. When map 2 is located to specification map 133, persistent gesture 1332 and PCF 1330 may be stored in association with map 2.
In some embodiments, persistent gesture obtainer 1310 may obtain a persistent gesture of map 2. PCF checker 1312 may be connected to persistent gesture obtainer 1310. PCF checker 1312 may retrieve a PCF from PCF 1306 based on the persistent posture retrieved by persistent posture retriever 1310. The PCFs retrieved by PCF checker 1312 may form an initial set of PCFs for PCF-based image display.
In some embodiments, application 1302 may need to generate additional PCFs. For example, if the user moves to an area that was not previously mapped, application 1302 may turn on PCF tracker 1308. PCF generation system 1314 may connect to PCF tracker 1308 and begin generating PCFs based on map 2 as map 2 begins to expand. The PCFs generated by PCF generation system 1314 may form a second group of PCFs that may be used for PCF-based image display.
Coordinate frame calculator 1316 may be connected to PCF checker 1312. After PCF checker 1312 retrieves the PCF, coordinate frame calculator 1316 may invoke head coordinate frame 96 to determine the head pose of the second XR device 12.2. The coordinate frame calculator 1316 may also invoke the persistent gesture calculator 1318. The persistent gesture calculator 1318 may be directly or indirectly connected to the frame embedding generator 308. In some embodiments, an image/frame may be designated as a key frame after traveling a threshold distance (e.g., 3 meters) from a previous key frame. Persistent gesture calculator 1318 may generate a persistent gesture based on multiple (e.g., three) key frames. In some embodiments, the persistent gesture may be substantially an average of the coordinate frames of the plurality of keyframes.
A tracking map and persistent gesture transformer 1320 may be connected to the map 2 and persistent gesture calculator 1318. The tracking map and persistent pose transformer 1320 may transform map 2 into a persistent pose to determine a persistent pose at an origin relative to map 2.
Persistent gesture and PCF changer 1322 may be connected to a tracking map and persistent gesture changer 1320 and further connected to PCF checker 1312 and PCF generation system 1314. Persistent pose and PCF changer 1322 may convert the persistent pose (to which the tracking map has been transformed) from PCF checker 1312 and PCF generation system 1314 to a PCF to determine a PCF relative to the persistent pose.
The PCF and image data transformer 1324 may be connected to the persistent pose and PCF transformer 1322 and the data channel 62. PCF and image data converter 1324 converts the PCF to image data 68. Rendering engine 30 may be connected to the PCF and image data transformer 1324 to display image data 68 to a user with respect to the PCF.
The first XR device 12.1 may include a PCF integrated unit similar to PCF integrated unit 1300 of the second XR device 12.2. When map transmitter 122 transmits specification map 120 to a first XR device 12.1, map transmitter 122 may transmit a persistent gesture 1332 and PCF 1330 associated with specification map 120 and originating from a second XR device 12.2. The first XR device 12.1 may store the PCF and persistent posture in a data store on a storage device of the first XR device 12.1. The first XR device 12.1 may then utilize the persistent gesture and PCF originating from the second XR device 12.2 for image display relative to the PCF. Additionally or alternatively, the first XR device 12.1 may retrieve, generate, use, upload and download PCF and persistent gestures in a manner similar to the second XR device 12.2 as described above.
In the example shown, the first XR device 12.1 generates a local tracking map (hereinafter "map 1"), and the map storage routine 118 receives map 1 from the first XR device 12.1. The map storage routine 118 then stores the map 1 as a canonical map 120 on a storage device of the server 20.
The second XR device 12.2 includes a map download system 126, an anchor point identification system 128, a location module 130, a canonical map merger 132, a local content location system 134, and a map publisher 136.
In use, the map transmitter 122 transmits the specification map 120 to the second XR device 12.2, and the map download system 126 downloads and stores the specification map 120 from the server 20 as the specification map 133.
The anchor point recognition system 128 is connected to the world surface determination routine 78. The anchor point recognition system 128 recognizes anchor points based on objects detected by the world surface determination routine 78. The anchor point recognition system 128 generates a second map (map 2) using anchor points. The anchor point identification system 128 continues to identify anchor points and continues to update the map 2, as shown in loop 138. The location of the anchor point is recorded as three-dimensional data based on the data provided by the world surface determination routine 78. The world surface determination routine 78 receives images from the real object detection cameras 44 and depth data from the depth sensors 135 to determine the location of the surfaces and their relative distance from the depth sensors 135.
The positioning module 130 is connected to the specification map 133 and the map 2. The positioning module 130 repeatedly attempts to position the map 2 to the normative map 133. The normative map merger 132 is connected to the normative map 133 and the map 2. When the positioning module 130 positions map 2 to the canonical map 133, the canonical map merger 132 merges the canonical map 133 into the anchor point of map 2. The map 2 is then updated with the missing data included in the normative map.
The local content positioning system 134 is connected to the map 2. The local content positioning system 134 may be, for example, a system in which a user may position local content at a particular location within a world coordinate frame. The local content then attaches itself to an anchor point of the map 2. The local-to-world coordinate transformer 104 transforms the local coordinate frame to a world coordinate frame based on the settings of the local content positioning system 134. The functionality of rendering engine 30, display system 42, and data channel 62 have been described with reference to FIG. 2.
The map merging algorithm 124 merges map 2 with the canonical map 120. When more than two maps (e.g., three or four maps related to the same or adjacent regions of the physical world) have been stored, the map merging algorithm 124 merges all of the maps into the canonical map 120 to render a new canonical map 120. The map transmitter 122 then transmits the new specification map 120 to any and all devices 12.1 and 12.2 located in the area represented by the new specification map 120. When devices 12.1 and 12.2 locate their respective maps to canonical map 120, canonical map 120 becomes an upgraded map.
FIG. 17 illustrates an example of generating keyframes for a map of a scene according to some embodiments. In the example shown, a first key frame KF1 was generated for a door on the left wall of a room. A second keyframe KF2 is generated for a corner region where the floor, left wall, and right wall of the room intersect. A third key frame KF3 is generated for the window area on the right wall of the room. On the floor of the wall, a fourth keyframe KF4 is generated at the far end region of the carpet. A fifth key frame KF5 is generated for the area of the carpet closest to the user.
FIG. 18 illustrates an example of generating a persistent gesture for the map of FIG. 17, in accordance with some embodiments. In some embodiments, a new persistent gesture is created when the device measures a threshold distance traveled, and/or when an application requests a new persistent gesture (PP). In some embodiments, the threshold distance may be 3 meters, 5 meters, 20 meters, or any other suitable distance. Selecting a smaller threshold distance (e.g., 1m) may result in an increase in computational load, since a larger number of PPs may be created and managed as compared to a larger threshold distance. Selecting a larger threshold distance (e.g., 40m) may result in increased virtual content placement errors because a smaller number of PPs will be created, which will result in a smaller number of PCFs being created, meaning that the virtual content attached to the PCF may be a relatively larger distance (e.g., 30m) away from the PCF, and the error increases with increasing distance from the PCF to the virtual content.
In some embodiments, the PP may be created at the start of a new session. This initial PP may be considered zero and may be visualized as the center of a circle with a radius equal to the threshold distance. When the device reaches the perimeter of the circle, and in some embodiments, the application requests a new PP, the new PP may be placed at the current location of the device (at the threshold distance). In some embodiments, if the device is able to find an existing PP within a threshold distance from the device's new location, a new PP will not be created at the threshold distance. In some embodiments, when a new PP is created (e.g., PP 1150 in fig. 14), the device appends one or more nearest key frames to the PP. In some embodiments, the location of the PP relative to the keyframes may be based on the location of the device at the time the PP was created. In some embodiments, a PP will not be created when the device travels a threshold distance unless the application requests it.
In some embodiments, the application may request the PCF from the device when the application has virtual content to be displayed to the user. A PCF request from an application may trigger a PP request and a new PP will be created after the device has traveled a threshold distance. FIG. 18 shows a first permanent gesture PP1, which may have the closest keyframes (e.g., KF1, KF2, and KF3) appended by, for example, calculating the relative gestures between the keyframes and the persistent gesture. FIG. 18 also shows a second permanent gesture PP2, which may have additional nearest key frames (e.g., KF4 and KF 5).
FIG. 19 illustrates an example of generating PCFs for the map of FIG. 17, in accordance with some embodiments. In the illustrated example, PCF 1 may include PP1 and PP 2. As described above, PCFs may be used to display image data associated with the PCFs. In some embodiments, each PCF may have coordinates in another coordinate frame (e.g., a world coordinate frame) and a PCF descriptor, e.g., uniquely identifying the PCF. In some embodiments, the PCF descriptor may be computed based on feature descriptors of features in a frame associated with the PCF. In some embodiments, the various constellations of PCFs may be combined to represent the real world in a persistent manner requiring less data and less data transmission.
Fig. 20A to 20C are schematic diagrams showing examples of establishing and using a persistent coordinate frame. FIG. 20A shows two users 4802A, 4802B with respective local tracking maps 4804A, 4804B that have not yet been located to a canonical map. The origins 4806A, 4806B of the respective users are depicted by coordinate systems (e.g., world coordinate systems) in their respective areas. These origins for each tracking map may be local to each user because they depend on the orientation of their respective device when tracking is initiated.
As the sensor of the user device scans the environment, the device may capture images that may contain features representing persistent objects as described above in connection with fig. 14, such that those images may be classified as key frames from which persistent gestures may be created. In this example, tracking map 4802A includes a persistent gesture (PP) 4808A; tracking 4802B includes PP 4808B.
Also as described above in connection with fig. 14, some PPs may be classified as PCFs that are used to orient virtual content for rendering to a user. Fig. 20B shows that XR devices worn by respective users 4802A, 4802B may create local PCFs 4810A, 4810B based on PPs 4808A, 4808B. Fig. 20C illustrates that persistent content 4812A, 4812B (e.g., virtual content) may be attached to a PCF 4810A, 4810B by a respective XR device.
In this example, the virtual content may have a virtual content coordinate frame that may be used by the application that generated the virtual content regardless of how the virtual content should be displayed. For example, the virtual content may be specified as a surface at a particular position and angle relative to the virtual content coordinate frame, such as a triangle of a mesh. To render the virtual content to the user, the locations of those surfaces may be determined relative to the user that is to perceive the virtual content.
Appending virtual content to the PCF may simplify the computations involved in determining the location of the virtual content relative to the user. The position of the virtual content relative to the user may be determined by applying a series of transformations. Some of these transformations may change and may be updated frequently. Other of these transforms may be stable, may be updated frequently or not at all. In any event, the transformation may be applied with a relatively low computational burden such that the position of the virtual content may be frequently updated relative to the user, thereby providing a realistic appearance to the rendered virtual content.
In the example of fig. 20A-20C, user 1's device has a coordinate system related to the coordinate system defining the map origin by transformation rig1_ T _ w 1. The device of user 2 has a similar transformation rig2_ T _ w 2. These transformations may be expressed as 6 degrees of transformation, specifying translation and rotation to align the device coordinate system with the map coordinate system. In some embodiments, the transformation may be represented as two separate transformations, one specifying translation and the other specifying rotation. Thus, it should be appreciated that the transformation may be expressed in a form that simplifies computations or otherwise provides advantages.
The transformation between the origin of the tracking map and the PCF identified by the respective user device is denoted PCF1_ T _ w1 and PCF2_ T _ w 2. In this example, the PCF and PP are the same, so the same transformation also characterizes the PP.
Thus, the location of the user equipment relative to the PCF may be calculated by serial application of these transformations, e.g. rig1_ T _ PCF1 (rig1_ T _ w1) (PCF1_ T _ w 1).
As shown in fig. 20C, the virtual content is located with respect to the PCF via transformation of obj1_ T _ PCF 1. The transformation may be set by an application generating the virtual content, which may receive information describing the physical object relative to the PCF from the world reconstruction system. To render the virtual content to the user, a transformation to the coordinate system of the user device is computed, which may be computed by associating the virtual content coordinate frame to the origin of the tracking map by transforming obj1_ T _ w1 (obj1_ T _ pcf1) (pcf1_ T _ w 1). The transformation may then be related to the user's device by a further transformation rig1_ T _ w 1.
Based on output from an application that generates the virtual content, the location of the virtual content may change. When changed, the end-to-end transformation from the source coordinate system to the destination coordinate system may be recalculated. Additionally, the position and/or head pose of the user may change as the user moves. As a result, the transformation rig1_ T _ w1 may change, as may any end-to-end transformation depending on the user's position or head pose.
The transformation rig1_ T _ w1 may be updated as the user moves based on tracking the user's position relative to stationary objects in the physical world. Such tracking may be performed by a headset locating component or other component of the system that processes the image sequence as described above. Such updating may be done by determining the user's pose relative to a fixed frame of reference (e.g., PP).
In some embodiments, since the PP is used as a PCF, the location and orientation of the user device may be determined relative to the most recent persistent gesture or PCF in this example. Such a determination may be made by identifying feature points characterizing the PP in a current image captured with a sensor on the device. The position of the device relative to those feature points may be determined using image processing techniques such as stereo image analysis. From this data, the system can calculate the change in the transformation associated with user motion based on the relationship rig1_ T _ pcf1 (rig1_ T _ w1) (pcf1_ T _ w 1).
The system can determine and apply the transformations in a computationally efficient order. For example, the need to compute rig1_ T _ w1 from measurements that produced rig1_ T _ PCF1 may be avoided by tracking user gestures and defining the location of virtual content relative to a PP or PCF built based on persistent gestures. In this way, the transformation from the source coordinate system of the virtual content to the destination coordinate system of the user device may be based on a measured transformation according to the expression (rig1_ T _ pcf1) (obj1_ T _ pcf1), where the first transformation is measured by the system and the latter transformation is provided by the application specifying rendering of the virtual content. In embodiments where the virtual content is located relative to the origin of the map, the end-to-end transformation may relate the virtual object coordinate system to the PCF coordinate system based on a further transformation between the map coordinates and the PCF coordinates. In embodiments where the virtual content is located relative to a PP or PCF other than the one for which the user location is tracked, a transformation may be made between the two. Such a transformation may be fixed and may be determined, for example, from a map in which both occur.
For example, the transformation-based approach may be implemented in a device having components that process sensor data to construct a tracking map. As part of this process, these components may identify feature points that may be used as persistent gestures, which may in turn become PCFs. These components may limit the number of persistent gestures generated for the map to provide appropriate spacing between persistent gestures, while allowing the user to approach the persistent gesture location sufficiently regardless of location in the physical environment to accurately calculate the user's gesture, as described above in connection with fig. 17-19. With the update of the last persistent gesture to the user, as the user moves, a tracking map or other refinement allows any transformation of the virtual content relative to the user's location used to calculate the location that depends on the PP (or PCF, if in use) to be updated and stored for use, at least until the user leaves the persistent gesture. Nevertheless, by computing and storing the transformation, the computational burden each time the position of the virtual content is updated can be relatively low, so that it can be performed with relatively low latency.
Fig. 20A to 20C show positioning with respect to a tracking map, and each device has its own tracking map. However, the transformation may be generated relative to any map coordinate system. Content persistence between user sessions of the XR system can be achieved through the use of a persistence map. A shared experience for the user may also be achieved by using a map to which multiple user devices may be directed.
In some embodiments, described in more detail below, the location of the virtual content may be specified relative to coordinates in a canonical map formatted such that the map may be used by any of a plurality of devices. Each device may maintain a tracking map and may determine changes in the user's pose relative to the tracking map. In this example, the transformation between the tracking map and the canonical map may be determined by a "localization" process, which may be performed by matching structures in the tracking map (such as one or more persistent gestures) to one or more structures of the canonical map (e.g., one or more PCFs).
Techniques for creating and using canonical maps in this manner are described in more detail below.
Depth key frame
The techniques described herein rely on comparison of image frames. For example, to establish the location of the device relative to the tracking map, a new image may be captured using a sensor worn by the user, and the XR system may search for images that share at least a predetermined number of points of interest with the new image in the set of images used to create the tracking map. As an example of another scenario involving image frame comparison, a tracking map may be localized to a canonical map by first finding an image frame in the tracking map associated with a persistent gesture that is similar to an image frame in the canonical map associated with a PCF. Alternatively, the transformation between two canonical maps may be calculated by first finding similar image frames in the two maps.
Depth key frames provide a way to reduce the amount of processing required to identify similar image frames. For example, in some embodiments, the comparison may be between image features (e.g., "2D features") in the new 2D image and 3D features in the map. This comparison may be made in any suitable manner, such as by projecting a 3D image into a 2D plane. Conventional methods, such as Bag of Words (BoW), search a database including all 2D features in a map for 2D features of a new image, which may require a significant amount of computing resources, especially when the map represents a large area. Conventional methods then locate images that share at least one 2D feature with the new image, which may include images that are not useful for locating meaningful 3D features in the map. Conventional methods then locate 3D features that are not meaningful with respect to 2D features in the new image.
The inventors have recognized and appreciated techniques for retrieving images in a map using less memory resources (e.g., one-fourth of the memory resources used by BoW), higher efficiency (e.g., 2.5ms of processing time per keyframe, 100 μ s for 500 keyframes), and higher accuracy (e.g., 20% better retrieval recall than BoW for a 1024-dimensional model and 5% better retrieval recall than BoW for a 256-dimensional model).
To reduce computation, descriptors may be computed for image frames, which may be used to compare the image frame with other image frames. The descriptors may be stored instead of or in addition to the image frames and feature points. In a map in which persistent gestures and/or PCFs may be generated from image frames, descriptors of one or more image frames from which each persistent gesture or PCF was generated may be stored as part of the persistent gesture and/or PCF.
In some embodiments, the descriptors may be computed from feature points in the image frame. In some embodiments, the neural network is configured to compute a unique frame descriptor that represents the image. The image may have a resolution of greater than 1 megabyte, capturing sufficient detail of the 3D environment within the field of view of the device worn by the user in the image. The frame descriptors may be much shorter, such as numeric strings, for example, anywhere in the range of 128 bytes to 512 bytes, or in between.
In some embodiments, the neural network is trained such that the calculated frame descriptors indicate similarity between images. The images in the map may be located by identifying, in a database comprising images used to generate the map, the closest image that may have a frame descriptor within a predetermined distance from the frame descriptor of the new image. In some embodiments, the distance between images may be represented by the difference between the frame descriptors of the two images.
FIG. 21 is a block diagram illustrating a system for generating descriptors for individual images, in accordance with some embodiments. In the illustrated example, a frame embedding generator 308 is shown. In some embodiments, frame embedding generator 308 may be used within server 20, but may alternatively or additionally be performed in whole or in part in one of XR devices 12.1 and 12.2 or any other device that processes images for comparison with other images.
In some embodiments, the frame embedding generator may be configured to generate a reduced data representation of the image from an initial size (e.g., 76,800 bytes) to a final size (e.g., 256 bytes) that, despite being reduced in size, is indicative of content in the image. In some embodiments, a frame embedding generator may be used to generate a data representation of an image, which may be a key frame or otherwise used frame. In some embodiments, the frame embedding generator 308 may be configured to convert an image located at a particular position and orientation into a unique string of numeric characters (e.g., 256 bytes). In the example shown, an image 320 taken by the XR device may be processed by a feature extractor 324 to detect a point of interest 322 in the image 320. The points of interest may or may not be derived from the feature points identified as described above for feature 1120 (fig. 14) or as otherwise described herein. In some embodiments, the points of interest may be represented by descriptors as described above for descriptor 1130 (fig. 14), which may be generated using a depth sparse feature method. In some embodiments, each point of interest 322 may be represented by a numeric string (e.g., 32 bytes). For example, there may be n features (e.g., 100) and each feature is represented by a string of 32 bytes.
In some embodiments, the frame embedding generator 308 may include a neural network 326. The neural network 326 may include a multi-layered perceptron unit 312 and a maximum (max) pooling unit 314. In some embodiments, the multilayer perceptron (MLP) unit 312 may include a multilayer perceptron, which may be trained. In some embodiments, the points of interest 322 (e.g., descriptors for the points of interest) may be reduced by the multi-layered perceptron 312 and may be output as a weighted combination of descriptors 310. For example, MLP may reduce n features to m features that are less than n features.
In some embodiments, the MLP unit 312 may be configured to perform matrix multiplication. The multi-layered perceptron unit 312 receives a plurality of points of interest 322 of the image 320 and converts each point of interest into a corresponding numeric string (e.g., 256). For example, there may be 100 features, and each feature may be represented by a 256-digit string. In this example, a matrix with 100 horizontal rows and 256 vertical columns may be created. Each row may have a series of 256 numbers that differ in size, some of which are smaller and others of which are larger. In some embodiments, the output of the MLP may be an n × 256 matrix, where n represents the number of points of interest extracted from the image. In some embodiments, the output of the MLP may be an m × 256 matrix, where m is the number of points of interest reduced from n.
In some embodiments, the MLP 312 may have a training phase during which model parameters for the MLP are determined and a use phase. In some embodiments, the MLP may be trained as shown in fig. 25. The input training data may include triplet data, the triplet including 1) the query image, 2) the positive samples, and 3) the negative samples. The query image may be considered a reference image.
In some embodiments, the positive sample may include images similar to the query image. For example, in some embodiments, similarity may be having the same object in the query image and the positive sample image, but viewed from different angles. In some embodiments, similarity may be having the same object in the query image and the positive sample image, but the object is shifted (e.g., left, right, up, down) relative to the other image.
In some embodiments, the negative examples may include images that are dissimilar to the query image. For example, in some embodiments, the dissimilar image may not contain any objects that are salient in the query image, or may contain only a small portion of the salient objects in the query image (e.g., < 10%, 1%). In contrast, for example, a similar image may have a majority (e.g., > 50% or > 75%) of the objects in the query image.
In some embodiments, a point of interest may be extracted from an image in input training data, and the point of interest may be converted into a feature descriptor. These descriptors can be computed for both the training images as shown in fig. 25 and for the features extracted in the operation of the frame embedding generator 308 of fig. 21. In some embodiments, descriptors (e.g., DSF descriptors) may be generated using Deep Sparse Feature (DSF) processing, as described in U.S. patent application 16/190,948. In some embodiments, the DSF descriptor is n x 32 dimensions. Descriptors can then be passed through the model/MLP to create 256 bytes of output. In some embodiments, the model/MLP may have the same structure as MLP 312, such that once the model parameters are set by training, the resulting trained MLP may be used as MLP 312.
In some embodiments, the feature descriptors (e.g., 256 bytes output from the MLP model) may then be sent to a triplet boundary loss module (which may be used only during the training phase and not during the use phase of the MLP neural network). In some embodiments, the triplet boundary loss module may be configured to select parameters of the model to reduce the difference between the 256-byte output from the query image and the 256-byte output from the positive samples and to increase the 256-byte output from the query image and the 256-byte output from the negative samples. In some embodiments, the training phase may include feeding a plurality of triplet input images into a learning process to determine model parameters. The training process may continue, for example, until the variance of the positive images is minimized and the variance of the negative images is maximized, or until other suitable exit criteria are reached.
Referring again to fig. 21, frame embedding generator 308 may include a pooling layer, shown here as a maximum (max) pooling unit 314. The max pooling unit 314 may analyze each column to determine a maximum number in the respective column. The max pooling unit 314 may combine the maximum of each column of numbers of the output matrix of the MLP 312 into a global feature string 316 of, for example, 256 numbers. It should be understood that images processed in XR systems may be expected to have high resolution frames, potentially with millions of pixels. The global feature string 316 is a relatively small number that occupies relatively little memory and is easy to search as compared to an image (e.g., having a resolution of greater than 1 megabyte). It is therefore possible to search for images without analyzing every original frame from the camera and it is cheaper to store 256 bytes instead of a full frame.
FIG. 22 is a flow diagram illustrating a method 2200 of computing an image descriptor according to some embodiments. Method 2200 may begin with receiving (act 2202) a plurality of images captured by an XR device worn by a user. In some embodiments, method 2200 may include determining (act 2204) one or more keyframes from the plurality of images. In some embodiments, act 2204 may be skipped and/or may instead occur after step 2210.
The method 2200 may comprise: identifying (act 2206) one or more points of interest in the plurality of images using an artificial neural network; and computing (act 2208) feature descriptors for the respective points of interest using an artificial neural network. The method may include computing (act 2210) a frame descriptor for each image, representing the image based at least in part on feature descriptors computed with an artificial neural network for identified points of interest in the image.
FIG. 23 is a flow diagram illustrating a method 2300 of localization using image descriptors, according to some embodiments. In this example, a new image frame describing the current location of the XR device may be compared to image frames stored in conjunction with a point in a map (e.g., a persistent gesture or PCF as described above). Method 2300 may begin with receiving (act 2302) a new image captured by an XR device worn by a user. Method 2300 may include identifying (act 2304) one or more recent keyframes in a database that includes the keyframes used to generate the one or more maps. In some embodiments, the most recent key frame may be identified based on coarse spatial information and/or previously determined spatial information. For example, the coarse spatial information may indicate that the XR device is located in a geographic area represented by a 50m x 50m area of the map. Image matching may be performed only for points within the region. As another example, based on the tracking, the XR system may know that the XR device was previously in the map proximate to the first persistent gesture and is moving in the direction of the second persistent gesture in the map at the time. The second persistent gesture may be considered the most recent persistent gesture, and the keyframes stored therewith may be considered the most recent keyframes. Alternatively or additionally, other metadata such as GPS data or WiFi fingerprints may be used to select the most recent key frame or set of most recent key frames.
Regardless of how the most recent key frame is selected, a frame descriptor may be used to determine whether a new image matches any frame selected to be associated with a nearby persistent gesture. This determination may be made by: the frame descriptors of the new image are compared to the frame descriptors of the most recent key-frames or a subset of key-frames in the database selected in any other suitable manner, and key-frames having frame descriptors within a predetermined distance of the frame descriptors of the new image are selected. In some embodiments, the distance between two frame descriptors may be calculated by taking the difference between two strings of numeric characters that may represent the two frame descriptors. In embodiments where the character string is processed as a plurality of character strings, the difference may be calculated as a vector difference.
Once a matching image frame is identified, the orientation of the XR device relative to that image frame can be determined. The method 2300 may include: feature matching is performed (act 2306) on the 3D features in the map that correspond to the identified most recent keyframe, and a pose of the device worn by the user is calculated (act 2308) based on the feature matching results. In this way, computationally intensive matching of feature points in two images may be performed for as few as one image that has been determined to be a possible match with the new image.
Figure 24 is a flow diagram illustrating a method 2400 of training a neural network, in accordance with some embodiments. Method 2400 can begin with generating (act 2402) a data set including a plurality of image sets. Each of the plurality of image sets may include a query image, a positive sample image, and a negative sample image. In some embodiments, the plurality of image sets may include a synthetic record pair configured to teach, for example, a neural network, basic information (such as shape). In some embodiments, the plurality of image sets may include real record pairs, which may be recorded from the physical world.
In some embodiments, an interior point (inlier) may be calculated by fitting a basis matrix between the two images. In some embodiments, the sparse overlap may be calculated as an intersection over ratio (IoU) of the points of interest seen in the two images. In some embodiments, the positive samples may include at least twenty points of interest as inliers as in the query image. Negative examples may include fewer than ten interior points. The negative examples may have less than half of the sparse points overlapping with the sparse points of the query image.
It should be understood that although the above describes methods and apparatus configured to generate global descriptors for respective images, the methods and apparatus may be configured to generate descriptors for respective maps. For example, a map may include a plurality of keyframes, each of which may have a frame descriptor as described above. The max-pooling unit may analyze the frame descriptors of key frames of the map and combine the frame descriptors into a unique map descriptor for the map.
Further, it should be appreciated that other architectures may be used for the processing as described above. For example, separate neural networks are described for generating DSF descriptors and frame descriptors. This approach is computationally efficient. However, in some embodiments, the frame descriptor may be generated from the selected feature points without first generating the DSF descriptor.
Ranking and merging maps
Described herein are methods and apparatus for ranking and merging multiple environment maps in an X Reality (XR) system. Map merging may enable maps representing overlapping portions of the physical world to be combined to represent larger areas. Ranking maps may enable efficient performance of the techniques described herein, including map merging, which involves selecting a map from a set of maps based on similarity. In some embodiments, for example, the system may maintain a set of specification maps formatted in a manner that any of a number of XR devices may access them. These canonical maps may be formed by merging selected tracking maps from those devices with other tracking maps or previously stored canonical maps. The canonical maps may be ranked, for example, for selection of one or more canonical maps for merging with a new tracking map and/or selection of one or more canonical maps from a set for use in a device.
In order to provide a realistic XR experience to the user, the XR system must know the user's physical environment in order to correctly correlate the position of the virtual object relative to the real object. Information about the actual environment of the user can be obtained from an environment map of the user's location.
The inventors have recognized and appreciated that XR systems may provide an enhanced XR experience to multiple users sharing the same world, including real and/or virtual content, whether the users appear in the world at the same time or at different times, by enabling efficient sharing of real/physical world environment maps collected by the users. However, significant challenges exist in providing such a system. Such a system may store multiple maps generated by multiple users and/or the system may store multiple maps generated at different times. For operations that may be performed using previously generated maps, such as, for example, localization as described above, a significant amount of processing may be required to identify relevant environmental maps of the same world (e.g., the same real-world location) from all of the environmental maps collected in the XR system. In some embodiments, there may be only a small number of environmental maps that the device may access, for example, for positioning. In some embodiments, there may be a large number of environment maps accessible to the device. The inventors have recognized and appreciated techniques for quickly and accurately ranking relevance of environmental maps from all possible environmental maps (such as, for example, the universe of all specification maps 120 in FIG. 28). The high ranked map may then be selected for further processing, such as rendering virtual objects on the user display for realistic interaction with the physical world around the user, or merging the map data collected by the user with a stored map to create a larger or more accurate map.
In some embodiments, a stored map relating to a task of a user at a location in the physical world may be identified by filtering the stored map based on a plurality of criteria. The criteria may indicate a comparison of a tracking map generated by the user's wearable device in the location with candidate environment maps stored in a database. The comparison may be performed based on metadata associated with the map, such as Wi-Fi fingerprints detected by the device generating the map and/or a set of BSSIDs to which the device is connected while forming the map. The comparison may also be performed based on compressed or uncompressed content of the map. The compressed representation based comparison may be performed by comparing vectors computed from the map content. For example, uncompressed map-based comparisons may be performed by locating a tracking map within a stored map, and vice versa. The multiple comparisons may be performed sequentially based on the computation time required to reduce the number of candidate maps to be considered, where comparisons involving fewer computations will be performed sequentially earlier than other comparisons requiring more computations.
Figure 26 depicts an AR system 800 configured to rank and merge one or more environment maps, in accordance with some embodiments. The AR system may include a navigable world model 802 of the AR device. The information that populates the navigable world model 802 may come from sensors on the AR device, which may include computer-executable instructions stored in the processor 804 (e.g., local data processing module 570 in fig. 4) that may perform some or all of the processing to convert the sensor data to a map. Such a map may be a tracking map, as the tracking map may be constructed while collecting sensor data when the AR device is operating in an area. Along with the tracking map, a region attribute may be provided to indicate the region represented by the tracking map. These area attributes may be a geographic location identifier, such as coordinates expressed as latitude and longitude, or an ID used by the AR system to represent a location. Alternatively or additionally, the region attribute may be a measured characteristic having a unique high likelihood for the region. The zone attributes may be derived, for example, from parameters of the wireless network detected in the zone. In some embodiments, the zone attribute may be associated with a unique address of an access point to which the AR system is nearby and/or connected. For example, the zone attribute may be associated with a MAC address or Basic Service Set Identifier (BSSID) of a 5G base station/router, Wi-Fi router, or the like.
In the example of FIG. 26, the tracking map may be merged with other maps of the environment. Map ranking section 806 receives a tracking map from device PW 802 and communicates with map database 808 to select and rank environmental maps from map database 808. The selected map with the higher rank is sent to the map merge section 810.
The map merge section 810 can perform a merge process on the map sent from the map ranking section 806. The merge process may entail merging the tracking map with some or all of the ranking maps and sending the new merged map to the navigable world model 812. The map merging section may merge the maps by identifying the maps depicting the overlapping portions of the physical worlds. Those overlapping portions may be aligned so that the information in the two maps may be aggregated into the final map. The canonical map may be merged with other canonical maps and/or tracking maps.
Aggregation may require extending one map with information from another map. Alternatively or additionally, aggregation may entail adjusting the representation of the physical world in one map based on information in another map. For example, the latter map may reveal an object that caused the feature point to have moved, so that the map may be updated based on the latter information. Alternatively, two maps may characterize the same area with different feature points, and the aggregation may require selecting a set of feature points from the two maps to better represent the area. Regardless of the specific processing that occurs during the merging process, in some embodiments, PCFs from all maps that are merged may be retained so that applications that locate content relative to them may continue to do so. In some embodiments, the merging of maps may result in redundant persistent gestures, and some persistent gestures may be deleted. When a PCF is associated with a persistent gesture to be deleted, the merged map may require that the PCF be modified to be associated with the persistent gesture remaining in the map after the merge.
In some embodiments, as the maps expand and/or update, they may be refined. Refinement may require computation to reduce internal inconsistencies between feature points that may represent the same object in the physical world. Such inconsistencies may arise from pose inaccuracies associated with providing keyframes representing feature points of the same object in the physical world. For example, such inconsistencies may arise from the XR device computing pose relative to a tracking map, which in turn is established based on estimating pose, so errors in pose estimation accumulate, thereby creating "drift" in pose accuracy over time. The map may be refined by performing a bundle adjustment or other operation to reduce the disparity of feature points from multiple keyframes.
In refinement, the position of the continuation point relative to the origin of the map may change. Thus, the transformation associated with the persistent point, such as a persistent gesture or PCF, may change. In some embodiments, the XR system in conjunction with map refinement (whether performed as part of the merge operation or for other reasons) may recalculate the transformation associated with any persistent points that have changed. These transformations may be pushed from the component that computes the transformation to the component that uses the transformation, so that any use of the transformation may be based on the updated location of the durable point.
The navigable world model 812 may be a cloud model that may be shared by multiple AR devices. The navigable world model 812 may store or otherwise access an environmental map in the map database 808. In some embodiments, when a previously computed environment map is updated, the previous version of the map may be deleted, such that the outdated map is deleted from the database. In some embodiments, when a previously computed environment map is updated, a previous version of the map may be archived, thereby enabling retrieval/viewing of the previous version of the environment. In some embodiments, permissions may be set such that only AR systems with certain read/write access rights may trigger the previous version of the map to be deleted/archived.
These environment maps created from tracking maps provided by one or more AR devices/systems may be accessed by AR devices in the AR system. The map ranking component 806 may also be used to provide an environment map to the AR device. The AR device may send a message requesting an environment map of its current location, and the map ranking section 806 may be used to select and rank the environment map related to the requesting device.
In some embodiments, AR system 800 may include a downsampling section 814 configured to receive the merged map from cloud PW 812. The consolidated map received from cloud PW 812 may be a storage format for the cloud, which may include high-resolution information, such as a large number of PCFs per square meter or a plurality of image frames or a large set of feature points associated with PCFs. The downsampling section 814 may be configured to downsample the cloud format map into a format suitable for storage on the AR device. The map in device format may contain less data, e.g., fewer PCFs or less data stored for each PCF, to accommodate the limited local computing power and memory space of the AR device.
Fig. 27 is a simplified block diagram illustrating a plurality of specification maps 120 that may be stored in a remote storage medium, such as a cloud. Each canonical map 120 may include a plurality of canonical map identifiers that indicate a location of the canonical map within a physical space, such as somewhere on earth. These canonical map identifiers may include one or more of the following identifiers: a region identifier represented by latitude and longitude ranges, a frame descriptor (e.g., global feature string 316 in fig. 21), a Wi-Fi fingerprint, a feature descriptor (e.g., feature descriptor 310 in fig. 21), and a device identification indicating one or more devices that contributed to the map.
In the example shown, the canonical maps 120 are geographically arranged in a two-dimensional pattern because they may exist on the surface of the earth. The specification map 120 may be uniquely identifiable by respective longitudes and latitudes, as any specification map having overlapping longitudes and latitudes may be merged into a new specification map.
FIG. 28 is a schematic diagram illustrating a method of selecting a canonical map that may be used to locate a new tracking map to one or more canonical maps, according to some embodiments. The method may begin by accessing (act 120) the world of the specification map 120, which may be stored in a database of navigable worlds (e.g., the navigable worlds module 538), as an example. The world of canonical maps may include canonical maps from all previously visited locations. The XR system may filter the world of all canonical maps into a small subset or just one map. It should be appreciated that in some embodiments, it may not be possible to send all of the canonical maps to the viewing device due to bandwidth limitations. Selecting a subset to send to the device that is selected as a candidate for possible matching the tracking map may reduce bandwidth and latency associated with accessing a remote database of maps.
The method may include filtering (act 300) a world of the canonical map based on an area having a predetermined size and shape. In the example of fig. 27, each square may represent an area. Each square may cover 50m x 50 m. There may be six adjacent regions per square. In some embodiments, act 300 may select at least one matching specification map 120 that covers a longitude and latitude, including the longitude and latitude of the location identifier received from the XR device, as long as there is at least one map at the longitude and latitude. In some embodiments, act 300 may select at least one neighboring specification map that covers the longitude and latitude adjacent to the matching specification map. In some embodiments, act 300 may select a plurality of matching specification maps and a plurality of adjacent specification maps. Act 300 may, for example, reduce the number of canonical maps by approximately ten times, e.g., from thousands to hundreds, to form a first filtering selection. Alternatively or additionally, criteria other than latitude and longitude may be used to identify neighboring maps. For example, the XR device may have previously been located using the canonical map in the set as part of the same session. The cloud service may retain information about XR devices, including previously located maps. In this example, the maps selected at act 300 may include those that cover an area adjacent to the map to which the XR device is located.
The method may include filtering (act 302) a first filtering selection of a canonical map based on the Wi-Fi fingerprints. Act 302 may determine a latitude and longitude based on a Wi-Fi fingerprint received from an XR device as part of a location identifier. Act 302 may compare the latitude and longitude from the Wi-Fi fingerprint to the latitude and longitude of specification map 120 to determine one or more specification maps that form the second filtering selection. Act 302 may reduce the number of canonical maps by approximately ten times, e.g., from hundreds of canonical maps to tens (e.g., 50) canonical maps forming a second selection. For example, the first filtering selection may include 130 canonical maps, the second filtering selection may include 50 of the 130 canonical maps, and may not include the other 80 of the 130 canonical maps.
The method may include filtering (act 304) a second filtering selection of the canonical map based on the keyframes. Act 304 may compare data representing an image captured by the XR device to data representing the specification map 120. In some embodiments, the data representing the image and/or map may include a feature descriptor (e.g., the DSF descriptor in fig. 25) and/or a global feature string (e.g., 316 in fig. 21). Act 304 may provide a third filtering selection of the canonical map. In some embodiments, for example, the output of act 304 may be only five of the 50 canonical maps identified after the second filtering selection. The map transmitter 122 then transmits the one or more canonical maps selected based on the third filtering to the viewing device. Act 304 may reduce the number of canonical maps by approximately ten times, e.g., from tens of canonical maps to a single-digit canonical map forming a third selection (e.g., 5). In some embodiments, the XR device may receive the specification map in a third filtering option and attempt to locate into the received specification map.
For example, act 304 may filter the canonical map 120 based on the global feature string 316 of the canonical map 120 and the global feature string 316 based on an image captured by a viewing device (e.g., an image that may be part of a user's local tracking map). Thus, each canonical map 120 in FIG. 27 has one or more global feature strings 316 associated with it. In some embodiments, the global feature string 316 may be obtained when the XR device submits image or feature details to the cloud and processes the image or feature details at the cloud to generate the global feature string 316 for the canonical map 120.
In some embodiments, the cloud may receive feature details of a real-time/new/current image captured by the viewing device, and the cloud may generate a global feature string 316 for the real-time image. The cloud may then filter the canonical map 120 based on the real-time global feature string 316. In some embodiments, the global feature string may be generated on a local viewing device. In some embodiments, the global feature string may be generated remotely, for example, at the cloud. In some embodiments, the cloud may send the filtered canonical map to the XR device along with the global feature string 316 associated with the filtered canonical map. In some embodiments, when the viewing device localizes its tracking map to the canonical map, it may do so by matching the global feature string 316 of the local tracking map with the global feature string of the canonical map.
It should be understood that the operation of the XR device may not perform all of the acts (300, 302, 304). For example, if the world of canonical maps is relatively small (e.g., 500 maps), an XR device attempting to locate may filter the world of canonical maps based on Wi-Fi fingerprints (e.g., act 302) and keyframes (e.g., act 304), but omit region-based filtering (e.g., act 300). Furthermore, it is not necessary to compare the entire map. For example, in some embodiments, a comparison of two maps may result in identifying a common persistent point, such as a persistent gesture or PCF that occurs both in the new map and in a map selected from the map world. In that case, descriptors may be associated with the persisted points and those descriptors may be compared.
FIG. 29 is a flow diagram illustrating a method 900 of selecting one or more ranked environment maps, according to some embodiments. In the illustrated embodiment, ranking is performed on the AR devices of the users who are creating the tracking map. Thus, the tracking map may be used to rank the environment maps. In embodiments where a tracking map is not available, some or all of the selection and ranking of environmental maps that do not explicitly depend on the tracking map may be used.
Figure 30 depicts an exemplary map ranking portion 806 of the AR system 800 according to some embodiments. The map ranking portion 806 may be performed in a cloud computing environment as it may include a portion that is performed on an AR device and a portion that is performed on a remote computing system, such as a cloud. The map ranking section 806 may be configured to perform at least a portion of the method 900.
FIG. 31A depicts an example of the area attributes AA1-AA8 of the Tracking Map (TM)1102 and the environment maps CM1-CM4 in a database, according to some embodiments. As shown, the environment map may be associated with a plurality of regional attributes. The area attributes AA1-AA8 may include parameters of the wireless network detected by the AR device computation tracking map 1102, such as a Basic Service Set Identifier (BSSID) of the network to which the AR device is connected and/or a strength of a received signal to an access point of the wireless network through, for example, the network tower 1104. The parameters of the wireless network may conform to protocols including Wi-Fi and 5G NR. In the example shown in fig. 32, the area attribute is a fingerprint of the area in which the user AR device collects sensor data to form the tracking map.
Fig. 31B depicts an example of a determined geographic location 1106 of the tracking map 1102, according to some embodiments. In the example shown, the determined geographic location 1106 includes a centroid point 1110 and an area 1108 surrounding the centroid point. It should be understood that the determination of the geographic location of the present application is not limited to the format shown. The determined geographic location may have any suitable format including, for example, different region shapes. In this example, the geographic location is determined from the region attributes using a database that associates the region attributes with the geographic location. Databases are commercially available, for example, that associate Wi-Fi fingerprints with locations expressed as latitude and longitude and are available for this operation.
In the embodiment of fig. 29, the map database containing the map of the environment may also include location data for those maps, including the latitude and longitude covered by the map. Processing at act 902 may entail selecting a set of environment maps from the database that cover the same latitude and longitude determined for the regional attributes of the tracking map.
FIG. 32 depicts an example of act 904, according to some embodiments. Each region attribute may have a corresponding geographic location 1202. The set of environmental maps may include an environmental map having at least one regional attribute with a geographic location that overlaps the determined geographic location of the tracking map. In the example shown, the set of identified environment maps includes environment maps CM1, CM2, and CM4, each having at least one area attribute having a geographic location that overlaps the determined geographic location of tracking map 1102. The CM3 associated with the area attribute AA6 is not included in the group because it is outside of the determined geographic location of the tracking map.
Other filtering steps may also be performed on the set of environmental maps to reduce/rank the number of environmental maps in the set that are ultimately processed (such as for map merging or providing navigable world information to user devices). The method 900 may include filtering (act 906) the set of environmental maps based on a similarity of one or more identifiers of network access points associated with the tracking map and the environmental maps of the set of environmental maps. During formation of the map, the device that collects the sensor data to generate the map may be connected to the network through a network access point (such as through Wi-Fi or similar wireless communication protocol). The access point may be identified by the BSSID. As the user device moves through the area where data is collected to form a map, the user device may connect to multiple different access points. Also, when a plurality of devices provide information to form a map, the devices may have connected through different access points, and therefore for this reason, a plurality of access points may also be used in forming the map. Thus, there may be multiple access points associated with the map, and the set of access points may be an indication of the location of the map. The signal strength from the access point may be reflected as an RSSI value, which may provide further geographical information. In some embodiments, the list of BSSIDs and RSSI values may form an area attribute for the map.
In some embodiments, filtering the set of environmental maps based on similarity of one or more identifiers of network access points may include: an environment map having a highest Jaccard similarity to at least one regional attribute of the tracking map is retained in the set of environment maps based on one or more identifiers of the network access points. FIG. 33 depicts an example of act 906, according to some embodiments. In the example shown, the network identifier associated with area attribute AA7 may be determined to be an identifier of tracking map 1102. The set of environmental maps following act 906 includes: an environment map CM2, which may have regional attributes within a higher Jaccard similarity to AA 7; and an environment map CM4, which also includes a region attribute AA 7. The environment map CM1 is not included in the group because it has the lowest Jaccard similarity to AA 7.
The processing of act 902-906 may be performed based on metadata associated with the map without actually accessing the content of the map stored in the map database. Other processing may involve accessing the contents of the map. Act 908 indicates that the environment map remaining in the subset is accessed after filtering based on the metadata. It should be understood that if subsequent operations can be performed on the accessed content, the action can be performed earlier or later in the process.
The method 900 may include: the set of environmental maps is further filtered (act 912) based on a degree of match between a portion of the tracking map and a portion of the environmental maps of the set of environmental maps. The degree of match may be determined as part of the location process. As a non-limiting example, localization may be performed by identifying critical points in the tracking map and the environment map that are sufficiently similar to the same portion of the physical world they may represent. In some embodiments, the keypoints may be features, feature descriptors, key frames, key assemblies, persistent gestures, and/or PCFs. It is then possible to align a set of critical points in the tracking map to produce an optimal fit with the set of critical points in the environment map. It is possible to calculate the mean square distance between the corresponding critical points and, if below a threshold for a particular region of the tracking map, to serve as an indication that the tracking map and the environment map represent the same region of the physical world.
In some embodiments, filtering the set of environmental maps based on a degree of match between a portion of the tracking map and a portion of the environmental maps of the set of environmental maps may include: calculating a volume of the physical world represented by a tracking map, the tracking map also represented in an environment map of a set of environment maps; and retaining in the set of environment maps an environment map having a larger computational volume than the environment map filtered from the set. FIG. 34 depicts an example of act 912, according to some embodiments. In the illustrated example, the set of environment maps after act 912 includes an environment map CM4, the environment map CM4 having an area 1402 that matches the area of the tracking map 1102. The environment map CM1 is not included in the group because it does not have an area that matches the area of the tracking map 1102.
In some embodiments, the set of environmental maps may be filtered in the order of act 906, act 910, and act 912. In some embodiments, the set of environment maps may be filtered based on acts 906, 910, and 912, which acts 906, 910, and 912 may be performed according to an order from lowest to highest based on the processing required to perform the filtering. Method 900 may include loading (act 914) the set of environmental maps and data.
In the example shown, the user database stores an area identification indicating an area where the AR device is used. The area identification may be an area attribute that may include parameters of the wireless network that the AR device detects in use. The map database may store a plurality of environment maps constructed from data provided by the AR device and associated metadata. The associated metadata may include an area identification derived from an area identification of the AR device providing the data from which the environment map was constructed. The AR device may send a message to the PW module indicating that a new tracking map is created or being created. The PW module may calculate an area identifier for the AR device and update the user database based on the received parameters and/or the calculated area identifier. The PW module may also determine an area identifier associated with the AR device requesting the environment map, identify the set of environment maps from the map database based on the area identifier, filter the set of environment maps, and transmit the filtered set of environment maps to the AR device. In some embodiments, the PW module may filter the set of environmental maps based on one or more criteria including, for example, a geographic location of the tracking map, a similarity of one or more identifiers of network access points associated with the tracking map and the environmental maps of the set of environmental maps, a similarity representing a measure of content of the tracking map and the environmental maps of the set of environmental maps, and a degree of match between a portion of the tracking map and a portion of the environmental maps of the set of environmental maps.
Having thus described several aspects of certain embodiments, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. As one example, embodiments are described in connection with an enhanced (AR) environment. It should be understood that some or all of the techniques described herein may be applied in an MR environment or, more generally, in other XR environments and VR environments.
As another example, embodiments are described in connection with a device, such as a wearable device. It should be understood that some or all of the techniques described herein may be implemented via a network (such as the cloud), a discrete application, and/or any suitable combination of devices, networks, and discrete applications.
Further, fig. 29 provides an example of criteria that may be used to filter candidate maps to produce a set of highly ranked maps. Other criteria may be used instead of or in addition to the described criteria. For example, if multiple candidate maps have similar values for the metric used to filter out less than ideal maps, the characteristics of the candidate maps may be used to determine which maps are retained as candidate maps or filtered out. For example, larger or denser candidate maps may be prioritized over smaller candidate maps. In some embodiments, FIGS. 27-28 may describe all or part of the systems and methods described in FIGS. 29-34.
Fig. 35 and 36 are schematic diagrams illustrating an XR system configured to rank and merge multiple environment maps, in accordance with some embodiments. In some embodiments, the navigable world (PW) may determine when to trigger ranking and/or merging of maps. In some embodiments, determining a map to use may be based at least in part on the depth key frames described above with respect to fig. 21-25.
FIG. 37 is a block diagram illustrating a method 3700 of creating an environment map of the physical world, in accordance with some embodiments. Method 3700 may locate (act 3702) a group from a tracking map captured by an XR device worn by a user to a canonical map (e.g., the canonical map selected by method of fig. 28 and/or method 900 of fig. 900). Act 3702 may include locating a key assembly of the tracking map into a group of canonical maps. The positioning results for each key fit may include a set of 2D-to-3D feature correspondences and localization poses for the key fit.
In some embodiments, method 3700 may include splitting (act 3704) the tracking map into connected portions, which may robustly merge maps by merging connected segments. Each connected portion may include a key fit within a predetermined distance. Method 3700 can include: merging (act 3706) connected portions that are greater than a predetermined threshold into one or more specification maps; and removing the merged connection portion from the tracking map.
In some embodiments, method 3700 may include merging (act 3708) canonical maps in the group merged with the same connected portion of the tracking map. In some embodiments, method 3700 may include promoting (act 3710) the remaining connected portions of the tracking map that have not yet been merged with any canonical map as a canonical map. In some embodiments, method 3700 may include merging (act 3712) the persistent gesture and/or PCF of the tracking map and the specification map, where the specification map is merged with the at least one connection portion of the tracking map. In some embodiments, method 3700 may include finalizing (act 3714) the canonical map, for example, by fusing map points and pruning redundant critical assemblies.
Fig. 38A and 38B illustrate an environment map 3800 created by updating a specification map 700, the specification map 700 may be upgraded from the tracking map 700 (fig. 7) with a new tracking map, according to some embodiments. As illustrated and described with respect to fig. 7, the specification map 700 may provide a plan view 706 of reconstructed physical objects in the corresponding physical world represented by points 702. In some embodiments, map point 702 may represent a feature of a physical object, which may include multiple features. A new tracking map about the physical world may be captured and uploaded to the cloud for merging with the map 700. The new tracking map may include map points 3802 and key assemblies 3804, 3806. In the illustrated example, the key assemblies 3804 represent key assemblies that were successfully located to the canonical map by, for example, establishing correspondence with the key assemblies 704 of the map 700 (as shown in FIG. 38B). On the other hand, the key fit 3806 represents a key fit that has not yet been located to the map 700. In some embodiments, the key assemblies 3806 may be promoted to a separate canonical map.
39A-39F are diagrams illustrating examples of a cloud-based persistent coordinate system that provides a shared experience for users in the same physical space. Fig. 39A shows that a specification map 4814, e.g., from the cloud, is received by the XR device worn by users 4802A and 4802B of fig. 20A-20C. Canonical map 4814 may have canonical coordinate frame 4806C. Specification map 4814 may have PCF 4810C (e.g., 4818A, 4818B in fig. 39C) with multiple associated PPs.
Fig. 39B shows the relationship that the XR device establishes between its respective world coordinate systems 4806A, 4806B and the canonical coordinate frame 4806C. This may be done, for example, by locating the canonical map 4814 on the corresponding device. For each device, locating the tracking map to the canonical map may result in a transformation between its local world coordinate system and the coordinate system of the canonical map for each device.
FIG. 39C illustrates that a transformation (e.g., transformation 4816A, transformation 4816B) between a local PCF on a respective device (e.g., PCF 4810A, PCF 4810B) to a respective persistent gesture (e.g., PP 4818A, PP 4818B) on a canonical map may be computed as a result of the positioning. With these conversions, each device can use its local PCF, which can be detected locally to the device by processing images detected with sensors on the device, to determine where to display virtual content attached to PP 4818A, PP 4818B or other persistent points of the canonical map relative to the local device. Such an approach may accurately locate the virtual content with respect to each user and may enable each user to have the same experience of the virtual content in physical space.
FIG. 39D shows a continuous gesture snapshot from a canonical map to a local tracking map. It can be seen that the local tracking maps are connected to each other by persistent gestures. Fig. 39E shows that PCF 4810A on a device worn by user 4802A can be accessed in a device worn by user 4802B through PP 4818A. FIG. 39F shows that the tracking maps 4804A, 4804B and the specification map 4814 can be merged. In some embodiments, some PCFs may be removed due to merging. In the example shown, the merged map includes PCF 4810C, which is a specification map 4814, but does not include PCF 4810A, PCF 4810B, which is a tracking map 4804A, 4804B. After map merging, the PP previously associated with PCF 4810A, PCF 4810B may be associated with PCF 4810C.
Examples of the invention
Fig. 40 and 41 show examples of tracking maps generated by the first XR device 12.1 of fig. 9. Fig. 40 is a two-dimensional representation of a three-dimensional first local tracking map (map 1), which may be generated by the first XR device of fig. 9, in accordance with some embodiments. Figure 41 is a block diagram illustrating uploading of map 1 from the first XR device of figure 9 to a server, in accordance with some embodiments.
Fig. 40 shows map 1 and virtual content (content 123 and content 456) on the first XR device 12.1. The map 1 has an origin (origin 1). Map 1 includes a number of PCFs (PCF a to PCF d). From the perspective of the first XR device 12.1, PCF a is located, for example, at the origin of map 1 and has X, Y and Z coordinates of (0, 0, 0), and PCF b has X, Y and Z coordinates (-1, 0, 0). Content 123 is associated with PCF a. In this example, content 123 has X, Y and Z relationships relative to PCF a of (1, 0, 0). Content 456 has a relationship with respect to PCF b. In this example, content 456 has an X, Y and Z relationship of (1, 0, 0) with respect to PCF b.
In fig. 41, the first XR device 12.1 uploads map 1 to the server 20. The server 20 now has a canonical map based on map 1. The first XR device 12.1 has a specification map which is empty at this stage. For purposes of discussion, and in some embodiments, server 20 does not include other maps in addition to map 1. No map is stored on the second XR device 12.2.
The first XR device 12.1 also sends its Wi-Fi signature data to the server 20. Server 20 may use Wi-Fi signature data to determine the approximate location of first XR device 12.1 based on intelligence gathered from other devices that have been connected to server 20 or other servers in the past along with recorded GPS locations of such other devices. The first XR device 12.1 may now end the first session (see fig. 8) and may disconnect from the server 20.
Figure 42 is a schematic diagram illustrating the XR system of figure 16 showing the second user 14.2 having initiated a second session using a second XR device of the XR system after the first user 14.1 terminates the first session, in accordance with some embodiments. Fig. 43A shows a block diagram of the second user 14.2 initiating the second session. The first user 14.1 is shown in dashed lines because the first session of the first user 14.1 has ended. The second XR device 12.2 commences recording the object. The server 20 may use various systems with different granularities to determine that the second session of the second XR device 12.2 is in the same vicinity as the first session of the first XR device 12.1. For example, Wi-Fi signature data, Global Positioning System (GPS) positioning data, GPS data based on Wi-Fi signature data, or any other data indicative of location may be included in the first XR device 12.1 and the second XR device 12.2 to record their locations. Alternatively, the PCF identified by the second XR device 12.2 may display similarities to the PCF of map 1.
As shown in fig. 43B, the second XR device activates and begins collecting data, such as images 1110 from one or more cameras 44, 46. As shown in fig. 14, in some embodiments, the XR device (e.g., the second XR device 12.2) may collect one or more images 1110 and perform image processing to extract one or more features/points of interest 1120. Each feature may be converted into a descriptor 1130. In some embodiments, the descriptor 1130 may be used to describe the key frame 1140, which key frame 1140 may have the position and orientation of additional associated images. One or more keyframes 1140 may correspond to a single persistent gesture 1150, and the single persistent gesture 1150 may be automatically generated after a threshold distance (e.g., 3 meters) from the previous persistent gesture 1150. One or more persistent gestures 1150 may correspond to a single PCF 1160 that may be automatically generated after a predetermined distance (e.g., every 5 meters). Over time, as the user continues to move around the user's environment, and the XR device continues to collect more data (such as image 1110), additional PCFs (e.g., PCF 3 and PCFs 4, 5) may be created. One or two applications 1180 may run on the XR device and provide virtual content 1170 to the XR device for presentation to the user. The virtual content may have an associated content coordinate frame that may be placed relative to one or more PCFs. As shown in fig. 43B, the second XR device 12.2 creates three PCFs. In some embodiments, the second XR device 12.2 may attempt to locate one or more specification maps stored on the server 20.
In some embodiments, as shown in figure 43C, the second XR device 12.2 may download the specification map 120 from the server 20. Map 1 on the second XR device 12.2 includes PCFs a to d and origin 1. In some embodiments, the server 20 may have multiple specification maps for various locations, and may determine that the second XR device 12.2 is in the same vicinity as the first XR device 12.1 during the first session, and send the nearby specification map to the second XR device 12.2.
Fig. 44 shows the second XR device 12.2 beginning to identify PCFs for use in generating map 2. The second XR device 12.2 only identifies a single PCF, PCF1, 2. The X, Y and Z coordinates of the PCF1, 2 of the second XR device 12.2 may be (1, 1, 1). The map 2 has its own origin (origin 2), which may be based on the head pose of the device 2 of the current head pose session at the start of the device. In some embodiments, the second XR device 12.2 may immediately attempt to locate map 2 to the canonical map. In some embodiments, map 2 may not be able to be located into the canonical map (map 1) (i.e., the location may fail) because the system cannot identify any or sufficient overlap between the two maps. In some embodiments, the system may locate based on a PCF comparison between the local map and the canonical map. In some embodiments, the system may position based on a persistent gesture comparison between the local map and the canonical map. In some embodiments, the system may locate based on a keyframe comparison between the local map and the canonical map.
Fig. 45 shows map 2 after the second XR device 12.2 identifies the other PCFs ( PCF 1, 2, PCF 3, PCF 4, 5) of map 2. The second XR device 12.2 again attempts to locate map 2 to the canonical map. Since the map 2 has expanded to overlap at least a portion of the canonical map, the positioning attempt will succeed. In some embodiments, the overlap between the local tracking map, map 2, and the canonical map may be represented by a PCF, a persistent gesture, a key frame, or any other suitable intermediate or derivative construct.
In addition, second XR device 12.2 has associated content 123 and content 456 with PCF 1, 2 and PCF 3 of fig. 2. Content 123 has X, Y and a Z coordinate (1, 0, 0) relative to PCFs 1, 2. Similarly, the X, Y and Z coordinates of content 456 are (1, 0, 0) relative to PCF 3 in FIG. 2.
Fig. 46A and 46B illustrate successful positioning of map 2 to a normative map. The overlap area/volume/section of map 1410 represents a common portion of map 1 and the canonical map. Since map 2 created PCFs 3 and 4, 5 before localization, and the specification map created PCFs a and c before map 2 was created, different PCFs were created to represent the same volume in real space (e.g., in different maps).
As shown in figure 47, the second XR device 12.2 extends map 2 to include PCFs a-d from the specification map. Including PCFs a-d represents the positioning of map 2 to the specification map. In some embodiments, the XR system may perform an optimization step to remove duplicate PCFs, such as PCF 3 and PCF 4, 5 in 1410, from the overlap region. After map 2 location, placement of virtual content (such as content 456 and content 123) associates the closest updated PCF in updated map 2. The virtual content appears in the same real world location relative to the user, despite the addition of PCFs that alter the content, and despite the updating of the PCFs of map 2.
As shown in figure 48, the second XR device 12.2 continues to expand map 2, for example as the user moves around the real world, the second XR device 12.2 will identify the other PCFs (PCFs e, f, g and h). Note also that fig. 1 is not expanded in fig. 47 and 48.
Referring to figure 49, the second XR device 12.2 uploads map 2 to the server 20. The server 20 stores the map 2 together with the specification map. In some embodiments, when the session for the second XR device 12.2 ends, map 2 may be uploaded to the server 20.
The specification map within the server 20 now includes PCF i which is not included in map 1 on the first XR device 12.1. When a third XR device (not shown) uploads a map to server 20 and the map includes PCF i, the specification map on server 20 may have been extended to include PCF i.
In fig. 50, the server 20 merges map 2 with the normative map to form a new normative map. The server 20 determines that PCFs a to d are common to the specification map and the map 2. The server extends the specification map to include PCFs e through h and PCFs 1, 2 from map 2 to form a new specification map. The specification maps on the first XR device 12.1 and the second XR device 12.2 are based on map 1 and are outdated.
In fig. 51, the server 20 sends the new specification map to the first XR device 12.1 and the second XR device 12.2. In some embodiments, this may occur when the first XR device 12.1 and the second device 12.2 attempt to locate during a different or new or subsequent session. The first XR device 12.1 and the second XR device 12.2 proceed as described above to locate their respective local maps (map 1 and map 2 respectively) to the new canonical map.
As shown in fig. 52, the head coordinate frame 96 or "head pose" is related to the PCF in fig. 2. In some embodiments, the origin of the map, origin 2, is based on the head pose of the second XR device 12.2 at the start of the session. When a PCF is created during a session, the PCF will be placed relative to the world coordinate frame origin 2. The PCF of map 2 serves as a persistent coordinate frame relative to the canonical coordinate frame, where the world coordinate frame may be the world coordinate frame of the previous session (e.g., origin 1 of map 1 in fig. 40). The transformation from the world coordinate frame to the head coordinate frame 96 has been previously discussed with reference to fig. 9. The head coordinate frame 96 shown in fig. 52 has only two orthogonal axes that are in a particular coordinate position relative to the PCF of fig. 2, and at a particular angle relative to fig. 2. It should be understood, however, that the head coordinate frame 96 is located in three dimensions relative to the PCF of FIG. 2, and has three orthogonal axes in three dimensional space.
In fig. 53, the head coordinate frame 96 has moved relative to the PCF of fig. 2. Since the second user 14.2 has moved his head, the head coordinate frame 96 has moved. The user can move his head in six degrees of freedom (6 dof). The head coordinate frame 96 can thus be moved in 6dof (i.e., in three dimensions from its previous position in fig. 52, and about three orthogonal axes with respect to the PCF of fig. 2). The head coordinate frame 96 is adjusted when the real object detection camera 44 and the inertial measurement unit 48 in fig. 9 detect the real object and the motion of the head unit 22, respectively. More information regarding head Pose tracking is disclosed in U.S. patent application serial No. 16/221,065 entitled Enhanced position Determination for Display Device, and is incorporated herein by reference in its entirety.
Fig. 54 illustrates that sound may be associated with one or more PCFs. The user may for example wear a headset or an earphone with stereo sound. The sound location through the headset can be simulated using conventional techniques. The position of the sound may be located at a fixed position such that when the user rotates his head to the left, the position of the sound rotates to the right, such that the user perceives the sound from the same location in the real world. In this example, the location of the sound is represented by sound 123 and sound 456. For ease of discussion, fig. 54 is similar in analysis to fig. 48. When the first user 14.1 and the second user 14.2 are located in the same room at the same or different times, they perceive that sound 123 and sound 456 come from the same location in the real world.
Fig. 55 and 56 illustrate another implementation of the above-described technique. As described with reference to fig. 8, the first user 14.1 has initiated the first session. As shown in fig. 55, the first user 14.1 has terminated the first session, as indicated by the dashed line. At the end of the first session, the first XR device 12.1 uploads map 1 to the server 20. The first user 14.1 has now initiated the second session at a later time than the first session. Since map 1 is already stored on the first XR device 12.1, the first XR device 12.1 does not download map 1 from the server 20. If map 1 is lost, the first XR device 12.1 downloads map 1 from the server 20. The first XR device 12.1 then proceeds to build the PCF of map 2, locate map 1, and further develop the specification map as described above. Map 2 of the first XR device 12.1 is then used to associate local content, head coordinate frame, local sound, etc. as described above.
Referring to fig. 57 and 58, it is also possible that more than one user interacts with the server in the same session. In this example, the first user 14.1 and the second user 14.2 are joined together by a third user 14.3 and a third XR device 12.3. Each XR device 12.1, 12.2 and 12.3 starts generating its own map, map 1, map 2 and map 3 respectively. As XR devices 12.1, 12.2 and 12.3 continue to develop maps 1, 2 and 3, the maps are incrementally uploaded to server 20. Server 20 merges maps 1, 2 and 3 to form a canonical map. The specification map is then sent from server 20 to each of XR devices 12.1, 12.2 and 12.3.
FIG. 59 illustrates aspects of a viewing method for restoring and/or resetting head pose, according to some embodiments. In the example shown, at act 1400, the viewing device is powered on. At act 1410, in response to power on, a new session is initiated. In some embodiments, the new session may include establishing a head gesture. One or more capture devices on a head-mounted frame secured to a user's head capture a surface of an environment by first capturing an image of the environment and then determining the surface from the image. In some embodiments, the surface data may be combined with data from gravity sensors to establish head pose. Other suitable methods of establishing head pose may be used.
At act 1420, the processor of the viewing device inputs a routine for tracking head gestures. The capture device continues to capture the surface of the environment as the user moves their head to determine the orientation of the head-mounted frame relative to the surface.
At act 1430, the processor determines whether a head pose has been lost. Head gestures may be lost due to "edge" conditions, such as excessive reflective surfaces, dim light, blank walls, outdoors, etc. that may result in low feature acquisition; or lost due to dynamic conditions such as movement and people forming part of the map. The routine at 1430 allows a certain amount of time, such as 10 seconds, to elapse to allow sufficient time to determine whether the head pose has been lost. If the head pose has not been lost, the processor returns to 1420 and reenters tracking of the head pose.
If the head pose has been lost at act 1430, the processor enters a routine at 1440 to recover the head pose. If the head pose is lost due to weak light, a message such as the following will be displayed to the user by viewing the display of the device:
the system is detecting low light conditions. Please move to a more lighted area.
The system will continue to monitor whether sufficient light is available and whether head pose can be restored. The system may alternatively determine that low texture of the surface is causing the head pose to be lost, in which case the user is given the following prompts in the display as suggestions to improve the surface capture:
the system cannot detect enough surfaces with fine texture. Please move to areas with less rough surface texture and finer texture.
At act 1450, the processor enters a routine to determine whether head pose recovery has failed. If the head pose recovery has not failed (i.e., the head pose recovery has been successful), the processor returns to act 1420 by again entering tracking of the head pose. If the head pose recovery has failed, the processor returns to act 1410 to establish a new session. As part of the new session, all cached data is invalidated, after which the head pose is re-established. Any suitable head tracking method may be used in conjunction with the process described in fig. 59. U.S. patent application No. 16/221,065 describes head tracking and is hereby incorporated by reference in its entirety.
Fig. 60 shows a schematic diagram of a machine in the exemplary form of a computer system 1900 within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, may be executed, according to some embodiments. In alternative embodiments, the machine operates as a standalone device or may be connected (e.g., networked) to other machines. Further, while only a single machine is illustrated, the term "machine" shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
The exemplary computer system 1900 includes a processor 1902 (e.g., a Central Processing Unit (CPU), a Graphics Processing Unit (GPU), or both), a main memory 1904 (e.g., Read Only Memory (ROM), flash memory, Dynamic Random Access Memory (DRAM) such as synchronous DRAM (sdram) or Rambus DRAM (RDRAM)), and static memory 1906 (e.g., flash memory, Static Random Access Memory (SRAM), etc.) in communication with each other via a bus 1908.
The computer system 1900 may further include a disk drive unit 1916 and a network interface device 1920.
The disk drive unit 1916 includes a machine-readable medium 1922 on which is stored one or more sets of instructions 1924 (e.g., software) embodying any one or more of the methodologies or functions described herein. The software may also reside, completely or at least partially, within the main memory 1904 and/or within the processor 1902 during execution thereof by the computer system 1900, the main memory 1904 and the processor 1902 also constituting machine-readable media.
The software may also be transmitted or received over a network 18 via the network interface device 1920.
While the machine-readable medium 1922 is shown in an exemplary embodiment to be a single medium, the term "machine-readable medium" should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term "machine-readable medium" shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present invention. The term "machine-readable medium" shall accordingly be taken to include, but not be limited to, solid-state memories, optical and magnetic media, and carrier wave signals.
Having thus described several aspects of certain embodiments, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art.
As one example, embodiments are described in connection with an enhanced (AR) environment. It should be understood that some or all of the techniques described herein may be applied in an MR environment or, more generally, in other XR environments and VR environments.
As another example, embodiments are described in connection with a device, such as a wearable device. It should be understood that some or all of the techniques described herein may be implemented via a network (such as the cloud), a discrete application, and/or any suitable combination of devices, networks, and discrete applications.
Further, fig. 29 provides an example of criteria that may be used to filter candidate maps to produce a set of highly ranked maps. Other criteria may be used instead of or in addition to the described criteria. For example, if multiple candidate maps have similar values for the metric used to filter out less than ideal maps, the characteristics of the candidate maps may be used to determine which maps are retained as candidate maps or filtered out. For example, larger or denser candidate maps may be prioritized over smaller candidate maps.
Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the disclosure. Moreover, while advantages of the disclosure are indicated, it is to be understood that not every embodiment of the disclosure will include every described advantage. In some cases, some embodiments may not implement any features described as advantageous herein. Accordingly, the foregoing description and drawings are by way of example only.
Some embodiments relate to a portable electronic system including a sensor configured to capture information about a three-dimensional (3D) environment and output images, wherein each image includes a plurality of pixels; at least one processor configured to execute computer-executable instructions to process the image output by the sensor. The computer-executable instructions include instructions for: receiving a plurality of images captured by a sensor; for at least a subset of the plurality of images: identifying one or more features in the plurality of pixels for each image in the subset of images, wherein each feature corresponds to one or more pixels; calculating a feature descriptor for each of the one or more features; and for each image in the subset of images, computing a frame descriptor representing the image based at least in part on the computed feature descriptors in the image.
In some embodiments, the sensor includes at least one million pixel circuits. The frame descriptor for each of the plurality of images includes 512 or fewer numbers.
In some embodiments, the computer-executable instructions comprise further instructions for: constructing a map of at least a portion of the 3D environment; and associating the feature descriptors for the respective frames with portions of the map generated at least in part from the respective frames.
In some embodiments, the computer-executable instructions include instructions for: one or more keyframes are selected from the plurality of images as a subset of the plurality of images based at least in part on a position of the image relative to the 3D environment and a position of a plurality of pixels in the plurality of images.
In some embodiments, the computer-executable instructions include instructions for: for a keyframe of the one or more keyframes, identifying one or more frames associated with a map of the 3D environment having a frame descriptor that is less than a threshold distance from a frame descriptor of the keyframe.
In some embodiments, the computer-executable instructions for computing the frame descriptor comprise an artificial neural network.
In some embodiments, the artificial neural network comprises: a multi-layered perceptron unit trained on similar and dissimilar images and configured to receive as input a plurality of values representing features in the images and to provide as output a weighted combination of the plurality of values representing the features; and a max pooling unit configured to select a subset of the outputs of the multi-layer perceptron unit as the frame descriptor.
Some embodiments relate to a method of operating a computing system to generate a map of at least a portion of a three-dimensional (3D) environment based on sensor data collected by a device worn by a user. The method comprises the following steps: receiving a plurality of images captured by a device worn by a user; determining one or more keyframes from the plurality of images; identifying one or more points of interest in the one or more keyframes using a first artificial neural network; calculating feature descriptors of the attention points by using a first artificial neural network; and for each of the one or more keyframes, computing, with the second artificial neural network, a frame descriptor representing the keyframe based at least in part on the computed feature descriptors for the points of interest identified in the keyframe.
In some embodiments, the first artificial neural network and the second artificial neural network are subnetworks of an artificial neural network.
In some embodiments, the frame descriptor is unique for each key frame.
In some embodiments, each of the one or more key frames has a resolution of greater than 1 megabyte. The frame descriptor for each of the one or more key frames is a string of fewer than 512 digits.
In some embodiments, each feature descriptor is a 32 byte string.
In some embodiments, the frame descriptors are generated by maximizing pooling of feature descriptors.
In some embodiments, the method comprises: receiving a new image captured by a device worn by a user; and identifying one or more recent keyframes in a database comprising keyframes used to generate the map, the one or more recent keyframes having frame descriptors within a predetermined distance of the frame descriptors of the new images.
In some embodiments, the method comprises: performing feature matching for the 3D map points of the map corresponding to the identified one or more recent keyframes; and calculating a posture of the device worn by the user based on the feature matching result.
In some embodiments, determining one or more keyframes from the plurality of images includes comparing pixels of a first image to pixels of a second image taken immediately after the first image and identifying the second image as a keyframe when a difference between the pixels of the first image and the pixels of the second image is above or below a threshold.
In some embodiments, the method includes training the second artificial neural network by: generating a data set comprising a plurality of image sets, wherein each image set of the plurality of image sets comprises a query image, a positive sample image, and a negative sample image; calculating, for each of a plurality of image sets in the data set, a loss by comparing the query image to the positive and negative sample images; and modifying the second artificial neural network based on the calculated loss such that a distance between the frame descriptors generated by the second artificial neural network for the query image and the frame descriptors for the positive sample images is greater than a distance between the frame descriptors for the query image and the frame descriptors for the negative sample images.
Some embodiments relate to a computing environment for a cross-reality system. The computing environment includes a database storing a plurality of maps. Each map contains information representing an area of the 3D environment. The information representing each region includes a frame descriptor representing an image of the region; and a non-transitory computer storage medium storing computer-executable instructions that, when executed by at least one processor in a computing environment: processing an image captured by a portable device by identifying a plurality of features in the image; computing a feature descriptor for each feature of the plurality of features; computing a frame descriptor representing the image based at least in part on the computed feature descriptors for the one or more identified points of interest in the image; a map is selected in the database based on a comparison between the calculated frame descriptors and frame descriptors stored in the map database.
In some embodiments, the frame descriptor is unique to a frame stored in the database.
In some embodiments, the image has a resolution of greater than 1 megabyte. The calculated frame descriptor representing the image is a character string of less than 512 digits.
In some embodiments, the computer-executable instructions comprise an artificial neural network trained by: processing a data set comprising a plurality of image sets, wherein each image set in the plurality of image sets comprises a query image, a positive sample image, and a negative sample image; calculating a loss of an image set of the plurality of image sets in the data set by comparing the query image to the positive and negative sample images; modifying the artificial neural network based on the calculated loss such that a distance between the frame descriptors generated by the artificial neural network for the query image and the frame descriptors for the positive sample images is less than a distance between the frame descriptors for the query image and the frame descriptors for the negative sample images.
In some embodiments, modifying the artificial neural network includes modifying a copy of the artificial neural network on a portable device in the computing environment.
In some embodiments, a computing environment includes a cloud platform and a plurality of portable devices in communication with the cloud platform. The cloud platform includes a database and computer-executable instructions for selecting a map. Computer-executable instructions for processing images captured by a portable device are stored on the portable device.
Some embodiments relate to an XR system including a first XR device including a first processor, a first computer readable medium coupled to the first processor, a first origin coordinate frame stored on the first computer readable medium, a first destination coordinate frame stored on the computer readable medium, a first data channel for receiving data representing local content, a first coordinate frame transformer executable by the first processor to transform a position of the local content from the first origin coordinate frame to the first destination coordinate frame, and a first display system adapted to display the local content to a first user after transforming the position of the local content from the first origin coordinate frame to the first destination coordinate frame.
Some embodiments relate to a viewing method, comprising: storing a first origin coordinate frame; storing a first destination coordinate frame; receiving data representing local content; transforming the location of the local content from a first origin coordinate frame to a first destination coordinate frame; and displaying the local content to the first user after transforming the location of the local content from the first origin coordinate frame to the first destination coordinate frame.
Some embodiments relate to an XR system, comprising: a map storage routine that stores a first map, the first map being a canonical map having a plurality of Persistent Coordinate Frames (PCFs), each PCF of the first map having a set of coordinates; a real object detection device positioned to detect a position of a real object; a PCF identification system connected to the real object detection device to detect PCFs of a second map based on the location of the real object, each PCF of the second map having a set of coordinates; and a location module connected to the canonical map and the second map and executable to locate the second map to the canonical map by matching the first PCF of the second map with the first PCF of the canonical map and matching the second PCF of the second map with the second PCF of the canonical map.
In some embodiments, the real object detection device is a real object detection camera.
In some embodiments, the XR system further comprises: a canonical map merger connected to the canonical map and the second map and executable to merge a third PCF of the canonical map into the second map.
In some embodiments, the XR system further comprises: an XR device, comprising: a head unit, comprising: a head-mounted frame, wherein the real object detection device is mounted to the head-mounted frame; a data channel that receives image data of local content; a local content positioning system connected to the data channel and executable to associate the local content with an anchor point of the canonical map; and a display system connected to the local content location system to display the local content.
In some embodiments, the XR system further comprises: a local-to-world coordinate transformer that transforms a local coordinate frame of the local content to a world coordinate frame of the second map.
In some embodiments, the XR system further comprises: a first world frame determination routine that calculates a first world coordinate frame based on the PCF of the second map; a first world frame store instruction that stores the world coordinate frame; a head frame determination routine that calculates a head coordinate frame that changes with movement of the head-mounted frame; a head frame storage instruction that stores the first head coordinate frame; and a world-to-head coordinate transformer that transforms the world coordinate frame to the head coordinate frame.
In some embodiments, the head coordinate frame changes relative to the world coordinate frame as the head-mounted frame moves.
In some embodiments, the XR system further comprises: at least one sound element associated with at least one PCF of the second map.
In some embodiments, the first map and the second map are created by the XR device.
In some embodiments, the XR system further comprises: a first XR device and a second XR device. Each XR device includes: a head unit, comprising: a head-mounted frame, wherein the real object detection device is mounted to the head-mounted frame; a data channel that receives image data of local content; a local content location system connected to the data channel and executable to associate the local content with a PCF of the canonical map; and a display system connected to the local content location system to display the local content.
In some embodiments, the first XR device creates a PCF of the first map and the second XR device creates a PCF of the second map, and the location module forms part of the second XR device.
In some embodiments, the first map and the second map are created in a first session and a second session, respectively.
In some embodiments, the XR system further comprises: a server; and a map download system forming part of the XR device, downloading the first map from a server over a network.
In some embodiments, the location module repeatedly attempts to locate the second map to the canonical map.
In some embodiments, the XR system further comprises: a map publisher that uploads the second map to the server over the network.
Some embodiments relate to a viewing method comprising: storing a first map, the first map being a specification map having a plurality of PCFs, each PCF of the specification map having a set of coordinates; detecting a position of a real object; detecting PCFs of a second map based on the locations of the real objects, each PCF of the second map having a set of coordinates; and locating the second map to the canonical map by matching the first PCF of the second map with the first PCF of the first map and matching the second PCF of the second map with the second PCF of the canonical map.
Some embodiments relate to an XR system, comprising: a server, which may have: a processor; a computer readable medium connected to the processor; a plurality of specification maps on the computer readable medium; a respective canonical map identifier on the computer-readable medium associated with each respective canonical map, the canonical map identifiers being different from each other to uniquely identify the canonical map; a location detector on the computer readable medium and executable by the processor to receive and store a location identifier from an XR device; a first filter located on the computer readable medium and executable by the processor to compare the location identifier with the canonical map identifier to determine one or more canonical maps forming a first filtered selection; and a map transmitter on the computer readable medium and executable by the processor to transmit one or more of the specification maps to the XR device based on the first filtered selection.
In some embodiments, the canonical map identifiers each include a longitude and latitude, and the location identifiers include a longitude and latitude.
In some embodiments, the first filter is a neighborhood region filter that selects at least one matching canonical map covering a longitude and latitude including the longitude and latitude of the location identifier and at least one neighboring map adjacent to the first matching canonical map covering a longitude and latitude.
In some embodiments, the location identifier comprises a WiFi fingerprint. The XR system further comprises: a second filter that is a WiFi fingerprint filter, the WiFi fingerprint filter located on the computer-readable medium and executable by the processor to: determining a latitude and a longitude based on the WiFi fingerprint; comparing the latitude and longitude from the WiFi fingerprint filter to the latitude and longitude of the canonical map to determine one or more canonical maps that form a second filtered selection within the first filtered selection, the map transmitter to transmit one or more canonical maps that are based on the second selection rather than the canonical map of the first selection outside of the second selection.
In some embodiments, the first filter is a WiFi fingerprint filter located on the computer readable medium and executable by the processor to: determining a latitude and a longitude based on the WiFi fingerprint; comparing the latitude and longitude from the WiFi fingerprint filter to the latitude and longitude of the canonical map to determine one or more canonical maps forming the first filtered selection.
In some embodiments, the XR system further comprises: a multi-layered perception unit on the computer readable medium and executable by the processor that receives a plurality of features of an image and converts each feature into a corresponding string of numeric characters; a max pooling unit on the computer readable medium and executable by the processor that combines the maxima of each numeric string into a global feature string representing the image, wherein each canonical map has at least one of the global feature strings, and the location identifier received from the XR device includes features of the image captured by the XR device that are processed by the multi-layer perception unit and the max pooling unit to determine a global feature string for the image; and a keyframe filter that compares the global feature string of the image with the global feature string of the canonical map to determine one or more canonical maps that form a third filtered selection within the second filtered selection, the map transmitter to transmit one or more canonical maps that are based on the third selection but not the second selection other than the third selection.
In some embodiments, the XR system further comprises: a multi-layered perception unit on the computer readable medium and executable by the processor that receives a plurality of features of an image and converts each feature into a corresponding string of numeric characters; a max pooling unit on the computer readable medium and executable by the processor that combines the maxima of each numeric string into a global feature string representing the image, wherein each canonical map has at least one of the global feature strings, and the location identifier received from the XR device includes features of the image captured by the XR device that are processed by the multi-layer perception unit and the max pooling unit to determine a global feature string for the image; and wherein the first filter is a key frame filter that compares the global feature string of the image to the global feature string of the canonical map to determine one or more canonical maps.
In some embodiments, the XR system further comprises: an XR device, comprising: a head unit, comprising: a head-mounted frame, wherein the real object detection device is mounted to the head-mounted frame; a data channel that receives image data of local content; a local content location system connected to the data channel and executable to associate the local content with a PCF of the canonical map; and a display system connected to the local content location system to display the local content.
In some embodiments, the XR device comprises: a map storage routine that stores a first map, the first map being a canonical map having a plurality of PCFs, each PCF of the first map having a set of coordinates; a real object detection device positioned to detect a position of a real object; a PCF identification system connected to the real object detection device to detect PCFs of a second map based on the location of the real object, each PCF of the second map having a set of coordinates; and a location module connected to the canonical map and the second map and executable to locate the second map to the canonical map by matching a first PCF of the second map with a first PCF of the canonical map and matching a second PCF of the second map with a second PCF of the canonical map.
In some embodiments, the real object detection device is a real object detection camera.
In some embodiments, the XR system further comprises: a canonical map merger connected to the canonical map and the second map and executable to merge a third PCF of the canonical map into the second map.
Some embodiments relate to a viewing method comprising: storing a plurality of specification maps on a computer-readable medium, each specification map having a respective specification map associated therewith, the specification map identifiers being different from one another to uniquely identify the specification map; receiving and storing, with a processor coupled to the computer-readable medium, a location identifier from an XR device; comparing, with the processor, the location identifier with the canonical map identifier to determine one or more canonical maps that form a first filtered selection; and sending, with the processor, a plurality of the specification maps to the XR device based on the selection of the first filter.
Some embodiments relate to an XR system, comprising: a processor; a computer readable medium connected to the processor; a multi-layered perception unit on the computer readable medium and executable by the processor that receives a plurality of features of an image and converts each feature into a corresponding string of numeric characters; and a max pooling unit on the computer readable medium and executable by the processor that combines the maximum values of each numeric string into a global feature string representing the image.
In some embodiments, the XR system comprises: a plurality of canonical maps on the computer-readable medium, each canonical map having at least one of the global feature strings associated therewith; a position detector on the computer readable medium and executable by the processor that receives from an XR device features of an image captured by the XR device, the features processed by the multi-layer perception unit and the max-pooling unit to determine a global feature string of the image; a keyframe filter that compares the global feature string of the image to the global feature string of the canonical map to determine one or more canonical maps that form a selected portion of the filtering; and a map transmitter located on the computer readable medium and executable by the processor to transmit one or more of the specification maps to the XR device based on the filtered selection.
In some embodiments, the XR system comprises: an XR device, comprising: a head unit, comprising: a head-mounted frame, wherein the real object detection device is mounted to the head-mounted frame; a data channel that receives image data of local content; a local content location system connected to the data channel and executable to associate the local content with a PCF of the canonical map; and a display system connected to the local content location system to display the local content.
In some embodiments, the XR system comprises: an XR device, comprising: a head unit, comprising: a head-mounted frame, wherein the real object detection device is mounted to the head-mounted frame; a data channel that receives image data of local content; a local content location system connected to the data channel and executable to associate the local content with a PCF of the canonical map; and a display system connected to the local content positioning system to display the local content, wherein the matching is performed by matching the global feature string of the second map with the global feature string of the canonical map.
Some embodiments relate to a viewing method comprising: receiving, with a processor, a plurality of features of an image; converting, with the processor, each feature into a corresponding numeric string; and combining, with the processor, the maximum values of each numeric string into a global feature string representing the image.
Some embodiments relate to a method of operating a computing system to identify one or more environmental maps stored in a database for merging with a tracking map computed based on sensor data collected by a device worn by a user, wherein the device receives signals of access points of a computer network while computing the tracking map, the method comprising: determining at least one regional attribute of the tracking map based on a communication characteristic with the access point; determining a geographic location of the tracking map based on the at least one regional attribute; identifying a set of environmental maps stored in the database corresponding to the determined geographic location; filtering the set of environment maps based on a similarity of one or more identifiers of network access points associated with the tracking map and the environment maps of the set of environment maps; filtering the set of environmental maps based on similarity of metrics representing content of the tracking map and the environmental maps of the set of environmental maps; and filtering the set of environmental maps based on a degree of match between a portion of the tracking map and a portion of the environmental maps in the set of environmental maps.
In some embodiments, filtering the set of environment maps based on similarity of the one or more identifiers of the network access points comprises: retaining an environment map having a highest Jaccard similarity to the at least one region attribute of the tracking map in the set of environment maps based on the one or more identifiers of network access points.
In some embodiments, filtering the set of environmental maps based on similarity of metrics representative of content of the tracking map and the environmental maps of the set of environmental maps comprises: retaining in the set of environment maps an environment map having a minimum vector distance between the feature vector of the tracking map and a vector representing an environment map of the set of environment maps.
In some embodiments, the metric representing the content of the tracking map and the environment map comprises a vector of values calculated from the content of the map.
In some embodiments, filtering the set of environmental maps based on a degree of match between a portion of the tracking map and a portion of the environmental maps of the set of environmental maps comprises: calculating a volume of the physical world represented by the tracking map, the tracking map also represented in an environment map of the set of environment maps; and retaining in the set of environment maps an environment map having a larger computational volume than the environment map filtered from the set of environment maps.
In some embodiments, the set of environmental maps is filtered by: first based on the similarity of the one or more identifiers; subsequently based on the similarity of the metrics representing content; and then based on the degree of match between a portion of the tracking map and a portion of the environment map.
In some embodiments, filtering the set of environmental maps based on the similarity of the one or more identifiers comprises: filtering the set of environmental maps based on the similarity of the metrics representing content; and performing the degree of matching between a portion of the tracking map and a portion of the environment map in an order based on processing required to perform the filtering.
In some embodiments, an environment map is selected based on the filtering of the set of environment maps based on: the similarity of the metrics representing content; the degree of matching between a portion of the tracking map and a portion of the environment map is performed in an order based on processing required to perform the filtering, and information is loaded from the selected map onto the user device.
In some embodiments, an environment map is selected based on the filtering of the set of environment maps based on: the similarity of the one or more identifiers; the similarity of the metrics representing content; and the degree of match between a portion of the tracking map and a portion of the environment map, and the tracking map is merged with the selected environment map.
Some embodiments relate to a cloud computing environment for an augmented reality system configured to communicate with a plurality of user devices including sensors, the cloud computing environment comprising: a user database storing an area identity indicating an area in which the plurality of user equipment is used, the area identity comprising parameters of a wireless network detected in use by the user equipment; a map database storing a plurality of environment maps constructed from data provided by the plurality of user devices and associated metadata, the associated metadata including area identifications derived from area identifications of the plurality of user devices providing data from which the maps are constructed, the area identifications including parameters of wireless networks detected by the user devices providing data from which the maps are constructed; a non-transitory computer storage medium storing computer-executable instructions that, when executed by at least one processor in the cloud computing environment: receiving messages from the plurality of user devices including parameters of wireless networks detected by the user devices, calculating area identifiers for the user devices, and updating the user database based on the received parameters and/or the calculated area identifiers; and receiving requests for environment maps from the plurality of user devices, determining an area identifier associated with the user device requesting an environment map, identifying a plurality of sets of environment maps from the map database based at least in part on the area identifier, filtering the plurality of sets of environment maps, and sending the filtered plurality of sets of environment maps to the user device, wherein filtering a set of environment maps is based on a similarity of parameters of wireless networks detected by a user device from which the request for environment maps originated to parameters of wireless networks in the map database for the environment maps in the set of environment maps.
In some embodiments, the computer-executable instructions are further configured to, when executed by at least one processor in the cloud computing environment, receive a tracking map from a user device requesting an environment map; and filtering a set of environment maps is further based on similarity of metrics representing content of the tracking map and the environment maps of the set of environment maps.
In some embodiments, the computer-executable instructions are further configured to, when executed by at least one processor in the cloud computing environment, receive a tracking map from a user device requesting an environment map; and filtering a set of environment maps is further based on a degree of match between a portion of the tracking map and a portion of the environment maps in the set of environment maps.
In some embodiments, the parameters of the wireless network comprise a Basic Service Set Identifier (BSSID) of a network to which the user equipment is connected.
In some embodiments, filtering the set of environmental maps based on similarity of parameters of the wireless network comprises: calculating similarities of a plurality of BSSIDs stored in the user database associated with the user device requesting the environment map to BSSIDs stored in the map database associated with an environment map of the set of environment maps.
In some embodiments, the area identifier indicates a geographic location by longitude and latitude.
In some embodiments, determining the area identifier comprises accessing the area identifier from the user database.
In some embodiments, determining the area identifier comprises receiving the area identifier in messages received from the plurality of user devices.
In some embodiments, the parameters of the wireless network conform to a protocol including Wi-Fi and 5G NR.
In some embodiments, the computer-executable instructions are further configured to, when executed by at least one processor in the cloud computing environment, receive a tracking map from a user device; and filtering the set of environment maps is further based on a degree of match between a portion of the tracking map and a portion of the environment maps of the set of environment maps.
In some embodiments, the computer-executable instructions are further configured to, when executed by at least one processor in the cloud computing environment: receiving a tracking map from a user device and determining a region identifier associated with the tracking map based on the user device providing the tracking map; selecting a second set of environmental maps from the map database based at least in part on the region identifier associated with the tracking map; and updating the map database based on the received tracking map, wherein the updating includes merging the received tracking map with one or more environmental maps of the second set of environmental maps.
In some embodiments, the computer-executable instructions are further configured to, when executed by at least one processor in the cloud computing environment, filter the second set of environment maps based on a degree to which a portion of the received tracking map matches a portion of the environment maps in the second set of environment maps; and merging the tracking map with one or more environmental maps of the second set of environmental maps comprises: merging the tracking map with one or more environmental maps of the filtered second set of environmental maps.
Some embodiments relate to an XR system, comprising: a real object detection device that detects a plurality of surfaces of a real world object; a PCF recognition system connected to the real-object detection device to generate a map based on the real-world object; a Persistent Coordinate Frame (PCF) generation system that generates a first PCF based on the map and associates the first PCF with the map; first and second storage media on first and second XR devices, respectively; and at least first and second processors of the first and second XR devices to store the first PCF in first and second storage media of the first and second XR devices, respectively.
In some embodiments, a keyframe generator executable by the at least one processor to transform a plurality of camera images into a plurality of corresponding keyframes; a persistent gesture calculator executable by the at least one processor to generate a persistent gesture by averaging the plurality of keyframes; a tracking map and a persistent pose transformer executable by the at least one processor to transform a tracking map to the persistent pose to determine the persistent pose at an origin relative to the tracking map; a persistent gesture and a PCF transformer executable by the at least one processor to transform the persistent gesture to the first PCF to determine the first PCF relative to the persistent gesture; a PCF and an image data transformer executable by the at least one processor to transform the first PCF to image data; and a display device that displays the image data associated with the first PCF to the user.
In some embodiments, the detection device is a detection device of the first XR device coupled to the first XR device processor.
In some embodiments, the map is a first map on the first XR device, and the processor that generates the first map is the first XR device processor of the first XR device.
In some embodiments, the processor that generates the first PCF is the first XR device processor of the first XR device.
In some embodiments, the processor that associates the first PCF with the first map is the first XR device processor of the first XR device.
In some embodiments, the XR system comprises: an application executable by the first XR device processor; a first PCF tracker executable by the first XR device processor and comprising an open prompt from the application to open the first PCF tracker, wherein the first PCF tracker generates the first PCF only when the first PCF tracker is open.
In some embodiments, the first PCF tracker has a shutdown prompt to shut down the first PCF tracker from the application, wherein the first PCF tracker terminates first PCF generation when the first PCF tracker is shut down.
In some embodiments, the XR system comprises: a map publisher executable by the first XR device processor to send the first PCF to a server; a map storage routine executable by a server processor of the server to store the first PCF on a storage device of the server; and sending, with the server processor of the server, the first PCF to the second XR device; and a map download system executable by a second XR device processor of the second XR device to download the first PCF from the server.
In some embodiments, the XR system comprises: an application executable by the second XR device processor; and a second PCF tracker executable by the second XR device processor and comprising an open prompt from the application to open the second PCF tracker, wherein the second PCF tracker generates a second PCF only when the second PCF tracker is open.
In some embodiments, the second PCF tracker has a shutdown prompt to shut down the second PCF tracker from the application, wherein the second PCF tracker terminates second PCF generation when the second PCF tracker is shut down.
In some embodiments, the XR system comprises: a map publisher executable by the second XR device processor to send the second PCF to the server.
In some embodiments, the XR system comprises: a persistent gesture fetcher executable by the first XR device processor to download persistent gestures from the server; a PCF checker executable by the first XR device processor to retrieve a PCF from a first storage device of the first XR device based on the persistent gesture; and a coordinate frame calculator executable by the first XR device processor to calculate a coordinate frame based on the PCF retrieved from the first storage device.
Some embodiments relate to a viewing method comprising: detecting a plurality of surfaces of a real-world object with at least one detection device; generating, with at least one processor, a map based on the real-world object; generating, with at least one processor, a first PCF based on the map; associating, with the at least one processor, the first PCF with the map; and storing the first PCF in a first storage medium of the first XR device and a second storage medium of the second XR device, respectively, using at least a first processor of the first XR device and a second processor of the second XR device.
In some embodiments, the viewing method comprises: transforming, with the at least one processor, a plurality of camera images into a plurality of respective keyframes; generating, with the at least one processor, a persistent gesture by averaging the plurality of keyframes; transforming, with the at least one processor, a tracking map into the persistent pose to determine the persistent pose at an origin relative to the tracking map; transforming, by the at least one processor, the persistent gesture to the first PCF to determine the first PCF relative to the persistent gesture; transforming, with the at least one processor, the first PCF into image data; and displaying, with a display device, the image data associated with the first PCF to the user.
In some embodiments, the detection device is a detection device of the first XR device coupled to the first XR device processor.
In some embodiments, the map is a first map on the first XR device, and the processor that generates the first map is the first XR device processor of the first XR device.
In some embodiments, the processor that generates the first PCF is the first XR device processor of the first XR device.
In some embodiments, the processor that associates the first PCF with the first map is the first XR device processor of the first XR device.
In some embodiments, the viewing method comprises: executing an application with the first XR device processor; and opening a first PCF tracker with an open prompt from the application with the first XR device processor, wherein the first PCF tracker generates the first PCF only when the first PCF tracker is opened.
In some embodiments, the viewing method comprises: and shutting down the first PCF tracker with the first XR device processor according to a shut-down prompt from the application, wherein the first PCF tracker terminates first PCF generation only when the first PCF tracker is shut down.
In some embodiments, the viewing method comprises: sending, with the first XR device processor, the first PCF to a server; storing, with a server processor of the server, the first PCF on a storage device of the server; and sending, with the server processor of the server, the first PCF to the second XR device; and receiving, with a second XR device processor of the second XR device, the first PCF from the server.
In some embodiments, the viewing method comprises: executing an application with the second XR device processor; and opening a second PCF tracker with the open prompt from the application with the second XR device processor, wherein the second PCF tracker generates a second PCF only when the second PCF tracker is opened.
In some embodiments, the viewing method comprises: employing the first XR device processor to shut down the second PCF tracker with a shut down prompt for the application, wherein the second PCF tracker terminates second PCF generation only when the second PCF tracker is shut down.
In some embodiments, the viewing method comprises: uploading, with the second XR device processor, the second PCF to the server.
In some embodiments, the viewing method comprises: determining, with the first XR device processor, a persistent gesture from the server; retrieving, with the first XR device processor, a PCF based on the persistent gesture from a first storage device of the first XR device; and calculating, with the first XR device processor, a coordinate frame based on the PCF retrieved from the first storage device.
Some embodiments relate to an XR system, comprising: a first XR device, which may comprise: a first XR device processor; a first XR device storage device coupled to the first XR device processor; a set of instructions on the first XR device processor comprising: a download system executable by the first XR device processor to download a persistent gesture from a server; a PCF retriever executable by the first XR device processor to retrieve a PCF based on the persistent posture from the first storage device of the first XR device; and a coordinate frame calculator executable by the first XR device processor to calculate a coordinate frame based on the PCF retrieved from the first storage device.
Some embodiments relate to a viewing method comprising: downloading, with a first XR device processor of a first XR device, a persistent gesture from a server; retrieving, with the first XR device processor, a PCF based on the persistent gesture from the first storage device of the first XR device; and calculating, with the first XR device processor, a coordinate frame based on the PCF retrieved from the first storage device.
Some embodiments relate to an XR device comprising: a server, which may include: a server processor; a server storage device connected to the server processor; a map storage routine executable with a server processor of the server to store a first PCF associated with a map on the server storage of the server; and a map transmitter, employing the server processor, executable by the server processor to transmit the map and the first PCF to the first XR device.
Some embodiments relate to a viewing method comprising: storing, with a server processor of a server, a first PCF associated with a map on a server storage of the server; and sending, with the server processor of the server, the map and the first PCF to a first XR device.
Some embodiments relate to a viewing method comprising: entering, by a processor of an XR device, tracking of head pose by capturing an environment with a capture device on a headset secured to a user's head and determining an orientation of the headset; determining, by the processor, whether a head pose is lost due to an inability to determine the orientation of the head-mounted frame; and if a head pose is lost, entering, by the processor, a pose recovery mode to establish the head pose by determining an orientation of the head-mounted frame.
In some embodiments, if the head pose is not lost, then tracking of the head pose is entered by the processor.
In some embodiments, gesture recovery comprises: displaying, by the processor, a message with suggestions to the user to improve capture of an environment.
In some embodiments, the suggestion is at least one of adding light and refining the texture.
In some embodiments, the viewing method comprises: determining, by the processor, whether recovery failed; and if recovery fails, starting, by the processor, a new session including establishing a head pose.
In some embodiments, the viewing method comprises: displaying, by a processor, a message to the user that a new session is to begin.
In some embodiments, the viewing method comprises: if the head pose is not lost, then tracking of the head pose is entered by the processor.
Some embodiments relate to a method of operating a computing system to render virtual objects in a scene that includes one or more physical objects. The method comprises the following steps: the method may include capturing a plurality of images about the scene from one or more sensors of a first device worn by a user, computing one or more persistent gestures based at least in part on the plurality of images, and generating a persistent coordinate frame based at least in part on the computed one or more persistent gestures, such that information of the plurality of images may be accessed at different times by one or more applications running on the first device and/or a second device via the persistent coordinate frame.
In some embodiments, computing the one or more persistent gestures based at least in part on the plurality of images comprises: the method may include extracting one or more features from each of the plurality of images, generating a descriptor for each of the one or more features, generating a keyframe for each of the plurality of images based at least in part on the descriptor, and generating the one or more persistent gestures based at least in part on the one or more keyframes.
In some embodiments, generating the persistent coordinate frame based at least in part on the calculated one or more persistent gestures comprises: generating the persistent coordinate frame when the first device travels a predetermined distance from a location of a previous persistent coordinate frame.
In some embodiments, the predetermined distance is between two and twenty meters and is based on both consumption of computing resources of the device and placement error of the virtual object.
In some embodiments, the method comprises: the method includes generating an initial persistent gesture when the first device is powered on, and generating a first persistent gesture at a current location of the first device when the first device reaches a perimeter of a circle centered at the initial persistent gesture and having a radius equal to a threshold distance.
In some embodiments, the circle is a first circle. The method further includes, when the device reaches a perimeter of a second circle centered on the first persistent gesture and having a radius equal to the threshold distance, generating a second persistent gesture at a current location of the first device.
In some embodiments, the first persistent gesture is not generated when the first device finds an existing persistent gesture within the threshold distance from an initial persistent gesture.
In some embodiments, the first device attaches one or more of a plurality of keyframes that are within a predetermined distance from the first persistent gesture to the first persistent gesture.
In some embodiments, the first persistent gesture is not generated unless an application running on the first device requests a persistent gesture.
Some embodiments relate to an electronic system that is portable by a user. The electronic system includes: one or more sensors configured to capture images about one or more physical objects in a scene; an application configured to execute computer-executable instructions to render virtual content in the scene; and at least one processor configured to execute computer-executable instructions to provide image data regarding the virtual content to the application, wherein the computer-executable instructions comprise instructions to: a persistent coordinate frame is generated based at least in part on the captured image.
The above-described embodiments of the present disclosure may be implemented in any of numerous ways. For example, embodiments may be implemented using hardware, software, or a combination thereof. When implemented in software, the software code can be executed on any suitable processor or collection of processors, whether provided in a single computer or distributed among multiple computers. Such a processor may be implemented as an integrated circuit having one or more processors in an integrated circuit component, including commercially available integrated circuit components known in the art under the name such as a CPU chip, a GPU chip, a microprocessor, a microcontroller, or a coprocessor. In some embodiments, the processor may be implemented in a custom circuit (such as an ASIC) or in a semi-custom circuit created by configuring a programmable logic device. As another alternative, the processor may be part of a larger circuit or semiconductor device, whether commercially available, semi-custom, or custom. As a particular example, some commercially available microprocessors have multiple cores, such that one or a subset of the cores may make up the processor. However, a processor may be implemented using circuitry in any suitable format.
Further, it should be appreciated that a computer may be embodied in any of a number of forms, such as a rack-mounted computer, a desktop computer, a laptop computer, or a tablet computer. Additionally, a computer may be embedded in a device not normally considered a computer but with suitable processing capabilities, including a Personal Digital Assistant (PDA), smart phone, or any other suitable portable or fixed electronic device.
In addition, a computer may have one or more input and output devices. These devices may be used, inter alia, to present a user interface. Examples of output devices that can be used to provide a user interface include printers or display screens for visual presentation of output and speakers or other sound generating devices for audible presentation of output. Examples of input devices that may be used for the user interface include keyboards, and pointing devices, such as mice, touch pads, and digitizing tablets. As another example, a computer may receive input information through speech recognition or other audible format. In the illustrated embodiment, the input/output devices are shown as being physically separate from the computing device. However, in some embodiments, the input and/or output devices may be physically integrated into the same unit as the processor or other elements of the computing device. For example, the keyboard may be implemented as a soft keyboard on a touch screen. In some embodiments, the input/output device may be completely disconnected from the computing device and functionally integrated through a wireless connection.
Such computers may be interconnected by one or more networks in any suitable form, including as a local area network or a wide area network, such as an enterprise network or the Internet. Such networks may be based on any suitable technology and may operate according to any suitable protocol and may include wireless networks, wired networks, or fiber optic networks.
Further, the various methods or processes outlined herein may be coded as software that is executable on one or more processors that employ any one of a variety of operating systems or platforms. Additionally, such software may be written using any of a number of suitable programming languages and/or programming or scripting tools, and also may be compiled as executable machine language code or intermediate code that is executed on a framework or virtual machine.
In this regard, the disclosure may be embodied as a computer readable storage medium (or multiple computer readable media) (e.g., a computer memory, one or more floppy discs, Compact Discs (CD), optical discs, Digital Video Discs (DVD), magnetic tapes, flash memories, field programmable gate arrays or other semiconductor devices, or other circuit means in a tangible computer storage medium) encoded with one or more programs that, when executed on one or more computers or other processors, perform methods that implement the various embodiments of the disclosure discussed above. As is apparent from the foregoing examples, a computer-readable storage medium may retain information for a sufficient time to provide computer-executable instructions in a non-transitory form. Such one or more computer-readable storage media may be removable such that the program or programs stored thereon can be loaded onto one or more different computers or other processors to implement various aspects of the present disclosure as discussed above. As used herein, the term "computer-readable storage medium" encompasses only computer-readable media that can be considered an article of manufacture (i.e., an article of manufacture) or a machine. In some embodiments, the present disclosure may be embodied as a computer-readable medium other than a computer-readable storage medium, such as a propagated signal.
The terms "program" or "software" are used herein in a generic sense to refer to computer code or a set of computer-executable instructions that can be employed to program a computer or other processor to implement various aspects of the present disclosure as discussed above. In addition, it should be appreciated that according to one aspect of this embodiment, one or more computer programs that, when executed, perform methods of the present disclosure need not reside on a single computer or processor, but may be distributed in a modular fashion amongst a number of different computers or processors to implement various aspects of the present disclosure.
Computer-executable instructions may take many forms, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Typically, the functionality of the program modules may be combined or distributed as desired in various embodiments.
In addition, the data structures may be stored in any suitable form on a computer readable medium. For simplicity of illustration, the data structure may be shown with fields that are related by location in the data structure. Likewise, such relationships may be implemented by allocating storage for fields by their location in a computer-readable medium that conveys the relationship between the fields. However, any suitable mechanism may be used to establish a relationship between information in fields of a data structure, including through the use of pointers, tags, or other mechanisms that establish a relationship between data elements.
Various aspects of the present disclosure may be used alone, in combination, or in a variety of arrangements not specifically discussed in the embodiments described in the foregoing and is therefore not limited in its application to the details and arrangement of components set forth in the foregoing description or illustrated in the drawings. For example, aspects described in one embodiment may be combined in any manner with aspects described in other embodiments.
Further, the present disclosure may be embodied as a method, one example of which has been provided. The actions performed as part of the method may be ordered in any suitable way. Thus, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
Use of ordinal terms such as "first," "second," "third," etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements.
Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of "including," "comprising," or "having," "containing," "involving," and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
Claims (28)
1. An electronic system, comprising:
one or more sensors configured to capture information about a three-dimensional, 3D environment, the captured information including a plurality of images; and
at least one processor configured to execute computer-executable instructions to generate a map of at least a portion of the 3D environment based on the plurality of images, wherein the computer-executable instructions further comprise instructions to:
identifying a plurality of features in the plurality of images;
selecting a plurality of key frames from the plurality of images, the selecting based at least in part on the plurality of features of the selected key frames;
generating one or more coordinate frames based at least in part on the identified features of the selected keyframes; and
storing the one or more coordinate frames as one or more persistent coordinate frames in association with the map of the 3D environment.
2. The electronic system of claim 1, wherein:
the one or more sensors comprise a plurality of pixel circuits arranged in a two-dimensional array such that each image of the plurality of images comprises a plurality of pixels; and
each feature corresponds to a plurality of pixels.
3. The electronic system of claim 1, wherein:
identifying a plurality of features in the plurality of images comprises: selecting a number of pixel groups smaller than a predetermined maximum as the identified feature based on a measure of similarity to a pixel group depicting a persistent object portion.
4. The electronic system of claim 1, wherein storing the one or more coordinate frames comprises storing, for each of the one or more coordinate frames:
a descriptor representing at least a subset of the features in the selected keyframe from which the coordinate frame was generated.
5. The electronic system of claim 1, wherein storing the one or more coordinate frames comprises storing, for each of the one or more coordinate frames:
at least a subset of the features in the selected keyframes from which the coordinate frame is generated.
6. The electronic system of claim 1, wherein storing the one or more coordinate frames comprises storing, for each of the one or more coordinate frames:
a transformation between a coordinate frame of the map of the 3D environment and the persistent coordinate frame; and
geographic information indicating the location within the 3D environment of the selected keyframe from which the coordinate frame was generated.
7. The electronic system of claim 6,
the geographic information includes a WiFi fingerprint of the location.
8. The electronic system of claim 1, wherein the computer-executable instructions comprise instructions for computing feature descriptors for individual features with an artificial neural network.
9. The electronic system of claim 8, wherein:
the first artificial neural network is a first artificial neural network; and is
The computer-executable instructions include instructions for implementing a second artificial neural network configured to compute a frame descriptor representing a key frame based at least in part on feature descriptors computed for identified features in the key frame.
10. The electronic system of claim 1, wherein:
the computer-executable instructions further comprise:
an application programming interface configured to provide information characterizing a persistent coordinate frame of the one or more persistent coordinate frames to an application executing on the portable electronic system;
instructions for refining the map of the 3D environment based on a second plurality of images;
adjusting one or more of the persistent coordinate frames based at least in part on the second plurality of images;
instructions for providing notification of the adjusted persistent coordinate frame through the application programming interface.
11. The electronic system of claim 10, wherein:
adjusting the one or more persistent coordinate frames comprises: adjusting translation and rotation of the one or more persistent coordinate frames relative to an origin of the map of the 3D environment.
12. The electronic system of claim 11, wherein:
the electronic system comprises a wearable device, and the one or more sensors are mounted on the wearable device;
the map is a tracking map computed on the wearable device, an
The origin of the map is determined based on the location where the device is powered on.
13. The electronic system of claim 1, wherein:
the electronic system comprises a wearable device, and the one or more sensors are mounted on the wearable device;
the computer-executable instructions further comprise instructions for:
tracking motion of the portable device; and
controlling timing of execution of the instructions to generate one or more coordinate frames and/or the instructions to store one or more persistent coordinate frames based on the tracked motion indicating motion of the wearable device exceeding a threshold distance, wherein the threshold distance is between two meters and twenty meters.
14. A method of operating an electronic system to render virtual content in a 3D environment including a portable device, the method comprising, with one or more processors:
maintaining, on the portable device, a coordinate frame local to the portable device based on output of one or more sensors on the portable device;
retrieving a stored coordinate frame from the stored spatial information about the 3D environment;
Calculating a transformation between a coordinate frame local to the portable device and the acquired stored coordinate frame;
receiving a specification of a virtual object and a position of the virtual object relative to the selected stored coordinate frame, the virtual object having a coordinate frame native to the virtual object; and
rendering the virtual object on a display of the portable device at a location determined based at least in part on the calculated transformation and the received location of the virtual object.
15. The method of claim 14, wherein:
obtaining the stored coordinate frame includes: the coordinate frame is obtained through an application programming interface API.
16. The method of claim 14, wherein:
the portable device comprises a first portable device comprising a first processor of the one or more processors;
the system further includes a second portable device including a second processor of the one or more processors;
wherein the processor on each of the first device and the second device:
acquiring the same stored coordinate frame;
Calculating a transformation between the corresponding device local coordinate frame and the same acquired stored coordinate frame;
receiving the specification of the virtual object; and
rendering the virtual object on a respective display.
17. The method of claim 16, wherein each of the first device and the second device comprises:
a camera configured to output a plurality of camera images;
a keyframe generator configured to transform the plurality of camera images into a plurality of keyframes;
a persistent gesture calculator configured to generate a persistent gesture by averaging the plurality of keyframes;
a tracking map and a persistent pose transformer configured to transform the tracking map into the persistent pose to determine a persistent pose relative to an origin of the tracking map;
a persistent pose and persistent coordinate frame PCF transformer configured to transform the persistent pose to a PCF; and
a map publisher configured to transmit spatial information including the PCF to a server.
18. The method of claim 16, further comprising:
executing an application to generate the specification of the virtual object and the position of the virtual object relative to the selected stored coordinate frame.
19. The method of claim 16, wherein:
maintaining a coordinate frame local to the portable device on the portable device includes: for each of the first portable device and the second portable device,
capturing a plurality of images about the 3D environment from the one or more sensors of the portable device,
computing one or more persistent gestures based at least in part on the plurality of images, an
Generating spatial information about the 3D environment based at least in part on the calculated one or more persistent gestures;
the method further comprises the following steps: transmitting the generated spatial information to a remote server for each of the first and second portable devices; and
obtaining the stored coordinate frame comprises: receiving the stored coordinate frame from the remote server.
20. The method of claim 19, wherein computing the one or more persistent gestures based at least in part on the plurality of images comprises:
extracting one or more features from each of the plurality of images;
generating a descriptor for each of the one or more features;
Generating a key frame for each image of the plurality of images based at least in part on the descriptor; and
generating the one or more persistent gestures based at least in part on the one or more keyframes.
21. The method of claim 20, wherein generating the one or more persistent gestures comprises:
selectively generating a persistent gesture based on the portable device traveling a predetermined distance from the location of the other persistent gestures.
22. The method of claim 16, wherein each of the first device and the second device comprises:
a download system configured to download the stored coordinate frame from a server.
23. An electronic system for maintaining persistent spatial information about a 3D environment for rendering virtual content on each of a plurality of portable devices, the electronic system comprising:
a networked computing device, comprising:
at least one processor;
at least one storage device connected to the processor;
a map storage routine executable with the at least one processor to receive a plurality of maps from a portable device of the plurality of portable devices and store map information on the at least one storage device, wherein each map of the plurality of received maps comprises at least one coordinate frame; and
A map transmitter executable with the at least one processor to:
receiving location information from a portable device of the plurality of portable devices;
selecting one or more maps from the stored maps; and
transmitting information from the selected one or more maps to the portable device of the plurality of portable devices, wherein the transmitted information includes a coordinate frame of a map of the selected one or more maps.
24. The electronic system of claim 23, wherein the coordinate frame comprises a computer data structure comprising:
a coordinate frame comprising information characterizing a plurality of features of an object in the 3D environment.
25. The electronic system of claim 23, wherein the information characterizing the plurality of features comprises:
a descriptor characterizing a region of the 3D environment.
26. The electronic system of claim 23, wherein each of the at least one coordinate frame comprises:
a persistent point characterized by a feature detected in sensor data representing the 3D environment.
27. The electronic system of claim 26, wherein each coordinate frame of the at least one coordinate frame comprises a persistent gesture.
28. The electronic system of claim 26, wherein each of the at least one coordinate frame comprises a persistent coordinate frame.
Applications Claiming Priority (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862742237P | 2018-10-05 | 2018-10-05 | |
US62/742,237 | 2018-10-05 | ||
US201962812935P | 2019-03-01 | 2019-03-01 | |
US62/812,935 | 2019-03-01 | ||
US201962815955P | 2019-03-08 | 2019-03-08 | |
US62/815,955 | 2019-03-08 | ||
US201962868786P | 2019-06-28 | 2019-06-28 | |
US62/868,786 | 2019-06-28 | ||
US201962870954P | 2019-07-05 | 2019-07-05 | |
US62/870,954 | 2019-07-05 | ||
US201962884109P | 2019-08-07 | 2019-08-07 | |
US62/884,109 | 2019-08-07 | ||
PCT/US2019/054819 WO2020072972A1 (en) | 2018-10-05 | 2019-10-04 | A cross reality system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113544748A true CN113544748A (en) | 2021-10-22 |
Family
ID=70055505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980080054.4A Pending CN113544748A (en) | 2018-10-05 | 2019-10-04 | Cross reality system |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3861533A4 (en) |
JP (2) | JP7526169B2 (en) |
CN (1) | CN113544748A (en) |
WO (1) | WO2020072972A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021238145A1 (en) * | 2020-05-26 | 2021-12-02 | 北京市商汤科技开发有限公司 | Generation method and apparatus for ar scene content, display method and apparatus therefor, and storage medium |
US11556961B2 (en) * | 2020-07-23 | 2023-01-17 | At&T Intellectual Property I, L.P. | Techniques for real-time object creation in extended reality environments |
CN112465890A (en) * | 2020-11-24 | 2021-03-09 | 深圳市商汤科技有限公司 | Depth detection method and device, electronic equipment and computer readable storage medium |
US11200754B1 (en) * | 2020-12-22 | 2021-12-14 | Accenture Global Solutions Limited | Extended reality environment generation |
CN113313809A (en) * | 2021-06-03 | 2021-08-27 | 中国建设银行股份有限公司 | Rendering method and device |
WO2023043607A1 (en) * | 2021-09-16 | 2023-03-23 | Chinook Labs Llc | Aligning scanned environments for multi-user communication sessions |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150186745A1 (en) * | 2012-07-30 | 2015-07-02 | Sony Computer Entertainment Europe Limited | Localisation and mapping |
CN104917955A (en) * | 2014-03-10 | 2015-09-16 | 全视技术有限公司 | Image Transformation And Multi-View Output Systems And Methods |
US20150302652A1 (en) * | 2014-04-18 | 2015-10-22 | Magic Leap, Inc. | Systems and methods for augmented and virtual reality |
CN105188516A (en) * | 2013-03-11 | 2015-12-23 | 奇跃公司 | System and method for augmented and virtual reality |
US20180082156A1 (en) * | 2016-09-19 | 2018-03-22 | Adobe Systems Incorporated | Font Replacement Based on Visual Similarity |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7542034B2 (en) * | 2004-09-23 | 2009-06-02 | Conversion Works, Inc. | System and method for processing video images |
US20080090659A1 (en) * | 2006-10-12 | 2008-04-17 | Maximino Aguilar | Virtual world event notification from a persistent world game server in a logically partitioned game console |
JP4292426B2 (en) * | 2007-05-15 | 2009-07-08 | ソニー株式会社 | Imaging apparatus and imaging data correction method |
US10025486B2 (en) * | 2013-03-15 | 2018-07-17 | Elwha Llc | Cross-reality select, drag, and drop for augmented reality systems |
EP3699736B1 (en) | 2014-06-14 | 2023-03-29 | Magic Leap, Inc. | Methods and systems for creating virtual and augmented reality |
US10185775B2 (en) | 2014-12-19 | 2019-01-22 | Qualcomm Technologies, Inc. | Scalable 3D mapping system |
US10217231B2 (en) | 2016-05-31 | 2019-02-26 | Microsoft Technology Licensing, Llc | Systems and methods for utilizing anchor graphs in mixed reality environments |
-
2019
- 2019-10-04 CN CN201980080054.4A patent/CN113544748A/en active Pending
- 2019-10-04 EP EP19868457.3A patent/EP3861533A4/en active Pending
- 2019-10-04 JP JP2021518528A patent/JP7526169B2/en active Active
- 2019-10-04 WO PCT/US2019/054819 patent/WO2020072972A1/en active Application Filing
-
2024
- 2024-05-29 JP JP2024087120A patent/JP2024103610A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150186745A1 (en) * | 2012-07-30 | 2015-07-02 | Sony Computer Entertainment Europe Limited | Localisation and mapping |
CN105188516A (en) * | 2013-03-11 | 2015-12-23 | 奇跃公司 | System and method for augmented and virtual reality |
CN104917955A (en) * | 2014-03-10 | 2015-09-16 | 全视技术有限公司 | Image Transformation And Multi-View Output Systems And Methods |
US20150302652A1 (en) * | 2014-04-18 | 2015-10-22 | Magic Leap, Inc. | Systems and methods for augmented and virtual reality |
US20180082156A1 (en) * | 2016-09-19 | 2018-03-22 | Adobe Systems Incorporated | Font Replacement Based on Visual Similarity |
Also Published As
Publication number | Publication date |
---|---|
EP3861533A4 (en) | 2022-12-21 |
WO2020072972A8 (en) | 2021-09-23 |
JP2024103610A (en) | 2024-08-01 |
JP2022509731A (en) | 2022-01-24 |
WO2020072972A1 (en) | 2020-04-09 |
EP3861533A1 (en) | 2021-08-11 |
JP7526169B2 (en) | 2024-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11995782B2 (en) | Cross reality system with localization service | |
CN112805750B (en) | Cross-reality system | |
US11227435B2 (en) | Cross reality system | |
US11257294B2 (en) | Cross reality system supporting multiple device types | |
CN114616534A (en) | Cross reality system with wireless fingerprint | |
CN115427758A (en) | Cross reality system with accurate shared map | |
CN114762008A (en) | Simplified virtual content programmed cross reality system | |
CN115380264A (en) | Cross reality system for large-scale environments | |
CN115461787A (en) | Cross reality system with quick positioning | |
JP2023504775A (en) | Cross-reality system with localization services and shared location-based content | |
CN115398314A (en) | Cross reality system for map processing using multi-resolution frame descriptors | |
CN115398484A (en) | Cross reality system with geolocation information priority for location | |
CN114616509A (en) | Cross-reality system with quality information about persistent coordinate frames | |
CN115244493B (en) | Cross-reality system for large-scale environmental reconstruction | |
JP7526169B2 (en) | Cross Reality System | |
CN115176285B (en) | Cross-reality system using buffering for positioning accuracy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |