CN113540826B - Linear tapered slit form-based radiating fin antenna array structure - Google Patents
Linear tapered slit form-based radiating fin antenna array structure Download PDFInfo
- Publication number
- CN113540826B CN113540826B CN202110794721.4A CN202110794721A CN113540826B CN 113540826 B CN113540826 B CN 113540826B CN 202110794721 A CN202110794721 A CN 202110794721A CN 113540826 B CN113540826 B CN 113540826B
- Authority
- CN
- China
- Prior art keywords
- heat sink
- metal
- array
- layer
- linear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002184 metal Substances 0.000 claims abstract description 156
- 230000005855 radiation Effects 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims description 34
- 239000000919 ceramic Substances 0.000 claims description 6
- 230000017525 heat dissipation Effects 0.000 abstract description 15
- 238000004891 communication Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/064—Two dimensional planar arrays using horn or slot aerials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
- H01Q13/18—Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明公开了一种基于线性锥削缝隙形式的散热片天线阵结构,旨在解决现有设计方案在高频工作时无法实现有效散热且不易于进行天线组阵的问题。其技术方案要点是:包括线性开口鳍片式金属散热片、散热片金属底座和基板,基板的上表面与散热片金属底座相连,基板的下表面与热源芯片相连,其特征在于,所述散热片金属底座上开有作为天线辐射口径的双脊波导通腔阵列,所述双脊波导通腔阵列上设置有线性开口鳍片式金属散热片。本发明实现了天线与散热结构的共形,极大地节省了系统空间。
The invention discloses a radiating fin antenna array structure based on a linear tapered slot form, aiming at solving the problems that the existing design scheme cannot achieve effective heat dissipation and is not easy to form an antenna array during high frequency operation. The main points of the technical solution are: including a linear opening fin type metal heat sink, a metal base of the heat sink and a base plate, the upper surface of the base plate is connected with the metal base of the heat sink, and the lower surface of the base plate is connected with the heat source chip, and it is characterized in that the heat dissipation A double-ridged waveguide cavity array serving as an antenna radiation aperture is opened on the sheet metal base, and a linear opening fin type metal heat sink is arranged on the double-ridged waveguide cavity array. The invention realizes the conformality of the antenna and the heat dissipation structure, and greatly saves the system space.
Description
技术领域technical field
本发明涉及天线技术领域,尤其涉及到一种基于线性锥削缝隙形式的散热片天线阵结构。The present invention relates to the technical field of antennas, in particular to a heat sink antenna array structure based on the form of linear tapered slits.
背景技术Background technique
近年来,人们为了充分利用有限的系统空间资源,减少过长馈线和接口不连续性所带来的能量损耗,实现小型化、高集成度的无线通信系统,在设计中往往会将包含芯片、前端电路和射频天线在内的各种有源和无源器件集成在同一个封装体中。虽然目前无线通信系统的输入总功率在逐渐降低,但是由于系统整体尺寸的进一步减小,其单位体积内的功耗实际上反而在增加,散热问题极易引起器件性能的恶化,导致系统无法正常工作,甚至严重损毁。因而在实际设计中,往往需要同时考虑系统的散热性能。为了耗散系统中多余的热量,且考虑到材料的导热性能,通常会设计额外的金属散热结构,如常见的金属散热片。但是在实际应用中,金属散热片结构易与邻近的集成电路和天线等各种射频器件发生寄生电磁耦合,从而引起电磁兼容问题,且其自身的寄生辐射还有可能导致天线整体方向图的畸变与恶化,影响系统的正常工作。对此,以往的解决方案往往希望抑制金属散热片产生的辐射,但是这样会增加设计复杂度。电热协同的散热天线方案则提供了一种新的思路,它可以在共形设计的基础上,兼顾无线通信系统的正常工作和散热性能。In recent years, in order to make full use of the limited system space resources, reduce the energy loss caused by excessively long feeders and interface discontinuities, and realize miniaturized and highly integrated wireless communication systems, the design often includes chips, Various active and passive components including front-end circuits and RF antennas are integrated in the same package. Although the total input power of the wireless communication system is gradually decreasing, due to the further reduction of the overall size of the system, the power consumption per unit volume is actually increasing. work, or even severely damaged. Therefore, in the actual design, it is often necessary to consider the heat dissipation performance of the system at the same time. In order to dissipate excess heat in the system, and considering the thermal conductivity of materials, additional metal heat dissipation structures, such as common metal heat sinks, are usually designed. However, in practical applications, the metal heat sink structure is prone to parasitic electromagnetic coupling with various radio frequency devices such as adjacent integrated circuits and antennas, thereby causing electromagnetic compatibility problems, and its own parasitic radiation may also lead to distortion of the overall pattern of the antenna. and deterioration, affecting the normal work of the system. In this regard, the previous solutions often hope to suppress the radiation generated by the metal heat sink, but this will increase the design complexity. The heat dissipation antenna scheme of electrothermal coordination provides a new idea, which can take into account the normal operation and heat dissipation performance of the wireless communication system on the basis of conformal design.
现有的散热天线方案主要采用散热片与微带贴片天线的结合,最直接的方式即在微带贴片天线顶部加装鳍片式金属散热片。但是该方案同时要求金属散热片底座尺寸与微带贴片尺寸保持完全一致,当工作频率升高时,微带贴片尺寸随着波长缩短而不断减小,这极大地限制了金属散热片的设计空间,导致无法实现足够的散热能力。此外,该方案不易于进行天线组阵,难以满足一些需要高增益、窄波束、波束扫描等需求的应用场景。上述问题对于散热天线在毫米波频段的拓展来说尤其严重。The existing heat dissipation antenna scheme mainly adopts the combination of a heat sink and a microstrip patch antenna. The most direct way is to add a fin-type metal heat sink on top of the microstrip patch antenna. However, this solution also requires the size of the metal heat sink base to be exactly the same as the size of the microstrip patch. When the operating frequency increases, the size of the microstrip patch decreases with the shortening of the wavelength, which greatly limits the size of the metal heat sink. Design space, resulting in insufficient heat dissipation capacity. In addition, this solution is not easy to perform antenna arrays, and it is difficult to meet some application scenarios that require high gain, narrow beam, and beam scanning. The above problems are particularly serious for the expansion of heat dissipation antennas in the millimeter wave frequency band.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种基于线性锥削缝隙形式的散热片天线阵结构,通过将传统鳍片式金属散热片设计成线性锥削结构,并在底座中引入双脊波导通腔作为辐射口径,将散热片结构设计为具有辐射功能的天线阵,实现了天线与散热片结构的共形,适用于天线与散热结构一体化设计,提高了系统的集成度。The purpose of the present invention is to provide a heat sink antenna array structure based on the form of linear tapered slits, by designing the traditional fin-type metal heat sink into a linear tapered structure, and introducing a double-ridged waveguide cavity into the base as the radiation aperture , the heat sink structure is designed as an antenna array with radiation function, and the conformal structure of the antenna and the heat sink is realized, which is suitable for the integrated design of the antenna and the heat dissipation structure, and improves the integration degree of the system.
本发明的上述技术目的是通过以下技术方案实现的:The above-mentioned technical purpose of the present invention is achieved through the following technical solutions:
一种基于线性锥削缝隙形式的散热片天线阵结构,包括线性开口鳍片式金属散热片、散热片金属底座和基板,基板的上表面与散热片金属底座相连,基板的下表面与热源芯片相连,所述散热片金属底座上开有作为天线辐射口径的双脊波导通腔阵列,所述双脊波导通腔阵列上设置有线性开口鳍片式金属散热片;A heat sink antenna array structure based on the form of linear tapered slits, comprising a linear opening fin type metal heat sink, a heat sink metal base and a base plate, the upper surface of the base plate is connected with the heat sink metal base, and the lower surface of the base plate is connected with a heat source chip connected, the metal base of the heat sink is provided with a double-ridged waveguide cavity array serving as an antenna radiation aperture, and the double-ridged waveguide cavity array is provided with a linear opening fin type metal heat sink;
所述基板包含多层金属层,各金属层之间设有介质层,所述介质层中含有用于形成基片集成波导结构的金属过孔阵列。The substrate includes multiple metal layers, a dielectric layer is arranged between the metal layers, and the dielectric layer contains an array of metal vias for forming a substrate-integrated waveguide structure.
本发明的进一步设置为:所述双脊波导通腔阵列的开口尺寸满足双脊波导的TE10工作模式,每个双脊波导通腔与相邻两个线性开口鳍片式金属散热片构成线性锥削缝隙天线。The present invention is further provided as follows: the opening size of the double-ridged waveguide cavity array meets the TE10 working mode of the double-ridged waveguide, and each double-ridged waveguide cavity and two adjacent linear opening fin-type metal heat sinks form a linear cone Cut the slot antenna.
本发明的进一步设置为:所述线性开口鳍片式金属散热片的高度应大于二分之一工作波长,线性锥削缝隙开口大小应小于二分之一工作波长,散热片鳍片之间的间距应不大于一个工作波长。The present invention is further provided as follows: the height of the linear opening fin type metal heat sink should be greater than half the working wavelength, the opening size of the linear taper slit should be less than half the working wavelength, and the space between the fins of the heat sink should be less than one half of the working wavelength. The spacing should be no greater than one operating wavelength.
本发明的进一步设置为:所述基板位于散热片金属底座的下方,包括从上倒下依次设置的上层金属层、上层介质层、中层金属层、中层介质层、下层金属层、下层介质层、以及底层金属层,其中,The present invention is further provided as follows: the substrate is located below the metal base of the heat sink, and includes an upper metal layer, an upper dielectric layer, a middle metal layer, a middle dielectric layer, a lower metal layer, a lower dielectric layer, and the underlying metal layer, where,
上层金属层、上层介质层、上层金属过孔阵列、中层金属层、中层介质层、中层金属过孔阵列、下层金属层、下层介质层、下层金属过孔阵列、以及底层金属层构成了纵向基片集成波导结构。The upper metal layer, the upper dielectric layer, the upper metal via array, the middle metal layer, the middle dielectric layer, the middle metal via array, the lower metal layer, the lower dielectric layer, the lower metal via array, and the bottom metal layer constitute the vertical base. Chip integrated waveguide structure.
本发明的进一步设置为:中层金属层、带状线馈电输入结构和下层金属层构成了带状线T型输入功率分配馈电网络。The present invention is further arranged as follows: the middle layer metal layer, the stripline feeding input structure and the lower layer metal layer constitute the stripline T-type input power distribution and feeding network.
本发明的进一步设置为:上层金属层中有上层矩形开口阵列,中层金属层中有中层矩形开口阵列,下层金属层中有底层矩形开口阵列,与散热片金属底座的双脊波导通腔阵列对应,作为散热片天线阵的馈电结构。The present invention is further arranged as follows: the upper metal layer has an upper rectangular opening array, the middle metal layer has a middle rectangular opening array, and the lower metal layer has a bottom rectangular opening array, which corresponds to the double-ridged waveguide cavity array on the metal base of the heat sink. , as the feed structure of the heat sink antenna array.
本发明的进一步设置为:所述中层介质层上设置有用于与纵向基片集成波导结构之间转接馈电的带状线馈电输入结构。A further arrangement of the present invention is that: a stripline feeding input structure for switching and feeding with the vertical substrate integrated waveguide structure is arranged on the middle dielectric layer.
本发明的进一步设置为:所述基板为低温共烧陶瓷基板。According to a further arrangement of the present invention, the substrate is a low temperature co-fired ceramic substrate.
本发明的进一步设置为:热源芯片应位于基板下方,金属过孔阵列、金属过孔阵列和金属过孔阵列作为导热通孔将热源芯片的热量传导至线性开口鳍片式金属散热片。The present invention further provides that: the heat source chip should be located under the substrate, and the metal via array, the metal via array and the metal via array are used as thermal conduction vias to conduct the heat of the heat source chip to the linear opening fin type metal heat sink.
综上所述,本发明具有以下有益效果:To sum up, the present invention has the following beneficial effects:
1、基于电热协同方案,通过对鳍片式金属散热片结构进行优化设计,在散热结构的底座中引入双脊波导通腔作为天线的辐射口径,从而将散热片自身设计为具有辐射功能的天线阵列,实现了天线与散热结构的共形,极大地节省了系统空间。1. Based on the electrothermal synergy scheme, by optimizing the design of the fin-type metal heat sink structure, a double-ridged waveguide cavity is introduced into the base of the heat dissipation structure as the radiation aperture of the antenna, so that the heat sink itself is designed as an antenna with radiation function The array realizes the conformality of the antenna and the heat dissipation structure, which greatly saves the system space.
2、通过在鳍片式金属散热片中引入双脊波导通腔,实现了线性锥削缝隙天线的形式,相比于矩形波导,双脊波导是其小型化结构,拥有更低的截止频率,有效缩短了阵列间的单元间距,改善了方向图的副瓣电平。2. By introducing a double-ridged waveguide cavity into the fin-type metal heat sink, the form of a linear tapered slot antenna is realized. Compared with the rectangular waveguide, the double-ridged waveguide is its miniaturized structure and has a lower cut-off frequency. The element spacing between arrays is effectively shortened, and the sidelobe level of the pattern is improved.
3、为了兼顾天线的散热性能,在基板中设计了纵向基片集成波导结构的天线馈电网络,其中包含的大量金属过孔,可同时作为导热通孔将热源热量传导至鳍片式散热片,降低了设计复杂度,节省了设计成本。3. In order to take into account the heat dissipation performance of the antenna, an antenna feed network with a vertical substrate integrated waveguide structure is designed in the substrate, and a large number of metal vias contained therein can be used as thermal vias to conduct heat from the heat source to the fin-type heat sink at the same time. , reducing the design complexity and saving the design cost.
4、所设计的基于线性锥削缝隙形式的散热片天线阵结构,整体尺寸不再限制于工作频率和波长,可以很好地应用于微波乃至毫米波频段。4. The designed heat sink antenna array structure based on the linear tapered slit form, the overall size is no longer limited to the operating frequency and wavelength, and can be well applied to microwave and even millimeter wave frequency bands.
5、在低温共烧陶瓷基板中,采用了基片集成波导结构作为散热片天线的馈电网络,其包含大量的金属化孔,可同时作为导热通孔将热源热量传导至鳍片式散热片,无需额外的导热结构,降低了设计复杂度,节省了设计成本。5. In the low temperature co-fired ceramic substrate, the substrate integrated waveguide structure is used as the feeding network of the heat sink antenna, which contains a large number of metallized holes, which can be used as thermal conduction holes to conduct heat from the heat source to the fin type heat sink at the same time. , no additional heat conduction structure is required, the design complexity is reduced, and the design cost is saved.
附图说明Description of drawings
图1是2×2散热片天线阵结构的结构示意图。FIG. 1 is a schematic structural diagram of a 2×2 heat sink antenna array structure.
图2是4×4散热片天线阵结构的结构示意图。FIG. 2 is a schematic structural diagram of a 4×4 heat sink antenna array structure.
图3是纵向基片集成波导结构的结构示意图。FIG. 3 is a schematic structural diagram of a vertical substrate integrated waveguide structure.
图4是带状线馈电输入结构的平面示意图。Figure 4 is a schematic plan view of a stripline feed input structure.
图5是4×4散热片天线阵单元增益随鳍片高度变化曲线。Figure 5 is a graph showing the variation of the unit gain of the 4×4 heat sink antenna array with the height of the fin.
图6是4×4散热片天线阵单元增益随鳍片开口间距变化曲线。Figure 6 is a graph showing the variation of the unit gain of the 4×4 heat sink antenna array with the spacing of the fin openings.
图7为4×4散热片天线阵反射系数曲线。Figure 7 is the reflection coefficient curve of the 4×4 heat sink antenna array.
图8为4×4散热片天线阵增益曲线。Figure 8 is the gain curve of the 4×4 heat sink antenna array.
图9为4×4散热片天线阵辐射方向图。Figure 9 is the radiation pattern of the 4×4 heat sink antenna array.
标号:1、散热片金属底座2、上层金属层3、金属过孔阵列4、中层金属层5、金属过孔阵列6、下层金属层7、金属过孔阵列8、线性开口鳍片式金属散热片9、双脊波导通腔阵列10、矩形开口阵列11、上层介质层12、矩形开口阵列13、中层介质层14、带状线馈电输入结构15、矩形开口阵列16、下层介质层17、底层金属层Labels: 1. Heat
具体实施方式Detailed ways
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合图示与具体实施例,进一步阐述本发明。In order to make the technical means, creation features, achievement goals and effects realized by the present invention easy to understand, the present invention will be further described below with reference to the drawings and specific embodiments.
如图1所示,本发明提出的一种基于线性锥削缝隙形式的散热片天线阵结构,包括线性开口鳍片式金属散热片8、散热片金属底座1和基板,基板的上表面与散热片金属底座1相连,基板的下表面与热源芯片相连,其特征在于,所述散热片金属底座1上开有作为天线辐射口径的双脊波导通腔阵列9,所述双脊波导通腔阵列9上设置有线性开口鳍片式金属散热片8;As shown in FIG. 1 , a heat sink antenna array structure based on the form of linear tapered slits proposed by the present invention includes a linear opening fin type
所述基板包含多层金属层,各金属层之间设有介质层,所述介质层中含有用于形成基片集成波导结构的金属过孔阵列。The substrate includes multiple metal layers, a dielectric layer is arranged between the metal layers, and the dielectric layer contains an array of metal vias for forming a substrate-integrated waveguide structure.
本发明的进一步设置为:所述双脊波导通腔阵列9的开口尺寸满足双脊波导的TE10工作模式,每个双脊波导通腔与相邻两个线性开口鳍片式金属散热片8构成线性锥削缝隙天线。The present invention is further provided as follows: the opening size of the double-ridged
本发明的进一步设置为:所述线性开口鳍片式金属散热片8的高度应大于二分之一工作波长,线性锥削缝隙开口大小应小于二分之一工作波长,散热片鳍片之间的间距应不大于一个工作波长。The present invention is further arranged as follows: the height of the linear opening fin type
本发明的进一步设置为:所述基板位于散热片金属底座1的下方,含有上层金属层2、上层介质层11、上层金属过孔阵列3、中层金属层4、中层介质层13、中层金属过孔阵列5、带状线馈电输入结构14、下层金属层6、下层介质层16、下层金属过孔阵列7、以及底层金属层17,其中,The present invention is further arranged as follows: the substrate is located under the
上层金属层2、上层介质层11、上层金属过孔阵列3、中层金属层4、中层介质层13、中层金属过孔阵列5、下层金属层6、下层介质层16、下层金属过孔阵列7、以及底层金属层17构成了纵向基片集成波导结构;
热源芯片位于基板下方,所述上层金属过孔阵列3、中层金属过孔阵列5和下层金属过孔阵列7作为导热通孔将热源芯片的热量传导至线性开口鳍片式金属散热片。The heat source chip is located under the substrate, and the upper metal via
本发明的进一步设置为:中层金属层4、带状线馈电输入结构14和下层金属层6构成了带状线T型输入功率分配馈电网络。The present invention is further provided as follows: the middle
本发明的进一步设置为:上层金属层2中有上层矩形开口阵列10,中层金属层4中有中层矩形开口阵列12,下层金属层6中有底层矩形开口阵列15,与散热片金属底座的双脊波导通腔阵列9对应,作为散热片天线阵的馈电结构。The present invention is further set up as follows: the
本发明的进一步设置为:所述中层介质层13上设置有用于与纵向基片集成波导结构之间转接馈电的带状线馈电输入结构14。A further arrangement of the present invention is that: the
本发明的进一步设置为:所述基板为低温共烧陶瓷基板,可根据实际需求,在基板中加入更多位于基片集成波导结构之外的金属过孔,以此增加导热通孔数量,降低热源芯片与鳍片式散热片之间的热阻大小。The present invention is further configured as follows: the substrate is a low-temperature co-fired ceramic substrate, and more metal vias located outside the substrate integrated waveguide structure can be added to the substrate according to actual needs, thereby increasing the number of thermally conductive vias and reducing The size of the thermal resistance between the heat source chip and the finned heat sink.
以如图1所述的2×2散热片天线阵结构为例,本申请提出的线性锥削缝隙形式的散热片天线阵结构包括:散热片金属底座1和基板,散热片金属底座上设置有多组双脊波导通腔整列9,所述双脊波导通腔整列9上设置有线性开口鳍片式金属散热片8,每个双脊波导通腔与相邻两个线性开口鳍片式金属散热片8构成线性锥削缝隙天线,所述基板包括从上倒下依次设置的上层金属层2、上层介质层11、中层金属层4、中层介质层13、下层金属层6、下层介质层16以及底层金属层17,所述上层金属层2上设置有上层矩形开口阵列10,所述上层介质层11上设置有上层金属过孔阵列3,所述中层金属层4上设置有中层矩形开口阵列12,所述中层介质层13上设置有中层金属过孔阵列5和带状线馈电输入结构14,所述下层金属层6上设置有底层矩形开口阵列15,所述下层介质层16上设置有下层金属过孔阵列7。Taking the 2×2 heat sink antenna array structure as shown in FIG. 1 as an example, the heat sink antenna array structure in the form of linear tapered slits proposed in this application includes: a heat
在具体实施过程中,本实施例提供了一款4×4散热片天线阵的设计方案,如图2所示,工作频率为28GHz。线性开口鳍片式金属散热片8采用3D打印技术加工实现,上层介质层11、中层介质层13和下层介质层16采用低温共烧陶瓷工艺加工实现。在本实施例中,所述低温共烧陶瓷基板介电常数为5.9,损耗角正切为0.002,几何尺寸为30mm×40mm×0.96mm。散热片金属底座1平面大小为30mm×40mm,散热片金属底座1厚度为1mm。根据实际需要,若工作频率改变,散热片和介质板的尺寸也相应改变。In the specific implementation process, this embodiment provides a design scheme of a 4×4 heat sink antenna array, as shown in FIG. 2 , and the operating frequency is 28 GHz. The linear opening fin type
如图2所示,在散热片金属底座1上开有4×4双脊波导通腔阵列,腔体尺寸为3mm×3mm×1mm,双脊尺寸为1.2mm×1.8mm×1mm,其尺寸满足双脊波导的TE10工作模式,线性开口鳍片式金属散热片8宽度为1.2mm,高度为10mm,上边长度为2.9mm,下边长度为5mm,鳍片间距为5.4mm。As shown in Figure 2, a 4×4 double-ridged waveguide cavity array is opened on the
如图2所示,上层金属层2、上层介质层11、上层金属过孔阵列3、中层金属层4、中层介质层13、中层金属过孔阵列5、下层金属层6、下层介质层16、下层金属过孔阵列7、以及底层金属层17构成纵向基片集成波导结构,波导尺寸为4.6mm×2.6mm;上层金属层2中有上层矩形开口阵列10,中层金属层4中有中层矩形开口阵列12,下层金属层6中有底层矩形开口阵列15,与散热片金属底座的双脊波导通腔阵列9对应,作为散热片天线阵的馈电结构,通过阶梯式波导结构,作为提供散热片天线阵激励的馈电转接,矩形开口大小为4mm×2mm。As shown in FIG. 2,
图3为图2所述的纵向基片集成波导结构的平面示意图。FIG. 3 is a schematic plan view of the vertical substrate integrated waveguide structure shown in FIG. 2 .
图4为带状线馈电输入结构14的平面示意图;在本实施例中,采用了T型输入功率分配网络,根据实际需求,亦可选用Y型功率分配网络等其他功结构。4 is a schematic plan view of the stripline
如图4所示,利用探针式结构实现带状线馈电输入结构14和纵向基片集成波导结构的转接馈电。根据实际需求,亦可选用缝隙耦合等其他转接方式。As shown in FIG. 4 , the switching feed between the stripline
图5为所述4×4散热片天线阵单元增益随鳍片高度变化曲线。可得,当鳍片高度不超过一个工作波长时,增大鳍片的高度可提高天线阵的增益。FIG. 5 is a graph showing the variation of the unit gain of the 4×4 heat sink antenna array with the height of the fins. It can be seen that when the height of the fin does not exceed one working wavelength, increasing the height of the fin can improve the gain of the antenna array.
图6为所述4×4散热片天线阵单元增益随鳍片间距变化曲线。可得,当鳍片间距不超过四分之一个工作波长时,增大鳍片的开口间距可提高天线阵的增益。FIG. 6 is a graph showing the variation curve of the unit gain of the 4×4 heat sink antenna array with the fin spacing. It can be seen that, when the fin spacing is not more than a quarter of the working wavelength, increasing the opening spacing of the fins can improve the gain of the antenna array.
图7为所述4×4散热片天线阵结构的反射系数,其10dB阻抗带宽为3.25GHz(从26.25GHz至29.50GHz),相对带宽为11.6%。FIG. 7 shows the reflection coefficient of the 4×4 heat sink antenna array structure, the 10dB impedance bandwidth is 3.25GHz (from 26.25GHz to 29.50GHz), and the relative bandwidth is 11.6%.
图8为所述4×4散热片天线阵结构的增益曲线,其在工作频率处增益为16.47dBi,最大增益为16.87dBi(29.5GHz处),10dB阻抗带宽内(从26.25GHz至29.50GHz)增益平坦。Figure 8 is the gain curve of the 4×4 heat sink antenna array structure, the gain is 16.47dBi at the operating frequency, the maximum gain is 16.87dBi (at 29.5GHz), and within the 10dB impedance bandwidth (from 26.25GHz to 29.50GHz) Gain is flat.
图9为所述4×4散热片天线阵结构的辐射方向图,在E面和H面的3dB主瓣波束宽度分别为24°和25°。FIG. 9 is a radiation pattern of the 4×4 heat sink antenna array structure, and the 3dB main lobe beam widths on the E plane and the H plane are 24° and 25°, respectively.
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,“设置”、“连接”等术语应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接连接,也可以通过中间媒介间接连接,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,除了包含所列的那些要素,而且还可包含没有明确列出的其他要素。In the description of the present invention, it should be noted that the orientations or positional relationships indicated by the terms "upper", "lower", "inner", "outer", "left", "right", etc. are based on those shown in the accompanying drawings. The orientation or positional relationship, or the orientation or positional relationship that the product of the invention is usually placed in use, or the orientation or positional relationship that is commonly understood by those skilled in the art, are only for the convenience of describing the present invention and simplifying the description, rather than indicating or It is implied that the device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as a limitation of the invention. Furthermore, the terms "first", "second", etc. are only used to differentiate the description and should not be construed to indicate or imply relative importance. In the description of the present invention, it should also be noted that, unless otherwise expressly specified and limited, terms such as "arrangement" and "connection" should be understood in a broad sense, for example, "connection" may be a fixed connection or Detachable connection, or integral connection; may be mechanical connection or electrical connection; may be direct connection or indirect connection through an intermediate medium, and may be internal communication between two components. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations. As used herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, in addition to those elements listed, but also other elements not expressly listed.
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。The foregoing has shown and described the basic principles, main features and advantages of the present invention. Those skilled in the art should understand that the present invention is not limited by the above-mentioned embodiments. The above-mentioned embodiments and descriptions only illustrate the principle of the present invention. Such changes and improvements fall within the scope of the claimed invention. The claimed scope of the present invention is defined by the appended claims and their equivalents.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110794721.4A CN113540826B (en) | 2021-07-14 | 2021-07-14 | Linear tapered slit form-based radiating fin antenna array structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110794721.4A CN113540826B (en) | 2021-07-14 | 2021-07-14 | Linear tapered slit form-based radiating fin antenna array structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113540826A CN113540826A (en) | 2021-10-22 |
CN113540826B true CN113540826B (en) | 2022-10-14 |
Family
ID=78127950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110794721.4A Active CN113540826B (en) | 2021-07-14 | 2021-07-14 | Linear tapered slit form-based radiating fin antenna array structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113540826B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106299660A (en) * | 2016-09-17 | 2017-01-04 | 西安电子科技大学 | A kind of Sidelobe ridge chip integrated waveguide slot array antenna |
CN108550987A (en) * | 2018-05-24 | 2018-09-18 | 南京航空航天大学 | A kind of double frequency slot array antenna based on SIW |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204425852U (en) * | 2015-01-23 | 2015-06-24 | 联想(北京)有限公司 | A kind of electronic equipment |
CN206510820U (en) * | 2016-09-09 | 2017-09-22 | 陈景宜 | Warning device for automobile |
CN109611786A (en) * | 2018-12-29 | 2019-04-12 | 珠海市唯能车灯实业有限公司 | A kind of novel shark fins high-mount brake lamp |
CN109687165A (en) * | 2018-12-29 | 2019-04-26 | 瑞声科技(南京)有限公司 | Millimeter wave array antenna mould group and mobile terminal |
CN110676555B (en) * | 2019-10-22 | 2020-11-10 | 上海交通大学 | A heat sink antenna array structure |
CN111834743B (en) * | 2020-06-19 | 2021-04-06 | 北京微度芯智科技有限责任公司 | Level meter antenna radio frequency board, antenna structure and antenna system |
-
2021
- 2021-07-14 CN CN202110794721.4A patent/CN113540826B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106299660A (en) * | 2016-09-17 | 2017-01-04 | 西安电子科技大学 | A kind of Sidelobe ridge chip integrated waveguide slot array antenna |
CN108550987A (en) * | 2018-05-24 | 2018-09-18 | 南京航空航天大学 | A kind of double frequency slot array antenna based on SIW |
Also Published As
Publication number | Publication date |
---|---|
CN113540826A (en) | 2021-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110676555B (en) | A heat sink antenna array structure | |
CN103594779B (en) | Antenna integrated and the array antenna of substrate for millimeter wave frequency band | |
CN107134653B (en) | A Planar Compact Slot Antenna Array Based on Substrate Integrated Waveguide Resonator | |
KR20200028460A (en) | Transition device, transition structure, and integrated package structure | |
US20130076570A1 (en) | Rf module | |
CN105470644B (en) | Millimeter wave MIMO antenna | |
US11626654B2 (en) | Heat dissipating antenna structures | |
Qian et al. | Heatsink antenna array for millimeter-wave applications | |
CN103474780B (en) | Substrate integrated wave-guide cavity wave slot antenna | |
CN208923351U (en) | Medium integrated waveguide gradual change slot antenna | |
CN113097716B (en) | Broadband circularly polarized end-fire antenna adopting substrate integrated waveguide technology | |
CN109802695A (en) | A kind of signal receiving/transmission device and base station | |
CN110828962B (en) | Antenna array module and manufacturing method thereof | |
CN111900542A (en) | High-frequency high-gain broadband dielectric resonator antenna | |
CN113540826B (en) | Linear tapered slit form-based radiating fin antenna array structure | |
CN115483545A (en) | Integrated design structure of slot antenna array and radiating fin | |
CN114824790B (en) | Novel polarization reconfigurable antenna based on substrate integrated waveguide | |
Ge et al. | A heatsink integrated antenna with controllable electromagnetic and thermal performance | |
CN116454593A (en) | Phased array radiation structure based on HTCC technology and working method thereof | |
CN114006158B (en) | Millimeter wave integrated antenna based on coplanar waveguide series-feed structure | |
CN103618145B (en) | The accurate Yagi spark gap planar horn antenna of thin substrate | |
CN103606750B (en) | The accurate Yagi spark gap planar horn antenna of thin substrate phasing | |
CN114914715A (en) | An integrated structure integrating Vivaldi antenna array and heat sink | |
CN220755126U (en) | Electronic equipment and radiator | |
Zhou et al. | Substrate integrated waveguides slot antenna array with heatsink enclosed |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |