CN113540271A - 一种日盲型紫外光电探测器及其制备方法 - Google Patents

一种日盲型紫外光电探测器及其制备方法 Download PDF

Info

Publication number
CN113540271A
CN113540271A CN202110819572.2A CN202110819572A CN113540271A CN 113540271 A CN113540271 A CN 113540271A CN 202110819572 A CN202110819572 A CN 202110819572A CN 113540271 A CN113540271 A CN 113540271A
Authority
CN
China
Prior art keywords
polymethyl methacrylate
conductive substrate
solar
channel
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110819572.2A
Other languages
English (en)
Other versions
CN113540271B (zh
Inventor
沈谅平
危家昀
邹海伦
周海
王浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN202110819572.2A priority Critical patent/CN113540271B/zh
Publication of CN113540271A publication Critical patent/CN113540271A/zh
Application granted granted Critical
Publication of CN113540271B publication Critical patent/CN113540271B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供了一种日盲型紫外光电探测器及其制备方法,该日盲型紫外光电探测器,包括:导电基底,其上开设有沟道;Ga2O3纳米柱阵列,其位于所述沟道上;聚甲基丙烯酸甲酯层,其覆盖Ga2O3纳米柱阵列。本发明的日盲型紫外光电探测器,Ga2O3具有高的热稳定性和化学稳定性,其禁带宽度约为4.9eV,只对日盲区的深紫外光敏感,相比传统使用AlGaN、MgZnO等材料,Ga2O3不需要任何掺杂来调节带隙,避免了合金相的成分波动和相分离;而使用的聚甲基丙烯酸甲酯层,使得日盲型紫外光电探测器具有较低的暗电流,在低光强下仍具有较高的开关比。

Description

一种日盲型紫外光电探测器及其制备方法
技术领域
本发明涉及光电探测器技术领域,尤其涉及一种日盲型紫外光电探测器及其制备方法。
背景技术
由于臭氧层的吸收,波长在200nm-280nm的紫外光不能到达地球,该波段的光被称为日盲紫外光。因此,基于日盲紫外的探测器具有高信噪比、低误报率、可全方位全天候工作等优点,可被广泛应用于军事和民生,如导弹跟踪,安全通信,臭氧空洞监测,化学/生物分析和电晕检测等。目前,在制备日盲型紫外光电探测器时常用的日盲探测材料如:AlGaN、MgZnO等,但申请人发现采用这些材料需要通过掺杂来调节带隙;而且这些材料采用高组分合金,带来相分离和难以外延成膜的缺点。
基于现有的日盲型紫外光电探测器存在的缺陷,有必要对此进行改进。
发明内容
有鉴于此,本发明提出了一种日盲型紫外光电探测器及其制备方法,以解决或部分解决现有技术中存在的技术问题。
第一方面,本发明提供了一种日盲型紫外光电探测器,包括:
导电基底,其上开设有沟道;
Ga2O3纳米柱阵列,其位于所述沟道上;
聚甲基丙烯酸甲酯层,其覆盖所述Ga2O3纳米柱阵列。
优选的是,所述的日盲型紫外光电探测器,其特征在于,所述导电基底为FTO导电玻璃。
第二方面,本发明还提供了一种所述的日盲型紫外光电探测器的制备方法,包括以下步骤:
提供导电基底;
配制含镓前驱体溶液;
配制聚甲基丙烯酸甲酯溶液;
将导电基底位于沟道之外的部分进行遮挡,然后将导电基底置于含镓前驱体溶液中,进行水热反应,即在导电基底的沟道上制备得到Ga2O3纳米柱阵列;
将聚甲基丙烯酸甲酯溶液涂覆在导电基底的沟道上并覆盖Ga2O3纳米柱阵列,干燥后即形成聚甲基丙烯酸甲酯层。
优选的是,所述的日盲型紫外光电探测器的制备方法,配制含镓前驱体溶液具体为:将镓盐加入至水中,混合均匀即得含镓前驱体溶液。
优选的是,所述的日盲型紫外光电探测器的制备方法,配制聚甲基丙烯酸甲酯溶液具体为:将聚甲基丙烯酸甲酯溶于至氯苯中即得聚甲基丙烯酸甲酯溶液。
优选的是,所述的日盲型紫外光电探测器的制备方法,将导电基底置于含镓前驱体溶液中进行水热反应之前还包括:将导电基底置于紫外臭氧仪下照射40~50min。
优选的是,所述的日盲型紫外光电探测器的制备方法,将聚甲基丙烯酸甲酯溶液涂覆在导电基底的沟道上之前还包括:将导电基底于500~600℃下退火1~3h。
优选的是,所述的日盲型紫外光电探测器的制备方法,所述聚甲基丙烯酸甲酯溶液的浓度为4~20mg/ml,所述水热反应的温度为130~170℃、反应时间为1~3h。
优选的是,所述的日盲型紫外光电探测器的制备方法,将聚甲基丙烯酸甲酯溶液涂覆在导电基底的沟道上并覆盖Ga2O3纳米柱阵列,干燥后即形成聚甲基丙烯酸甲酯层具体为:将80~120μl的聚甲基丙烯酸甲酯溶液滴在沟道上并覆盖Ga2O3纳米柱阵列,然后于2000~4000r/min的转速下,旋涂20~40s,再于80~120℃下干燥20~40min,即得聚甲基丙烯酸甲酯层。
优选的是,所述的日盲型紫外光电探测器的制备方法,所述镓盐为硝酸镓,所述硝酸镓与水的质量体积比为(0.2~0.6)g:(20~40)mL。
本发明的一种日盲型紫外光电探测器及方法相对于现有技术具有以下有益效果:
(1)本发明的日盲型紫外光电探测器,Ga2O3纳米柱阵列位于沟道上,聚甲基丙烯酸甲酯层位于沟道上并覆盖Ga2O3纳米柱阵列,Ga2O3具有高的热稳定性和化学稳定性,其禁带宽度约为4.9eV,只对日盲区的深紫外光敏感,相比传统使用AlGaN、MgZnO等材料,Ga2O3不需要任何掺杂来调节带隙,避免了合金相的成分波动和相分离;而使用的聚甲基丙烯酸甲酯层,使得日盲型紫外光电探测器具有较低的暗电流,在低光强下仍具有较高的开关比;
(2)本发明的日盲型紫外光电探测器的制备方法,工艺简单、成本低、环境友好,为氧化镓纳米柱阵列光电紫外探测器的大规模生产创造了良好的前提条件;且使用FTO导电玻璃作为导电基底,不需要额外制作电极,大大简化了实验步骤和实验成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的日盲型紫外光电探测器的结构示意图;
图2为本发明的导电基底的结构示意图;
图3为实施例1中制备得到的日盲型紫外光电探测器的Ga2O3纳米柱在沟道表面的低倍SEM图;
图4为图3中方框处的放大图;
图5为实施例1中制备得到的日盲型紫外光电探测器的Ga2O3纳米柱的截面示意图;
图6~7为实施例1中制备得到的日盲型紫外光电探测器的Ga2O3纳米柱的EDS能谱图;
图8为实施例1和对比例2中制备得到的日盲型紫外光电探测器的Ga2O3纳米柱的XRD图;
图9为对比例1中制备得到的日盲型紫外光电探测器的I-T特性曲线图;
图10为实施例1中制备得到的日盲型紫外光电探测器的I-T特性曲线图;
图11为实施例2中制备得到的日盲型紫外光电探测器的I-T特性曲线图。
具体实施方式
下面将结合本发明实施方式,对本发明实施方式中的技术方案进行清楚、完整的描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
本申请实施例提供了一种日盲型紫外光电探测器,如图1~2所示,包括:
导电基底1,其上开设有沟道11;
Ga2O3纳米柱阵列2,其位于沟道11上;
聚甲基丙烯酸甲酯层3,其覆盖Ga2O3纳米柱阵列2。
需要说明的是,本申请的日盲型紫外光电探测器,包括导电基底1、Ga2O3纳米柱阵列2和聚甲基丙烯酸甲酯层3,其中,导电基底1上开设有沟道11,这里的沟道类似凹槽,Ga2O3纳米柱阵列2位于沟道上,聚甲基丙烯酸甲酯层3位于沟道11上并覆盖Ga2O3纳米柱阵列2,Ga2O3纳米柱阵列2为电子传输层。Ga2O3具有高的热稳定性和化学稳定性,其禁带宽度约为4.9eV,只对日盲区的深紫外光敏感,相比传统使用AlGaN、MgZnO等材料,Ga2O3不需要任何掺杂来调节带隙,避免了合金相的成分波动和相分离。而使用的聚甲基丙烯酸甲酯层3,使得日盲型紫外光电探测器具有较低的暗电流,在低光强下仍具有较高的开关比。
在一些实施例中,导电基底1为FTO导电玻璃,显然实际中导电基底1还可以采用ITO导电玻璃。FTO导电玻璃本身导电,因而在FTO导电玻璃的沟道两侧自然形成电极,而且目前大多数器件都需要额外制作电极,不仅增加了实验步骤还大大增加了实验成本,本发明采用FTO导电玻璃,大大简化了实验步骤和实验成本。
基于同一发明构思,本申请实施例还提供了一种上述的日盲型紫外光电探测器的制备方法,包括以下步骤:
S1、提供导电基底;
S2、配制含镓前驱体溶液;
S3、配制聚甲基丙烯酸甲酯溶液;
S4、将导电基底位于沟道之外的部分进行遮挡,然后将导电基底置于含镓前驱体溶液中,进行水热反应,即在导电基底的沟道上制备得到Ga2O3纳米柱阵列;
S5、将聚甲基丙烯酸甲酯溶液涂覆在导电基底的沟道上并覆盖Ga2O3纳米柱阵列,干燥后即形成聚甲基丙烯酸甲酯层。
需要说明的是,本申请实施例中日盲型紫外光电探测器的制备方法,将导电基底位于沟道之外的部分进行遮挡,具体的,可在导电基底位于沟道之外的地方贴上耐高温胶带,这样在后续的水热反应过程中,只有沟道上生长Ga2O3纳米柱阵列,而在导电基底上位于沟道以外的地方则不生长Ga2O3纳米柱阵列。本申请的日盲型紫外光电探测器,未旋凃聚甲基丙烯酸甲酯(PMMA)溶液,则探测器的主要连接关系为FTO电极-氧化镓纳米柱-FTO电极;旋凃了聚甲基丙烯酸甲酯溶液,则探测器的主要连接关系为FTO电极-PMMA-氧化镓纳米柱-PMMA-FTO电极。
在一些实施例中,将导电基底置于含镓前驱体溶液中,进行水热反应之前还包括将导电基底分别使用丙酮、无水乙醇、去离子水超声处理20min,以清除导电基底上的杂质。
在一些实施例中,水热反应在反应釜中进行,具体的,将前驱体置于反应釜中之前,还将反应釜分别使用丙酮、无水乙醇、去离子水超声处理,每个超声处理过程均20~30min,以清除反应釜内的杂质。
在一些实施例中,配制含镓前驱体溶液具体为:将镓盐加入至水中,混合均匀即得含镓前驱体溶液。
在一些实施例中,配制聚甲基丙烯酸甲酯溶液具体为:将聚甲基丙烯酸甲酯溶于至氯苯中即得聚甲基丙烯酸甲酯溶液。
在一些实施例中,将导电基底置于含镓前驱体溶液中进行水热反应之前还包括:将导电基底置于紫外臭氧仪下照射40~50min。使用紫外臭氧仪照射的目的是,改善导电基底表面的功函数,使其羟基化,有助于水热反应时提升接触面之间的亲水性,并能防止表面出现裂纹与分布不均。
在一些实施例中,由于水热反应完成后会在导电基底的正面和背面都会留下残留的前驱体溶液以及杂质,所以需要反复冲洗正反两面,如果纳米柱阵列已经生长出来,此时无法用去离子水冲刷掉表面一层肉眼可见的白色纳米柱,将其冲洗干净后再次使用恒温干燥台在空气中用80℃干燥10min。
在一些实施例中,将聚甲基丙烯酸甲酯溶液涂覆在导电基底的沟道上之前还包括:将导电基底于500~600℃下退火1~3h。具体的,将生长有Ga2O3纳米柱阵列的导电基底在室温下以3~8℃/min升温至500~600℃并保温1~3h,然后以3~8℃/min降温至室温,即完成退火。
具体的,在一些实施例中,退火时,将生长有Ga2O3纳米柱阵列放入培养皿或者陶瓷舟,然后用锡纸封闭包装,再将培养皿或者陶瓷舟放入高温退火炉中进行退火;锡纸封闭包装,其目的是为了防止灰尘进入,显然退火前同样对培养皿或者陶瓷舟使用分别使用丙酮、无水乙醇、去离子水超声处理20min。
在一些实施例中,聚甲基丙烯酸甲酯溶液的浓度为4~20mg/ml,水热反应的温度为130~170℃、反应时间为1~3h。
在一些实施例中,将聚甲基丙烯酸甲酯溶液涂覆在导电基底的沟道上并覆盖Ga2O3纳米柱阵列,干燥后即形成聚甲基丙烯酸甲酯层具体为:将80~120μl的聚甲基丙烯酸甲酯溶液滴在沟道上并覆盖Ga2O3纳米柱阵列,然后于2000~5000r/min的转速下,旋涂20~40s,再于80~120℃下干燥20~40min,即得聚甲基丙烯酸甲酯层。
在一些实施例中,镓盐为硝酸镓,硝酸镓与水的质量体积比为(0.2~0.6)g:(20~40)mL。
具体的,在一些实施例中,配制含镓前驱体溶液具体为:将0.3g的硝酸镓溶于30mL去离子中,然后使用搅拌10min使其均匀,用pH测试仪测其溶液显示为酸性,pH值约为2.1。
以下进一步以具体实施例的说明本申请的日盲型紫外光电探测器的制备方法。
实施例1
本申请实施例提供了一种日盲型紫外光电探测器的制备方法,包括以下步骤:
S1、提供一自带沟道的FTO导电玻璃,其中,FTO导电玻璃的长宽高分别为20mm、20mm、2mm;将FTO导电玻璃分别置于丙酮、无水乙醇、去离子水中超声清洗20min,备用;
S2、将0.3g的硝酸镓加入至30ml去离子水中搅拌均匀后得到含镓前驱体溶液;
S3、将40mg的聚甲基丙烯酸甲酯溶于2ml的氯苯,混合均匀得到聚甲基丙烯酸甲酯溶液;
S4、将FTO导电玻璃位于沟道以外的地方贴上耐高温胶带进行遮挡,然后使用紫外臭氧仪(PSD-UV4)对FTO导电玻璃照射45min,然后将FTO导电玻璃置于含镓前驱体溶液中,于150℃下反应2h;
S5、去除耐高温胶带,然后将生长有Ga2O3纳米柱阵列的FTO导电玻璃使用清水清洗,再于80℃下干燥10min;
S6、将生长有Ga2O3纳米柱阵列的FTO导电玻璃置于退火炉中,由室温以5℃/min升温至550℃并保温2h,然后以5℃/min降温至室温,完成退火;
S7、将聚甲基丙烯酸甲酯溶液滴在沟道上并覆盖Ga2O3纳米柱阵列,4000r/min的转速下,旋涂30s,再于100℃下干燥30min,即得聚甲基丙烯酸甲酯层。
实施例2
本申请实施例提供了一种日盲型紫外光电探测器的制备方法,同实施例1,不同在于,步骤S7中为:将聚甲基丙烯酸甲酯溶液滴在沟道上并覆盖Ga2O3纳米柱阵列,5000r/min的转速下,旋涂30s,再于100℃下干燥30min,即得聚甲基丙烯酸甲酯层。
对比例1
本对比例提供了一种日盲型紫外光电探测器的制备方法,同实施例1,不同在于,不使用步骤S7中聚甲基丙烯酸甲酯溶液旋涂,其余工艺均与实施例1相同。
对比例2
本对比例提供了一种日盲型紫外光电探测器的制备方法,同实施例1,不同在于,不经过S6中的退火步骤,其余工艺均与实施例1相同。
性能测试
图3为本发明实施例1中制备得到的日盲型紫外光电探测器Ga2O3纳米柱在沟道表面的低倍SEM图;图4为图3中方框处的放大图;图5为本发明实施例1中制备得到的日盲型紫外光电探测器Ga2O3纳米柱的截面示意图。图6~7为本发明实施例1中制备得到的日盲型紫外光电探测器的Ga2O3纳米柱阵列的EDS图。其中,图6中的电子图像就是EDS扫描的区域。
从图3中可以看出,Ga2O3纳米柱阵列生长在沟道上了;图4中可以看出Ga2O3纳米柱阵列横截面为菱形,对角线的平均尺寸在400nm(长对角线)和200nm(短对角线)左右;图5中可以看出Ga2O3纳米柱阵列长度为1.02μm。
从图6~7中可以计算出氧元素的重量百分比为25.61%,Ga元素的重量百分比为74.39%,由此说明Ga原子与O原子的原子比为2:3,说明生长出来的物质为Ga2O3
图8为实施例1和对比例2中制备得到的日盲型紫外光电探测器的Ga2O3纳米柱的XRD图。对照XRD标准卡(JCPDS PDF#06-0503)可知,在33.8°、36.0°、55.1°、64.8°位置处的三个衍射峰分别对应于α-Ga2O3的(104)、(110)、(116)、(300)晶面。本申请实施例1中制备得到的日盲型紫外光电探测器的Ga2O3纳米柱在退火前为GaOOH,经过退火,才变为Ga2O3
测试实施例1~2以及对比例1中制备得到的日盲型紫外光电探测器在未加254nm的紫外光和外加50μW/cm2的光强254nm的紫外光、1V的偏压下的I-T特性曲线,结果如图9~11所示。
具体测试方法为:将实施例1以及对比例1中制备得到的日盲型紫外光电探测器分别放置在探针台上,用探针分别连接沟道两边的电极,然后添加1V的偏压,以50μW/cm2的光强254nm的紫外光对沟道进行照射,1min为一个光照周期,即30s暗30s亮。
从图9中可以看出,对比例1中制备得到的日盲型紫外光电探测器的光电流/暗电流(开关比)约为400;从图10中可以看出,实施例1中制备得到的日盲型紫外光电探测器的开关比约为1700,可以明显看出旋凃PMMA的样品的开关比大大增加了。进一步的从图9~10还可以看出,实施例1中经过旋凃PMMA制备得到的日盲型紫外光电探测器的暗电流明显降低了,从10-7A下降到了10-8A。从图11中可以看出,实施例2中制备得到的日盲型紫外光电探测器的开关比约6000。
上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种日盲型紫外光电探测器,其特征在于,包括:
导电基底,其上开设有沟道;
Ga2O3纳米柱阵列,其位于所述沟道上;
聚甲基丙烯酸甲酯层,其覆盖所述Ga2O3纳米柱阵列。
2.如权利要求1所述的日盲型紫外光电探测器,其特征在于,所述导电基底为FTO导电玻璃。
3.一种如权利要求1~2任一所述的日盲型紫外光电探测器的制备方法,其特征在于,包括以下步骤:
提供导电基底;
配制含镓前驱体溶液;
配制聚甲基丙烯酸甲酯溶液;
将导电基底位于沟道之外的部分进行遮挡,然后将导电基底置于含镓前驱体溶液中,进行水热反应,即在导电基底的沟道上制备得到Ga2O3纳米柱阵列;
将聚甲基丙烯酸甲酯溶液涂覆在导电基底的沟道上并覆盖Ga2O3纳米柱阵列,干燥后即形成聚甲基丙烯酸甲酯层。
4.如权利要求3所述的日盲型紫外光电探测器的制备方法,其特征在于,配制含镓前驱体溶液具体为:将镓盐加入至水中,混合均匀即得含镓前驱体溶液。
5.如权利要求3所述的日盲型紫外光电探测器的制备方法,其特征在于,配制聚甲基丙烯酸甲酯溶液具体为:将聚甲基丙烯酸甲酯溶于至氯苯中即得聚甲基丙烯酸甲酯溶液。
6.如权利要求3所述的日盲型紫外光电探测器的制备方法,其特征在于,将导电基底置于含镓前驱体溶液中进行水热反应之前还包括:将导电基底置于紫外臭氧仪下照射40~50min。
7.如权利要求3所述的日盲型紫外光电探测器的制备方法,其特征在于,将聚甲基丙烯酸甲酯溶液涂覆在导电基底的沟道上之前还包括:将导电基底于500~600℃下退火1~3h。
8.如权利要求5所述的日盲型紫外光电探测器的制备方法,其特征在于,所述聚甲基丙烯酸甲酯溶液的浓度为4~20mg/ml,所述水热反应的温度为130~170℃、反应时间为1~3h。
9.如权利要求3所述的日盲型紫外光电探测器的制备方法,其特征在于,将聚甲基丙烯酸甲酯溶液涂覆在导电基底的沟道上并覆盖Ga2O3纳米柱阵列,干燥后即形成聚甲基丙烯酸甲酯层具体为:将80~120μl的聚甲基丙烯酸甲酯溶液滴在沟道上并覆盖Ga2O3纳米柱阵列,然后于2000~4000r/min的转速下,旋涂20~40s,再于80~120℃下干燥20~40min,即得聚甲基丙烯酸甲酯层。
10.如权利要求4所述的日盲型紫外光电探测器的制备方法,其特征在于,所述镓盐为硝酸镓,所述硝酸镓与水的质量体积比为(0.2~0.6)g:(20~40)mL。
CN202110819572.2A 2021-07-20 2021-07-20 一种日盲型紫外光电探测器及其制备方法 Active CN113540271B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110819572.2A CN113540271B (zh) 2021-07-20 2021-07-20 一种日盲型紫外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110819572.2A CN113540271B (zh) 2021-07-20 2021-07-20 一种日盲型紫外光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN113540271A true CN113540271A (zh) 2021-10-22
CN113540271B CN113540271B (zh) 2023-03-24

Family

ID=78128971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110819572.2A Active CN113540271B (zh) 2021-07-20 2021-07-20 一种日盲型紫外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113540271B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142482A (zh) * 2011-01-10 2011-08-03 北京科技大学 肖特基接触型ZnO纳米阵列紫外光探测器件的制备方法
CN106549079A (zh) * 2016-09-30 2017-03-29 大连民族大学 一种紫外光探测器及其制备方法
CN109103282A (zh) * 2018-08-29 2018-12-28 北京镓族科技有限公司 一种基于氧化镓纳米柱阵列的光电化学型日盲紫外探测器
CN112382691A (zh) * 2020-10-16 2021-02-19 华南师范大学 含氮化镓/氧化镓纳米柱阵列的自供电探测器及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142482A (zh) * 2011-01-10 2011-08-03 北京科技大学 肖特基接触型ZnO纳米阵列紫外光探测器件的制备方法
CN106549079A (zh) * 2016-09-30 2017-03-29 大连民族大学 一种紫外光探测器及其制备方法
CN109103282A (zh) * 2018-08-29 2018-12-28 北京镓族科技有限公司 一种基于氧化镓纳米柱阵列的光电化学型日盲紫外探测器
CN112382691A (zh) * 2020-10-16 2021-02-19 华南师范大学 含氮化镓/氧化镓纳米柱阵列的自供电探测器及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAI ZHOU,ET.AL: "Self-powered CsPbBr3 nanowire photodetector with a vertical structure", 《NANO ENERGY》 *
WANG, SHUNLI,ET.AL: "beta-Ga2O3 nanorod arrays with high light-to-electron conversion for solar-blind deep ultraviolet photodetection", 《RSC ADVANCES》 *

Also Published As

Publication number Publication date
CN113540271B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
Hou et al. Review of polymorphous Ga2O3 materials and their solar-blind photodetector applications
Elkamel et al. High responsivity and 1/f noise of an ultraviolet photodetector based on Ni doped ZnO nanoparticles
Lam et al. High-sensitive ultraviolet photodetectors based on ZnO nanorods/CdS heterostructures
Han et al. Synthesis and photocatalytic application of oriented hierarchical ZnO flower-rod architectures
Wei et al. Annealing effect on the photoluminescence properties of ZnO nanorod array prepared by a PLD-assistant wet chemical method
Khayatian et al. Diameter-controlled synthesis of ZnO nanorods on Fe-doped ZnO seed layer and enhanced photodetection performance
Shaikh et al. ZnO nanorod based highly selective visible blind ultra-violet photodetector and highly sensitive NO2 gas sensor
Samadi et al. Role of CdO addition on the growth and photocatalytic activity of electrospun ZnO nanofibers: UV vs. visible light
Feng et al. Alumina anchored CQDs/TiO 2 nanorods by atomic layer deposition for efficient photoelectrochemical water splitting under solar light
Zuo et al. A transparent, self-powered photodetector based on p-CuI/n-TiO2 heterojunction film with high on–off ratio
Devi et al. SILAR-coated Mg-doped ZnO thin films for ammonia vapor sensing applications
Yang et al. Photoresponse of hydrothermally grown lateral ZnO nanowires
Abdulrahman et al. Optimization and characterization of SILAR synthesized ZnO nanorods for UV photodetector sensor
Wang et al. Synthesis and their photocatalytic properties of Ni-doped ZnO hollow microspheres
Shkir Enhancement in optical and electrical properties of ZnO thin films via Co doping for photodetector applications
Marappan et al. Tunable visible light enhanced triethylamine adsorption on pH dependent ZnO nanostructures: An investigation by scanning Kelvin probe
Liu et al. High-detectivity and sensitive UVA photodetector of polycrystalline CH3NH3PbCl3 improved by α-Ga2O3 nanorod array
CN110787814B (zh) 一种分层中空ZnCdS/MoS2异质结笼及其制备与应用
Fei et al. Improved responsivity of MgZnO film ultraviolet photodetectors modified with vertical arrays ZnO nanowires by light trapping effect
Dwivedi et al. Photoconductivity and surface chemical analysis of ZnO thin films deposited by solution-processing techniques for nano and microstructure fabrication
CN113540271B (zh) 一种日盲型紫外光电探测器及其制备方法
Wang et al. Visible light-activated ethanol sensor based on flower-like N3-loaded ZnO composites
Khan et al. Enhancement in the photonic response of ZnO nanorod–gated AlGaN/GaN HEMTs with N2O plasma treatment
Tang et al. Complete surface coverage of ZnO nanorod arrays by pulsed electrodeposited CuInS 2 for visible light energy conversion
Nurfani et al. UV sensitivity enhancement in ZnO: Cu films through simple post-annealing treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant