CN113537177A - 一种基于视觉Transformer的洪涝灾害监测与灾情分析方法 - Google Patents
一种基于视觉Transformer的洪涝灾害监测与灾情分析方法 Download PDFInfo
- Publication number
- CN113537177A CN113537177A CN202111087346.6A CN202111087346A CN113537177A CN 113537177 A CN113537177 A CN 113537177A CN 202111087346 A CN202111087346 A CN 202111087346A CN 113537177 A CN113537177 A CN 113537177A
- Authority
- CN
- China
- Prior art keywords
- double
- flood
- time
- disaster
- remote sensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/182—Network patterns, e.g. roads or rivers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0475—Generative networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/62—Extraction of image or video features relating to a temporal dimension, e.g. time-based feature extraction; Pattern tracking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/7715—Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/13—Satellite images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A10/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
- Y02A10/40—Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Multimedia (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Astronomy & Astrophysics (AREA)
- Remote Sensing (AREA)
- Probability & Statistics with Applications (AREA)
- Biodiversity & Conservation Biology (AREA)
- Alarm Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111087346.6A CN113537177B (zh) | 2021-09-16 | 2021-09-16 | 一种基于视觉Transformer的洪涝灾害监测与灾情分析方法 |
US17/857,147 US11521379B1 (en) | 2021-09-16 | 2022-07-04 | Method for flood disaster monitoring and disaster analysis based on vision transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111087346.6A CN113537177B (zh) | 2021-09-16 | 2021-09-16 | 一种基于视觉Transformer的洪涝灾害监测与灾情分析方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113537177A true CN113537177A (zh) | 2021-10-22 |
CN113537177B CN113537177B (zh) | 2021-12-14 |
Family
ID=78092749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111087346.6A Active CN113537177B (zh) | 2021-09-16 | 2021-09-16 | 一种基于视觉Transformer的洪涝灾害监测与灾情分析方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11521379B1 (zh) |
CN (1) | CN113537177B (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113869290A (zh) * | 2021-12-01 | 2021-12-31 | 中化学交通建设集团有限公司 | 一种基于人工智能技术的消防通道占用识别方法和装置 |
CN114373129A (zh) * | 2021-12-30 | 2022-04-19 | 山东锋士信息技术有限公司 | 基于域自适应和变化检测的河湖四乱遥感监测方法及系统 |
CN114581771A (zh) * | 2022-02-23 | 2022-06-03 | 南京信息工程大学 | 一种高分异源遥感坍塌建筑物检测方法 |
CN114679232A (zh) * | 2022-04-06 | 2022-06-28 | 西南交通大学 | 一种基于数据驱动的光载无线传输链路建模方法 |
CN115953351A (zh) * | 2022-10-20 | 2023-04-11 | 广州市城市规划勘测设计研究院 | 一种耕地洪涝受灾分析方法、装置、设备及存储介质 |
CN116310581A (zh) * | 2023-03-29 | 2023-06-23 | 南京信息工程大学 | 一种半监督变化检测洪涝识别方法 |
CN116778395A (zh) * | 2023-08-21 | 2023-09-19 | 成都理工大学 | 基于深度学习的山洪漫流视频识别监测方法 |
CN117152561A (zh) * | 2023-09-08 | 2023-12-01 | 中国水利水电科学研究院 | 一种洪涝灾害重置成本遥感样本集构建及更新方法 |
CN118230186A (zh) * | 2024-04-09 | 2024-06-21 | 长江水利委员会长江科学院 | 一种可见光遥感影像水体变化检测方法 |
CN118467978A (zh) * | 2024-07-09 | 2024-08-09 | 南京信息工程大学 | 一种基于ST-Transformer的暴雨预测方法、系统、介质及设备 |
CN118570739A (zh) * | 2024-08-02 | 2024-08-30 | 自然资源部第二海洋研究所 | 一种海洋环境质量评价方法及系统 |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7095046B2 (ja) * | 2020-09-30 | 2022-07-04 | 楽天グループ株式会社 | 情報処理システム、情報処理装置、及び情報処理方法 |
CN116045104B (zh) * | 2023-01-10 | 2024-05-10 | 浙江伟众科技有限公司 | 空调软硬管连接密封装置及其方法 |
CN115907574B (zh) * | 2023-01-10 | 2023-08-15 | 中国水利水电科学研究院 | 一种流域性暴雨洪涝承灾体重置成本遥感模拟方法 |
CN116052007B (zh) * | 2023-03-30 | 2023-08-11 | 山东锋士信息技术有限公司 | 一种融合时间和空间信息的遥感图像变化检测方法 |
CN116091492B (zh) * | 2023-04-06 | 2023-07-14 | 中国科学技术大学 | 一种图像变化像素级检测方法与系统 |
CN116135797B (zh) * | 2023-04-19 | 2023-07-04 | 江苏海峡环保科技发展有限公司 | 污水处理智能控制系统 |
CN116363521B (zh) * | 2023-06-02 | 2023-08-18 | 山东科技大学 | 一种遥感影像语义预测方法 |
CN116385889B (zh) * | 2023-06-07 | 2023-09-19 | 国网电力空间技术有限公司 | 基于铁路识别的电力巡检方法、装置、电子设备 |
CN116434072B (zh) * | 2023-06-12 | 2023-08-18 | 山东省国土空间生态修复中心(山东省地质灾害防治技术指导中心、山东省土地储备中心) | 基于多源数据的地质灾害早期识别方法、装置 |
CN116704350B (zh) * | 2023-06-16 | 2024-01-30 | 浙江时空智子大数据有限公司 | 基于高分辨遥感影像水域变化监测方法、系统及电子设备 |
CN116546431B (zh) * | 2023-07-04 | 2023-09-19 | 北京江云智能科技有限公司 | 一种基于北斗全网通多网融合数据采集通信系统及方法 |
TWI846598B (zh) * | 2023-09-15 | 2024-06-21 | 華碩電腦股份有限公司 | 三維表面重建方法 |
CN117152618B (zh) * | 2023-10-16 | 2024-08-30 | 北京邮电大学 | 遥感图像中时敏目标变化检测方法及装置 |
CN117132902B (zh) * | 2023-10-24 | 2024-02-02 | 四川省水利科学研究院 | 基于自监督学习算法的卫星遥感影像水体识别方法及系统 |
CN117310705B (zh) * | 2023-11-28 | 2024-02-09 | 中国石油大学(华东) | 一种基于双极化sar影像的洪涝灾害快速检测方法 |
CN117975287B (zh) * | 2024-01-12 | 2024-09-24 | 成都理工大学 | 用于滑坡灾害InSAR早期识别的关键参数分析方法 |
CN118097449B (zh) * | 2024-02-23 | 2024-08-16 | 中科星睿科技(北京)有限公司 | 基于多源遥感的洪涝灾害监测方法、装置和电子设备 |
CN118114827A (zh) * | 2024-03-07 | 2024-05-31 | 江苏省水利勘测设计研究院有限公司 | 一种基于水文水动力学模型的平原河网地区洪涝灾害预报预警方法及系统 |
CN118072479A (zh) * | 2024-03-22 | 2024-05-24 | 山东科技大学 | 基于物联网技术的灾害应急预警方法、系统、设备及介质 |
CN118091657B (zh) * | 2024-04-28 | 2024-07-02 | 水利部交通运输部国家能源局南京水利科学研究院 | 基于分类三元搭配的流域洪涝淹没范围集成识别方法及系统 |
CN118397480B (zh) * | 2024-06-28 | 2024-08-30 | 华东交通大学 | 一种用于双时相遥感图像语义变化检测的网络模型 |
CN118470659B (zh) * | 2024-07-15 | 2024-09-24 | 南昌航空大学 | 城市监控视角下基于去噪扩散模型的内涝检测方法与装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108257154A (zh) * | 2018-01-12 | 2018-07-06 | 西安电子科技大学 | 基于区域信息和cnn的极化sar图像变化检测方法 |
CN112686086A (zh) * | 2019-10-19 | 2021-04-20 | 中国科学院空天信息创新研究院 | 一种基于光学-sar协同响应的作物分类方法 |
CN112750138A (zh) * | 2021-01-14 | 2021-05-04 | 黄河勘测规划设计研究院有限公司 | 一种黄河流域淤地坝空间分布识别方法 |
CN113191285A (zh) * | 2021-05-08 | 2021-07-30 | 山东大学 | 基于卷积神经网络和Transformer的河湖遥感图像分割方法及系统 |
WO2021151344A1 (zh) * | 2020-07-23 | 2021-08-05 | 平安科技(深圳)有限公司 | 歌声合成方法、装置及计算机可读存储介质 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG10201403287VA (en) * | 2014-06-16 | 2016-01-28 | Ats Group Ip Holdings Ltd | Flash flooding detection system |
US11907819B2 (en) * | 2019-11-20 | 2024-02-20 | University Of Connecticut | Systems and methods to generate high resolution flood maps in near real time |
US11691646B2 (en) * | 2020-02-26 | 2023-07-04 | Here Global B.V. | Method and apparatus for generating a flood event warning for a flood prone location |
CA3132706A1 (en) * | 2020-10-05 | 2022-04-05 | Bank Of Montreal | Systems and methods for generating flood hazard estimation using machine learning model and satellite data |
US20220156636A1 (en) * | 2020-11-13 | 2022-05-19 | International Business Machines Corporation | Efficient flood waters analysis from spatio-temporal data fusion and statistics |
-
2021
- 2021-09-16 CN CN202111087346.6A patent/CN113537177B/zh active Active
-
2022
- 2022-07-04 US US17/857,147 patent/US11521379B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108257154A (zh) * | 2018-01-12 | 2018-07-06 | 西安电子科技大学 | 基于区域信息和cnn的极化sar图像变化检测方法 |
CN112686086A (zh) * | 2019-10-19 | 2021-04-20 | 中国科学院空天信息创新研究院 | 一种基于光学-sar协同响应的作物分类方法 |
WO2021151344A1 (zh) * | 2020-07-23 | 2021-08-05 | 平安科技(深圳)有限公司 | 歌声合成方法、装置及计算机可读存储介质 |
CN112750138A (zh) * | 2021-01-14 | 2021-05-04 | 黄河勘测规划设计研究院有限公司 | 一种黄河流域淤地坝空间分布识别方法 |
CN113191285A (zh) * | 2021-05-08 | 2021-07-30 | 山东大学 | 基于卷积神经网络和Transformer的河湖遥感图像分割方法及系统 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113869290A (zh) * | 2021-12-01 | 2021-12-31 | 中化学交通建设集团有限公司 | 一种基于人工智能技术的消防通道占用识别方法和装置 |
CN113869290B (zh) * | 2021-12-01 | 2022-02-25 | 中化学交通建设集团有限公司 | 一种基于人工智能技术的消防通道占用识别方法和装置 |
CN114373129A (zh) * | 2021-12-30 | 2022-04-19 | 山东锋士信息技术有限公司 | 基于域自适应和变化检测的河湖四乱遥感监测方法及系统 |
CN114581771A (zh) * | 2022-02-23 | 2022-06-03 | 南京信息工程大学 | 一种高分异源遥感坍塌建筑物检测方法 |
CN114679232A (zh) * | 2022-04-06 | 2022-06-28 | 西南交通大学 | 一种基于数据驱动的光载无线传输链路建模方法 |
CN114679232B (zh) * | 2022-04-06 | 2023-04-07 | 西南交通大学 | 一种基于数据驱动的光载无线传输链路建模方法 |
CN115953351A (zh) * | 2022-10-20 | 2023-04-11 | 广州市城市规划勘测设计研究院 | 一种耕地洪涝受灾分析方法、装置、设备及存储介质 |
CN116310581A (zh) * | 2023-03-29 | 2023-06-23 | 南京信息工程大学 | 一种半监督变化检测洪涝识别方法 |
CN116778395A (zh) * | 2023-08-21 | 2023-09-19 | 成都理工大学 | 基于深度学习的山洪漫流视频识别监测方法 |
CN116778395B (zh) * | 2023-08-21 | 2023-10-24 | 成都理工大学 | 基于深度学习的山洪漫流视频识别监测方法 |
CN117152561A (zh) * | 2023-09-08 | 2023-12-01 | 中国水利水电科学研究院 | 一种洪涝灾害重置成本遥感样本集构建及更新方法 |
CN117152561B (zh) * | 2023-09-08 | 2024-03-19 | 中国水利水电科学研究院 | 一种洪涝灾害重置成本遥感样本集构建及更新方法 |
CN118230186A (zh) * | 2024-04-09 | 2024-06-21 | 长江水利委员会长江科学院 | 一种可见光遥感影像水体变化检测方法 |
CN118467978A (zh) * | 2024-07-09 | 2024-08-09 | 南京信息工程大学 | 一种基于ST-Transformer的暴雨预测方法、系统、介质及设备 |
CN118467978B (zh) * | 2024-07-09 | 2024-10-01 | 南京信息工程大学 | 一种基于ST-Transformer的暴雨预测方法、系统、介质及设备 |
CN118570739A (zh) * | 2024-08-02 | 2024-08-30 | 自然资源部第二海洋研究所 | 一种海洋环境质量评价方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113537177B (zh) | 2021-12-14 |
US11521379B1 (en) | 2022-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113537177B (zh) | 一种基于视觉Transformer的洪涝灾害监测与灾情分析方法 | |
CN111639748B (zh) | 一种基于lstm-bp时空组合模型的流域污染物通量预测方法 | |
WO2023103587A1 (zh) | 短临降水预测方法及装置 | |
Xu et al. | High-resolution remote sensing image change detection combined with pixel-level and object-level | |
CN112597815A (zh) | 一种基于Group-G0模型的合成孔径雷达图像舰船检测方法 | |
CN105787501A (zh) | 输电线路走廊区域自动选择特征的植被分类方法 | |
CN113642475B (zh) | 基于卷积神经网络模型的大西洋飓风强度估算方法 | |
CN114627389B (zh) | 一种基于多时相光学遥感影像的筏式养殖区提取方法 | |
CN111178149A (zh) | 一种基于残差金字塔网络的遥感影像水体自动提取方法 | |
CN109034184A (zh) | 一种基于深度学习的均压环检测识别方法 | |
CN114943893B (zh) | 一种土地覆盖分类的特征增强方法 | |
Dianati Tilaki et al. | Rangelands production modeling using an artificial neural network (ANN) and geographic information system (GIS) in Baladeh rangelands, North Iran | |
CN116188993A (zh) | 一种基于多任务学习的遥感图像耕地地块分割方法 | |
CN117975282B (zh) | 基于多元光学特征融合的紫菜养殖区遥感提取方法及系统 | |
CN113591633A (zh) | 基于动态自注意力Transformer的面向对象土地利用信息解译方法 | |
CN116415730A (zh) | 一种预测水位的融合自注意力机制时空深度学习模型 | |
CN111242134A (zh) | 一种基于特征自适应学习的遥感影像地物分割方法 | |
CN114119630B (zh) | 基于耦合图谱特征的海岸线深度学习遥感提取方法 | |
CN111523732A (zh) | 一种日本鳀冬季渔场模型筛选预测方法 | |
Bao et al. | E-unet++: A semantic segmentation method for remote sensing images | |
CN117409320A (zh) | 一种基于卫星遥感的流域洪水监测方法、系统及存储介质 | |
CN117409020A (zh) | 一种基于地基的全天空图像云量计算方法和系统 | |
CN116612387A (zh) | 一种基于改进的Segformer网络与遥感影像的地表水水体提取方法、系统、设备及介质 | |
CN116206210A (zh) | 一种基于NAS-Swin的遥感影像农业大棚提取方法 | |
Wang et al. | Fuzzy integral based information fusion for water quality monitoring using remote sensing data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20211022 Assignee: NANJING HETU GEOGRAPHIC INFORMATION ENGINEERING CO.,LTD. Assignor: Nanjing University of Information Science and Technology Contract record no.: X2022980023745 Denomination of invention: A Method of Flood Monitoring and Disaster Analysis Based on Visual Transformer Granted publication date: 20211214 License type: Common License Record date: 20221130 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20211022 Assignee: Nanjing Blueprint Data Analysis Co.,Ltd. Assignor: Nanjing University of Information Science and Technology Contract record no.: X2022980023780 Denomination of invention: A Method of Flood Monitoring and Disaster Analysis Based on Visual Transformer Granted publication date: 20211214 License type: Common License Record date: 20221205 |
|
EE01 | Entry into force of recordation of patent licensing contract |