CN113517797A - Mixed stator pole stator permanent magnet motor - Google Patents

Mixed stator pole stator permanent magnet motor Download PDF

Info

Publication number
CN113517797A
CN113517797A CN202110690963.9A CN202110690963A CN113517797A CN 113517797 A CN113517797 A CN 113517797A CN 202110690963 A CN202110690963 A CN 202110690963A CN 113517797 A CN113517797 A CN 113517797A
Authority
CN
China
Prior art keywords
stator
permanent magnet
pole
poles
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110690963.9A
Other languages
Chinese (zh)
Inventor
阳辉
刘杨阳
林鹤云
陈晓敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202110690963.9A priority Critical patent/CN113517797A/en
Publication of CN113517797A publication Critical patent/CN113517797A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
    • H02K21/44Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with armature windings wound upon the magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

The invention discloses a mixed stator pole stator permanent magnet motor which comprises a stator, a rotor, an armature winding and a non-magnetic rotating shaft, wherein the rotor is arranged around the outside of the non-magnetic rotating shaft, the stator is arranged around the outside of the rotor, the stator comprises a stator yoke and a plurality of stator poles which are arranged on the inner side of the stator yoke and are of two different structures at intervals, namely a first stator pole and a second stator pole, the first stator pole comprises two iron core teeth and a first permanent magnet clamped between the two iron core teeth, the first permanent magnet is in a long strip shape and is magnetized in a tangential direction, the second stator pole comprises an iron core salient pole and a second permanent magnet arranged adjacent to the iron core salient pole, the second permanent magnet is in a tile shape and is magnetized in a radial direction, and the armature winding is wound on the first stator pole. The invention has simple structure and strong robustness, can reduce the permanent magnet consumption and improve the torque capacity.

Description

Mixed stator pole stator permanent magnet motor
Technical Field
The invention relates to a permanent magnet motor, in particular to a hybrid stator pole stator permanent magnet motor.
Background
Permanent magnet motors are often divided into rotor permanent magnet motors and stator permanent magnet motors according to the permanent magnet position, with rotor permanent magnet motors developing earlier and more mature. In recent decades, with the continuous development of permanent magnet materials and power electronic technologies, the stator permanent magnet motor has the characteristics of body height robustness and high torque density, so that the stator permanent magnet motor is widely concerned and researched by scientific researchers. The most common three stator permanent magnet motors are doubly salient permanent magnet motors, flux switching motors and flux reversing motors.
The traditional magnetic flux switching motor utilizes the characteristic of high magnetic energy product of a permanent magnet and has magnetic-gathering type permanent magnet arrangement, so that the motor has the characteristics of high power density and high efficiency, but the whole permanent magnet penetrates through a stator core, the using amount of the permanent magnet is large, the structure limits the area of a stator slot on one hand and further limits final permanent magnet torque, and on the other hand, the permanent magnet is expensive and generally occupies a remarkable position in the motor cost, so that the cost of the magnetic flux switching motor is also high finally, and the large-scale diffusion and application of the magnetic flux switching motor are not facilitated.
The traditional flux reversal motor permanent magnet body surface is pasted at the lower end of the stator tooth, the structure is simple, the installation is convenient, the torque density is high, compared with the traditional flux switching motor, the permanent magnet consumption is less, but the flux leakage between the permanent magnets is larger, and the final torque output capacity is limited. The flux reversal motor adopting the alternating pole structure can reduce flux leakage between permanent magnets to a certain extent so as to further improve torque output and further reduce the permanent magnet consumption. The torque output capability of the alternating pole flux reversing permanent magnet machine is still comparable to that of the conventional flux switching permanent magnet machine.
Disclosure of Invention
The purpose of the invention is as follows: aiming at the problems in the prior art, the invention provides a mixed stator pole stator permanent magnet motor which is high in torque density, small in permanent magnet consumption and small in flux leakage between permanent magnet poles.
The technical scheme is as follows: the invention discloses a mixed stator pole stator permanent magnet motor which comprises a stator, a rotor, an armature winding and a non-magnetic rotating shaft, wherein the rotor is arranged around the outside of the non-magnetic rotating shaft, the stator is arranged around the outside of the rotor, the stator comprises a stator yoke and a plurality of first stator poles and second stator poles, the first stator poles and the second stator poles are positioned on the inner side of the stator yoke and are arranged at intervals, the first stator poles comprise two iron core teeth and a first permanent magnet clamped between the two iron core teeth, the second stator poles comprise iron core salient poles and second permanent magnets arranged adjacent to the iron core salient poles, and the armature winding is wound on the first stator poles.
Furthermore, the magnetizing direction of the first permanent magnet on the first stator pole is tangential, and the magnetizing directions of the first permanent magnets of two adjacent first stator poles are opposite.
Furthermore, the first permanent magnet on the first stator pole is integrally in a strip shape.
Furthermore, the magnetizing directions of the second permanent magnets on the second stator poles are radial, and the magnetizing directions of the second permanent magnets of two adjacent second stator poles are opposite.
Further, the second permanent magnet on the second stator pole is integrally tile-shaped.
Further, the core salient poles and the second permanent magnets are adjacent to the rotor.
Further, the core salient poles and the second permanent magnets of two adjacent second stator poles are arranged in an opposite order.
Has the advantages that: compared with the prior art, the invention has the following remarkable advantages:
1. the permanent magnet and the armature winding are arranged on the stator, so that the heat dissipation of the permanent magnet and the winding is facilitated, the rotor is the same as a salient pole rotor of the switched reluctance motor, and the permanent magnet and armature winding structure is simple and firm and has strong robustness.
2. Compared with the traditional flux switching motor, the stator slot area is increased, and the permanent magnet consumption is obviously reduced.
3. The invention adopts the mixture of two different stator pole structures, can improve the torque density, reduce the leakage between permanent magnet poles, improve the permanent magnet utilization rate, and has obvious application prospect in the aspects of household appliances, low-speed direct drive and the like.
Drawings
FIG. 1 is a cross-sectional view of an electric machine of the present invention;
FIG. 2 is a magnetic flux distribution plot of the motor of the present invention with maximum reversal of the A-phase flux linkage;
fig. 3 is a magnetic flux distribution diagram when the a-phase flux linkage of the motor of the present invention is maximum in the forward direction.
Detailed Description
The present invention will be further described with reference to the following examples.
The present embodiment provides a hybrid stator pole stator permanent magnet motor, as shown in fig. 1, including a stator 1, a rotor 2, an armature winding 3, and a non-magnetic rotating shaft 4, where the rotor 2 is disposed around the outside of the non-magnetic rotating shaft 4, and the stator 1 is disposed around the outside of the rotor 2. The stator 1 is a salient pole structure, and specifically includes a stator yoke 1.1 and a plurality of first stator poles 1.2 and second stator poles 1.3 that are located the stator yoke 1.1 inboard and set up at intervals, and first stator pole 1.2 includes two iron core teeth 1.21 and presss from both sides the first permanent magnet 1.22 in the middle of two iron core teeth 1.21, and first permanent magnet 1.22 magnetizes the direction for the tangent, and the first permanent magnet magnetizes opposite direction of two adjacent first stator poles. The second stator pole 1.3 comprises an iron core salient pole 1.31 and a second permanent magnet 1.32 arranged adjacent to the iron core salient pole 1.31, the iron core salient pole 1.31 and the second permanent magnet 1.32 are close to the rotor 2, the second permanent magnet 1.32 is a surface-mounted permanent magnet, the magnetizing directions are radial, the magnetizing directions of the second permanent magnets of two adjacent second stator poles are opposite, and the arrangement sequence of the iron core salient poles of the two adjacent second stator poles and the second permanent magnets is opposite. The rotor 2 is a salient pole structure and comprises a rotor yoke 2.2 and rotor teeth 2.1 positioned on the outer side of the rotor yoke 2.2, and permanent magnets and excitation windings are not arranged on the rotor teeth. Both the first permanent magnet 1.22 and the second permanent magnet 1.32 are neodymium iron boron permanent magnets. The armature winding 3 is a concentrated winding and is wound on the first stator pole 1.2.
The motor has the following operation principle:
as shown in fig. 2, the a-phase flux linkage reaches a reverse maximum when the rotor tooth 2.1 centerline approaches the core tooth centerline on one side of the first stator pole 1.2, and as shown in fig. 3, the a-phase flux linkage reaches a forward maximum when the rotor tooth 2.1 centerline approaches the core tooth centerline on the other side of the first stator pole 1.2. And the two positions in the middle of the two positions can reach the zero value of the A-phase flux linkage. When the rotor rotates, the phase flux linkage is alternated positively and negatively to induce an alternating opposite potential, and when three-phase sine alternating current with corresponding frequency is introduced, stable electromagnetic torque can be generated.
The above is the scheme when the number of rotor teeth is odd, and when the number of rotor teeth is even, the basic operation principle is also applicable, but the opposite potential harmonic wave is obviously increased, and the torque ripple is increased therewith.
The permanent magnets on the first stator pole and the second stator pole are arranged in two modes, wherein one mode is the permanent magnet arrangement mode shown in fig. 1, the permanent magnets on the second stator pole and the permanent magnets on the adjacent first stator pole are opposite in polarity and are defined as reverse series in a series magnetic circuit formed by the stator yoke 1.1, and the other mode is that the magnetizing directions of the permanent magnets on the second stator pole in fig. 1 are all opposite, the magnetizing directions of the permanent magnets on the first stator pole are unchanged, at the moment, the permanent magnets on the second stator pole and the permanent magnets on the adjacent first stator pole are identical in polarity and are defined as positive series in a series magnetic circuit formed by the stator yoke 1.1. The anti-series permanent magnet arrangement is preferred over the positive series arrangement, which produces greater torque output capability, so the anti-series arrangement shown in fig. 1 is preferred.
The permanent magnet consumption of the invention is obviously reduced compared with the traditional flux switching motor with the same size, the cost can be effectively reduced, and the final torque capacity is improved due to the increase of the groove area and the change of the magnetic circuit, and the utilization rate of the permanent magnet is further improved.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims (7)

1. The utility model provides a mix stator pole stator permanent-magnet machine, includes stator, rotor, armature winding and the pivot of not leading magnetism, the rotor centers on the outside setting of pivot of not leading magnetism, the stator centers on the outside setting of rotor, its characterized in that: the stator comprises a stator yoke and a plurality of first stator poles and second stator poles, the first stator poles and the second stator poles are located on the inner side of the stator yoke and are arranged at intervals, the first stator poles comprise two iron core teeth and first permanent magnets clamped between the two iron core teeth, the second stator poles comprise iron core salient poles and second permanent magnets arranged adjacent to the iron core salient poles, and armature windings are wound on the first stator poles.
2. The hybrid stator pole stator permanent magnet machine of claim 1, wherein: the magnetizing directions of the first permanent magnets on the first stator poles are tangential, and the magnetizing directions of the first permanent magnets of two adjacent first stator poles are opposite.
3. The hybrid stator pole stator permanent magnet machine of claim 1, wherein: the first permanent magnet on the first stator pole is integrally in a strip shape.
4. The hybrid stator pole stator permanent magnet machine of claim 1, wherein: and the magnetizing directions of the second permanent magnets on the second stator poles are radial, and the magnetizing directions of the second permanent magnets of two adjacent second stator poles are opposite.
5. The hybrid stator pole stator permanent magnet machine of claim 1, wherein: and the second permanent magnet on the second stator pole is integrally tile-shaped.
6. The hybrid stator pole stator permanent magnet machine of claim 1, wherein: the core salient poles and the second permanent magnets are adjacent to the rotor.
7. The hybrid stator pole stator permanent magnet machine of claim 1, wherein: the arrangement order of the iron core salient poles and the second permanent magnets of two adjacent second stator poles is opposite.
CN202110690963.9A 2021-06-22 2021-06-22 Mixed stator pole stator permanent magnet motor Pending CN113517797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110690963.9A CN113517797A (en) 2021-06-22 2021-06-22 Mixed stator pole stator permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110690963.9A CN113517797A (en) 2021-06-22 2021-06-22 Mixed stator pole stator permanent magnet motor

Publications (1)

Publication Number Publication Date
CN113517797A true CN113517797A (en) 2021-10-19

Family

ID=78065983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110690963.9A Pending CN113517797A (en) 2021-06-22 2021-06-22 Mixed stator pole stator permanent magnet motor

Country Status (1)

Country Link
CN (1) CN113517797A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114567137A (en) * 2022-03-29 2022-05-31 安徽大学 Stator mixed magnetic pole permanent magnet motor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277053A (en) * 2008-05-13 2008-10-01 东南大学 Mixed field excitation type flux switch motor
GB0904691D0 (en) * 2009-03-18 2009-04-29 Imra Europ S A S Uk Res Ct An electrical machine
CN101494395A (en) * 2009-02-27 2009-07-29 东南大学 Permanent magnet motor of stator
CN104410180A (en) * 2014-12-11 2015-03-11 东南大学 E-shaped stator core flux switching type hybrid permanent magnet memory motor
CN104578477A (en) * 2014-12-11 2015-04-29 东南大学 Mixed permanent magnetic pole-alternating and magnetic flux-switching memory motor and winding switching magnetism-weakening control method thereof
CN110061576A (en) * 2018-12-26 2019-07-26 南方科技大学 Permanent magnet excitation motor
CN110112879A (en) * 2019-04-30 2019-08-09 华中科技大学 A kind of two-sided permanent magnet type synchronous motor
CN110829770A (en) * 2019-10-24 2020-02-21 东南大学 Hybrid excitation type magnetic flux reverse motor with asymmetric stator poles
CN111082548A (en) * 2020-01-10 2020-04-28 南京航空航天大学 Stator modular hybrid excitation alternating pole magnetic flux reverse motor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277053A (en) * 2008-05-13 2008-10-01 东南大学 Mixed field excitation type flux switch motor
CN101494395A (en) * 2009-02-27 2009-07-29 东南大学 Permanent magnet motor of stator
GB0904691D0 (en) * 2009-03-18 2009-04-29 Imra Europ S A S Uk Res Ct An electrical machine
CN104410180A (en) * 2014-12-11 2015-03-11 东南大学 E-shaped stator core flux switching type hybrid permanent magnet memory motor
CN104578477A (en) * 2014-12-11 2015-04-29 东南大学 Mixed permanent magnetic pole-alternating and magnetic flux-switching memory motor and winding switching magnetism-weakening control method thereof
CN110061576A (en) * 2018-12-26 2019-07-26 南方科技大学 Permanent magnet excitation motor
CN110112879A (en) * 2019-04-30 2019-08-09 华中科技大学 A kind of two-sided permanent magnet type synchronous motor
CN110829770A (en) * 2019-10-24 2020-02-21 东南大学 Hybrid excitation type magnetic flux reverse motor with asymmetric stator poles
CN111082548A (en) * 2020-01-10 2020-04-28 南京航空航天大学 Stator modular hybrid excitation alternating pole magnetic flux reverse motor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUI YANG: "Comparative Study of Novel Variable-Flux Memory Machines Having Stator Permanent Magnet Topologies", 《IEEE TRANSACTIONS ON MAGNETICS 》 *
阳辉: "新型磁通切换型可变磁通记忆电机研究", 《中国优秀博士学位论文》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114567137A (en) * 2022-03-29 2022-05-31 安徽大学 Stator mixed magnetic pole permanent magnet motor

Similar Documents

Publication Publication Date Title
CN109217597B (en) Composite excitation amorphous alloy axial flux motor
CN109194082B (en) Amorphous alloy axial flux motor with wide field weakening speed expansion and low rotor loss
CN109995211B (en) Stator homopolar hybrid permanent magnet memory motor
CN111181266B (en) Direct current bias type magnetic flux reverse permanent magnet motor
CN105162302B (en) A kind of low speed high torque mixing magnetic material fault tolerant permanent magnet machine
CN111082548A (en) Stator modular hybrid excitation alternating pole magnetic flux reverse motor
CN101651395A (en) Sine wave current self-starting three-phase rare earth permanent-magnetism synchronous motor
CN113014009B (en) Permanent magnet series-parallel type variable magnetic circuit adjustable magnetic flux motor
CN109802501A (en) A kind of divided stator carnassial tooth flux switching motor
CN107579637A (en) A kind of axial radial flux magneto
CN111313576B (en) Modularized permanent magnet motor
CN103248189A (en) Bipolar stator-surface-mounting type permanent magnet motor
CN111262358A (en) Low-torque ripple magnetic flux reverse motor
CN111555492B (en) Parallel-magnetizing small-rare-earth-combination local Halbach array high-speed permanent magnet motor
CN113517797A (en) Mixed stator pole stator permanent magnet motor
CN201478970U (en) Permanent magnet motor suitable for high-speed operation
CN205039675U (en) Switched reluctance motor with piecemeal rotor
CN201563010U (en) Permanent magnet motor suitable for constant power flat speed controlling running stator
CN217882984U (en) Magnetic flux reverse transverse flux permanent magnet motor
CN101552526A (en) A magnetic field enhancement type permanent magnet switch magnetic linkage motor
CN111262359A (en) High-torque-density flux reversal motor
CN115714485A (en) Separated type alternating pole permanent magnet motor based on double magnetic field modulation effect
CN203788059U (en) Parallel-type hybrid magnet motor
CN112713668B (en) Three-phase double-salient-pole motor with unevenly distributed stator pole widths
CN201194346Y (en) Tangential magnetic steel permanent magnet motor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211019

RJ01 Rejection of invention patent application after publication