CN113514516A - 一种碳纸自支撑的电极材料、制备方法及其在检测葡萄糖浓度中的用途 - Google Patents

一种碳纸自支撑的电极材料、制备方法及其在检测葡萄糖浓度中的用途 Download PDF

Info

Publication number
CN113514516A
CN113514516A CN202110223605.7A CN202110223605A CN113514516A CN 113514516 A CN113514516 A CN 113514516A CN 202110223605 A CN202110223605 A CN 202110223605A CN 113514516 A CN113514516 A CN 113514516A
Authority
CN
China
Prior art keywords
fenni
carbon paper
glucose
chloride
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110223605.7A
Other languages
English (en)
Inventor
周嵬
王海涛
何娟
邵宗平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202110223605.7A priority Critical patent/CN113514516A/zh
Publication of CN113514516A publication Critical patent/CN113514516A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明公开了一种用于检测葡萄糖的自支撑非酶电化学传感材料及其制备方法,具体是将具有优异的催化特性反钙钛矿电极材料与良好导电性的碳纸自支撑材料相结合,能够快速精准的测定葡萄糖的含量,具有出色的电化学传感能力。首先对碳纸基底进行特定方法处理,改善碳纸基底表面的疏水性,然后通过水热法以及氨化在碳基底表面生长一层铁氮镍钴(FeNNi2Co/CP)或铁氮镍(FeNNi3/CP)反钙钛矿材料层,可以将此自支撑电极直接作为工作电极进行传感。本发明合成过程简单,便于操作,易于携带,少量的钴掺杂提高了其传感性能,能够兼具高灵敏度与较宽的检测范围。

Description

一种碳纸自支撑的电极材料、制备方法及其在检测葡萄糖浓 度中的用途
技术领域
本发明涉及电化学传感技术领域,具体为反钙钛矿FeNNi2Co/CP与的制备并且用于葡萄糖的高灵敏度检测方法以及反钙钛矿FeNNi3/CP对葡萄糖进行检测。
背景技术
近年来,高效,灵敏的葡萄糖监测在食品,环境和疾病分析诊断领域中发挥了重要作用。例如,糖尿病是最危险的慢性疾病之一,会产生人体葡萄糖代谢紊乱,每年有四百万人因此而死亡。此外,甜点或糖类饮料也是现代生活方式中肥胖的主要原因之一,食物中过度的糖份会转化为葡萄糖,并最终堆积变成人体脂肪。全世界约有19亿成年人超重或肥胖,从而会产生各种疾病的隐患。因此为了准确测定葡萄糖的含量,开发快速准确的葡萄糖传感器是非常有必要的。在传统方法中,例如电容检测,表面等离振子共振,光谱仪和荧光法等等,这些方法相较于电化学传感方法总是需要较长的工作时间,复杂的操作程序,价格昂贵并且稳定性差,因此选择性高和成本低的电化学检测法引起了许多科研者的关注。
金属基化合物,例如金属氧化物,硫化物,磷化物,碳化物等等,由于它们具有优异的电催化能力,因此具有很大的研究价值。在其中钙钛矿型金属材料(ABX3),更是以其出色的催化活性,灵活的组成与低廉的价格而受到科研人员的关注。但是,这些材料通常具有较大的粒径和较差的电导率,导致受限制的质量活性和不足的活性位点。
发明内容
本发明的目的是提供一种可自支撑的、表面负载纳米片状的FeNNi2Co的碳纸工作电极制作方法以及用来检测葡萄糖的浓度的用途;本发明还提供了负载纳米片状的FeNNi3的电极片用来检测葡萄糖的浓度的用途。本发明将负载电催化剂后碳纸作为自支撑的工作电极并与碳棒(对电极),银氯化银(参比电极)组成的三电极体系形成一种用以检测溶液中葡萄糖浓度的传感检测装置体系。
为了达到上述目的,本发明采用的技术方案如下:
本发明的第一个方面,提供了:
一种碳纸自支撑的电极材料,是以碳纸作为载体,在其表面负载有FeNNi2Co或FeNNi3
在一个实施方式中,所述的FeNNi2Co为纳米片状。
在一个实施方式中,碳纸厚度为0.3mm
本发明的第二个方面,提供了:
表面负载纳米片状的铁氮镍钴材料碳纸工作电极的制备方法,包括如下步骤:通过水热合成法以及氮化过程在碳纸的表面生成FeNNi2Co与FeNNi3
在一个实施方式中,所述的制备方法包括如下步骤:
第1步,配制含有氯化镍、氯化铁、脲、氯化铵的溶液;第2步,在溶液中再加入碳纸,进行水热合成;第3步,反应结束后,碳纸经过反复洗涤后烘干,在氨气氛围中进行氮化,得到电极材料。
在一个实施方式中,氯化镍、氯化铁、脲、氯化铵的重量比分别:0.6-0.7:0.2-0.3:.6-0.7:0.9-1。
在一个实施方式中,第1步中还加入氯化钴,氯化镍、氯化铁、氯化钴、脲、氯化铵的重量比是:0.4-0.5:0.2-0.3:0.2-0.3:0.6-0.7:0.9-1。
在一个实施方式中,水热合成的温度100-180℃,时间是2-12h,氮化温度为500-550℃,时间为2-3h。
本发明的第三个方面,提供了:
表面负载纳米片状的FeNNi2Co或FeNNi3工作电极在电化学方法检测水中葡萄糖浓度中的用途。
在一个实施方式中,所述的检测是采用三电极体系。
在一个实施方式中,FeNNi2Co/CP或FeNNi3/CP的电极材料作为工作电极,银-氯化银作为参比电极,碳棒作为对电极。
本发明的第四个方面,提供了:
FeNNi2Co/CP在用于提高FeNNi3/CP材料碳纸检测水中葡萄糖浓度的性能中的用途。
在一个实施方式中,所述的检测是指电化学方法检测。
在一个实施方式中,FeNNi2Co/CP用于提高检测中的电流信号强度。
在一个实施方式中,FeNNi2Co/CP用于提高检测线性范围。
在一个实施方式中,所述的抗干扰能力是指抵抗其他与葡萄糖结构类似物质的干扰能力。
在一个实施方式中,所述的无机阴离子选自果糖、蔗糖、乳糖、抗坏血酸、尿素、尿酸或者氯化钠中的一种或几种。
有益效果
本发明针对现有技术中的钙钛矿材料存在的活性位点不足、电导率不高等问题,对钙钛矿材料中B位阳离子和X位阴离子的位置进行交换,成功了一种具有反钙钛矿结构(AXB3)的材料铁氮镍钴(FeNNi2Co/CP)或铁氮镍(FeNNi3/CP),表现出了较好导电性能和快速的电子转移,两种金属的相互作用不仅可以提供双向富集的活性位点,而且还显示出了很高的电子电导率。
通过一步水热法在碳纸(CP)上生长纳米片状结构的FeNNi3和FeNNi2Co。将电催化剂和碳纸底物的结合能够提供更高的电导率以及优异的机械性能。FeNNi3和FeNNi2Co均匀地分散在CP的表面上,形成了用于监测葡萄糖的自支撑工作电极,并且具有超高的灵敏度与良好的抗干扰性。
将电催化剂自然生长于碳纸基底上,能够快速获得稳定的响应电流,大大提高了传感器的稳定性、重复性和传感器结构的可靠性,少量钴元素的掺杂,提高了碱性溶液中葡萄糖的检测性能。
附图说明
图1a为本发明实施例1中FeNNi2Co/CP 50μM与2μM的电镜图,b为为本发明实施例2中FeNNi3/CP 50μM与10μM的电镜图。
图2为本发明实施例1与对照例1中经水热法上层悬浊液的离心沉淀物氨气氛围中煅烧后FeNNi2Co、FeNNi3和FeNNi2Co/CP、FeNNi3/CP X射线衍射曲线图。
图3为本发明FeNNi2Co/CP电极片和FeNNi3/CP电极片在0.2M NaOH
含有或不含有1mM葡萄糖溶液中的CV测试曲线图
图4为本发明FeNNi2Co/CP电极片(a区域)和实施例2中FeNNi3/CP电极片(b区域)对葡萄糖的I-t测试曲线图
图5为本发明中FeNNi2Co/CP电极片(a区域)和实施例2中FeNNi3/CP电极片(b区域)对葡萄糖的I-C线性拟合图。
图6为本发明中FeNNi2Co/CP电极片对葡萄糖抗干扰检测的I-t图。
图7为本发明中FeNNi2Co/CP电极片和FeNNi3/CP电极片对葡萄糖稳定性测试的I-t图。
具体实施方式
本发明公开了一种用于检测葡萄糖的自支撑非酶电化学传感材料及其制备方法,具体是将具有优异的催化特性反钙钛矿电极材料与良好导电性的碳纸自支撑材料相结合,能够快速精准的测定葡萄糖的含量,具有出色的电化学传感能力。首先对碳纸基底进行特定方法处理,改善碳纸基底表面的疏水性,然后通过水热法以及氨化在碳基底表面生长一层铁氮镍钴(FeNNi2Co/CP)或铁氮镍(FeNNi3/CP)反钙钛矿材料层,可以将此自支撑电极直接作为工作电极进行传感。本发明合成过程简单,便于操作,易于携带,少量的钴掺杂提高了其传感性能,能够兼具高灵敏度与较宽的检测范围。FeNNi2Co/CP在2-2789μM与2789-7444μM不同的浓度检测范围中,其灵敏度分别达到了3621与1141μA mM-1cm-2。FeNNi3/CP在58.77-2789μM与2789-6903μM不同的浓度检测范围中,展示出了3701与483.9μA mM-1cm-2的灵敏度,也可以看出,明显钴的掺杂提高了检测灵敏度与检测范围。
实施例1:FeNNi2Co/CP自支撑电极材料的制备,具体步骤包括:
首先将2-3毫摩尔的NiCl2·6H2O,1-1.5毫摩尔的FeCl3·6H2O,1-1.5毫摩尔的CoCl2·6H2O0.6-0.7克的脲以及0.7-0.9克的NH4F加入60-80毫升的水中搅匀并转移到100毫升的水热釜中,再将已洗干净的大小相似的碳纸(1.2*1.2厘米)放入釜中,180度水热12小时,再自然冷却。将上层溶液离心收集沉淀,进行冷冻干燥后,将其置于550℃的氨气氛围中管式炉进行氮化5-7h。水热后的碳纸用去离子水反复冲洗干净,再经60度烘箱干燥后,将碳纸置于与上述沉淀进行相同操作,便可得到负载于碳纸上的纳米片状反钙钛矿铁氮镍钴。
对照例1:对比实验;FeNNi3/CP自支撑电极材料的制备,具体步骤包括:
将3-4.5毫摩尔的NiCl2·6H2O,1-1.5毫摩尔的FeCl3·6H2O,0.6-0.7克的脲以及0.7-0.9克的NH4F加入60-80毫升的水中搅匀并转移到100毫升的水热釜中再将已洗干净的大小相似的碳纸(1.2*1.2厘米)放入釜中,180度水热12小时,再自然冷却。将上层溶液离心收集沉淀,进行冷冻干燥后,将其置于550℃的氨气氛围中管式炉进行氮化5-7h。水热后的碳纸用去离子水反复冲洗干净,再经60度烘箱干燥后,将碳纸置于与上述沉淀进行相同操作,便可得到负载于碳纸上的纳米片状反钙钛矿FeNNi3。
SEM和XRD表征
从图1可以看出,实施例1中制备得到的材料在碳纸的表面生成了为纳米片状铁氮镍钴。图2为实施例1与对照例1材料的XRD图谱,从图中可以看出反应釜中上层离心沉淀与负载在碳纸上的物质为同一种物质均为反钙钛矿。
FeNNi2Co/CP和FeNNi3/CP对葡萄糖进行循环伏安性能检测
以实施例1中FeNNi2Co/CP和对照例1中FeNNi3/CP作为可自支撑的工作电极,碳棒作为对电极,银氯化银(3.5摩尔KCl)作为参比电极组成的三电极体系放置0.2M的NaOH(或包含1mM葡萄糖)电解液中,以50mV s-1的扫速,进行循环伏安法(CV)测试。其结果如图3所示,发现在含有1mM葡萄糖的情况下,FeNNi2Co/CP在0.5V处电流信号比FeNNi3/CP高出许多,证明表明FeNNi2Co/CP相较于FeNNi3/CP能够与葡萄糖产生更多的电子得失,产生更大的法拉第电流。
FeNNi2Co/CP和FeNNi3/CP对葡萄糖进行计时电流性能检测
使用计时电流法(I-t)分别检测FeNNi2Co/CP,FeNNi3/CP对葡萄糖的电流随浓度的变化(I-c)。这两种检测都是在恒定的氧化峰电压下进行,其中氧化峰电压是根据FeNNi2Co/CP,FeNNi3/CP两种电极在0.2M NaOH包含1mM葡萄糖的电解液中进行CV测试结果获得的,其峰电压都为0.5V。所有的I-t测试均300rpm的溶液搅拌速度以及不断加入不同浓度的葡萄糖。根据I-t的测试结果来计算I-C的性能结果(如图4和图5所示)。发现FeNNi2Co/CP比FeNNi3/CP的检测性能要好,具体数据如表1所示。
表1
Figure BDA0002955880490000051
[1]X.Tang,B.Zhang,C.Xiao,H.Zhou,X.Wang,D.He,Carbon nanotube templatesynthesis of hierarchical NiCoO2 composite for non-enzyme glucose detection,Sens.Actuators.B 222(2016)232-239.
[2]J.Luo,D.Zhao,M.Yang,F.Qu,Porous Ni3N nanosheet array as a catalystfor nonenzymatic amperometric determination of glucose,Mikrochim.Acta 185(2018)229.
[3]J.Chen,H.Yin,J.Zhou,J.Gong,L.Wang,Y.Zheng,Q.Nie,Non-enzymaticglucose sensor based on nickel nitride decorated nitrogen doped carbonspheres(Ni3N/NCS)via facile one pot nitridation process,J.Alloys Compd.797(2019)922-930.
[4]F.Xie,X.Cao,F.Qu,A.M.Asiri,X.Sun,Cobalt nitride nanowire array asan efficient electrochemical sensor for glucose and H2O2 detection,Sens.Actuators.B 255(2018)1254-1261.[5]J.Xu,F.Li,D.Wang,M.H.Nawaz,Q.An,D.Han,L.Niu,Co3O4 nanostructures on flexible carbon cloth for crystal plane effectof nonenzymatic electrocatalysis for glucose,Biosens.Bioelectron.123(2019)25-29.
FeNNi2Co/CP和FeNNi3/CP对葡萄糖进行抗干扰性能的检测
与上面的对葡萄糖浓度的检测方法相同,同样使用计时电流法分别检测FeNNi2Co/CP与FeNNi3/CP对干扰物质的抗干扰能力,在每隔30秒时分别注入1毫摩尔的葡萄糖、果糖、乳糖、蔗糖、尿酸、抗坏血酸、脲与氯化钠,观察电流的变化,发现干扰物的电流变化相对葡萄糖非常微小,表明FeNNi2Co/CP与FeNNi3/CP电极片对葡萄糖检测的抗干扰能力都是比较强的。如图6所示;在图中的a区域显示的是加入了不同的干扰离子之后对电流变化的影响,在图中的b区域,显示的是加入干扰离子前后在每种电极上的电流变化率,从图中可以看出,对于每种干扰离子的加入,FeNNi2Co/CP对电流变化率都小于FeNNi3/CP电极。FeNNi2Co/CP和FeNNi3/CP对葡萄糖进行稳定性能的检测
与上面的对葡萄糖浓度的检测方法相同,同样使用计时电流法检测FeNNi2Co/CP电极片与FeNNi3/CP对干扰物质的抗干扰能力,大概在300秒左右向溶液中注入1毫摩尔的葡萄糖,观察电流的变化。电流变化曲线如图7所示,在4000秒时FeNNi2Co/CP电流为初始电流的87%,FeNNi3/CP电流为初始电流的90%,可以看出,在进行钴掺杂后其稳定性稍稍不如掺杂之前。
FeNNi2Co/CP对真实葡萄糖饮品进行检测
将实施例1中的FeNNi2Co/CP对实际葡萄糖饮品(购买自吉林天瑞生物科技有限公司)中的葡萄糖浓度进行检测,与上面的对葡萄糖的检测方法相同,分别使用酶传感器(SBA-40C)和电化学法检测对真实葡萄糖饮品进行检测并且重复三次。
表2
Figure BDA0002955880490000061
Figure BDA0002955880490000071
可以看出FeNNi2Co/CP对葡萄糖检测的高准确性。

Claims (10)

1.一种碳纸自支撑的电极材料,其特征在于,是以碳纸作为载体,在其表面负载有FeNNi2Co或FeNNi3
2.根据权利要求1所述的碳纸自支撑的电极材料,其特征在于,在一个实施方式中,所述的FeNNi2Co为纳米片状;碳纸厚度为0.3 mm。
3.权利要求1所述的碳纸自支撑的电极材料的制备方法,其特征在于,包括如下步骤:通过水热合成法以及氮化过程在碳纸的表面生成FeNNi2Co与FeNNi3
4.根据权利要求3所述的制备方法,其特征在于,包括如下步骤:第1步,配制含有氯化镍、氯化铁、脲、氯化铵的溶液;第2步,在溶液中再加入碳纸,进行水热合成;第3步,反应结束后,碳纸经过反复洗涤后烘干,在氨气氛围中进行氮化,得到电极材料。
5.根据权利要求4所述的制备方法,其特征在于,在一个实施方式中,氯化镍、氯化铁、脲、氯化铵的重量比分别:0.6-0.7:0.2-0.3:.6-0.7:0.9-1。
6.根据权利要求4所述的制备方法,其特征在于,在一个实施方式中,第1步中还加入氯化钴,氯化镍、氯化铁、氯化钴、脲、氯化铵的重量比是:0.4-0.5:0.2-0.3:0.2-0.3:0.6-0.7:0.9-1。
7.根据权利要求4所述的制备方法,其特征在于,在一个实施方式中,水热合成的温度100-180℃,时间是2-12h,氮化温度为500-550℃,时间为2-3h。
8.表面负载纳米片状的FeNNi2Co或FeNNi3工作电极在电化学方法检测水中葡萄糖浓度中的用途。
9.表面负载FeNNi2Co纳米片的电极在用于提高检测水中葡萄糖浓度的性能中的用途。
10.根据权利要求9所述的用途,其特征在于,提高检测水中葡萄糖浓度的性能是提高检测中的电流信号强度、提高检测线性范围或者抵抗其他与葡萄糖结构类似物质的干扰能力。
CN202110223605.7A 2021-03-01 2021-03-01 一种碳纸自支撑的电极材料、制备方法及其在检测葡萄糖浓度中的用途 Pending CN113514516A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110223605.7A CN113514516A (zh) 2021-03-01 2021-03-01 一种碳纸自支撑的电极材料、制备方法及其在检测葡萄糖浓度中的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110223605.7A CN113514516A (zh) 2021-03-01 2021-03-01 一种碳纸自支撑的电极材料、制备方法及其在检测葡萄糖浓度中的用途

Publications (1)

Publication Number Publication Date
CN113514516A true CN113514516A (zh) 2021-10-19

Family

ID=78061009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110223605.7A Pending CN113514516A (zh) 2021-03-01 2021-03-01 一种碳纸自支撑的电极材料、制备方法及其在检测葡萄糖浓度中的用途

Country Status (1)

Country Link
CN (1) CN113514516A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8523398A (en) * 1995-06-20 1999-01-28 Ambri Limited Self-assembly of sensor membranes
CN102095779A (zh) * 2010-11-28 2011-06-15 上海大学 用钛酸镍镧修饰碳糊电极测定葡萄糖溶液浓度的方法
CN110993801A (zh) * 2019-11-05 2020-04-10 中国科学院青岛生物能源与过程研究所 一种葡萄糖掺杂的有机无机杂化钙钛矿复合膜及其制备和应用
WO2020131475A1 (en) * 2018-12-19 2020-06-25 Purdue Research Foundation Ultralow concentration sensing of bio-matter with perovskite nickelate devices and arrays

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8523398A (en) * 1995-06-20 1999-01-28 Ambri Limited Self-assembly of sensor membranes
CN102095779A (zh) * 2010-11-28 2011-06-15 上海大学 用钛酸镍镧修饰碳糊电极测定葡萄糖溶液浓度的方法
WO2020131475A1 (en) * 2018-12-19 2020-06-25 Purdue Research Foundation Ultralow concentration sensing of bio-matter with perovskite nickelate devices and arrays
CN110993801A (zh) * 2019-11-05 2020-04-10 中国科学院青岛生物能源与过程研究所 一种葡萄糖掺杂的有机无机杂化钙钛矿复合膜及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAITAO WANG 等: "Antiperovskite FeNNi2Co and FeNNi3 nanosheets as a non-enzymatic electrochemical sensor for highly sensitive detection of glucose", 《JOURNAL OF ELECTROANALYTICAL CHEMISTRY》 *

Similar Documents

Publication Publication Date Title
Lin et al. A highly sensitive non-enzymatic glucose sensor based on Cu/Cu2O/CuO ternary composite hollow spheres prepared in a furnace aerosol reactor
Yang et al. A novel non-enzymatic glucose sensor based on Pt3Ru1 alloy nanoparticles with high density of surface defects
Sun et al. Analysis of cobalt phosphide (CoP) nanorods designed for non-enzyme glucose detection
Iwu et al. Facile synthesis of Ni nanofoam for flexible and low-cost non-enzymatic glucose sensing
Li et al. Bimetallic MCo (M= Cu, Fe, Ni, and Mn) nanoparticles doped-carbon nanofibers synthetized by electrospinning for nonenzymatic glucose detection
Naik et al. Electrodeposited spinel NiCo 2 O 4 nanosheet arrays for glucose sensing application
Zhang et al. Self-supported porous CoOOH nanosheet arrays as a non-enzymatic glucose sensor with good reproducibility
Das et al. Co3O4 spinel nanoparticles decorated graphite electrode: Bio-mediated synthesis and electrochemical H2O2 sensing
Dey et al. Fabrication of niobium metal organic frameworks anchored carbon nanofiber hybrid film for simultaneous detection of xanthine, hypoxanthine and uric acid
CN106770562B (zh) 一种CoS2/氮掺杂石墨烯复合材料构建电化学传感器在葡萄糖电化学分析中的应用
Wang et al. Fabrication of a novel ZnO–CoO/rGO nanocomposite for nonenzymatic detection of glucose and hydrogen peroxide
Fall et al. Highly efficient non-enzymatic electrochemical glucose sensor based on carbon nanotubes functionalized by molybdenum disulfide and decorated with nickel nanoparticles (GCE/CNT/MoS2/NiNPs)
Zhang et al. Bimetal-organic frameworks MnCo-MOF-74 derived Co/MnO@ HC for the construction of a novel enzyme-free glucose sensor
Zhao et al. NiCo2O4 nanorods decorated MoS2 nanosheets synthesized from deep eutectic solvents and their application for electrochemical sensing of glucose in red wine and honey
Zhan et al. Ni3 (PO4) 2 nanoparticles decorated carbon sphere composites for enhanced non-enzymatic glucose sensing
Meng et al. Bimetal nickel–cobalt phosphide directly grown on commercial graphite substrate by the one-step electrodeposition as efficient electrocatalytic electrode
Li et al. Echinus-like Cu–Mo2C/C yolk-shell composites for ultrasensitive detection of hydrogen peroxide
Wang et al. Non-enzymatic glucose sensor based on facial hydrothermal synthesized NiO nanosheets loaded on glassy carbon electrode
Wolfart et al. Nickel/cobalt alloys modified electrodes: Synthesis, characterization and optimization of the electrocatalytical response
Li et al. Novel neuron-network-like Cu–MoO2/C composite derived from bimetallic organic framework for highly efficient detection of hydrogen peroxide
Arul et al. Urease-free Ni microwires-intercalated Co-ZIF electrocatalyst for rapid detection of urea in human fluid and milk samples in diverse electrolytes
Yin et al. Hierarchical CuCo2O4/C microspheres assembled with nanoparticle-stacked nanosheets for sensitive non-enzymatic glucose detection
Wang et al. Nickel nanoparticles-loaded three-dimensional porous magnetic graphene-like material for non-enzymatic glucose sensing
Tamilarasi et al. High-performance electrochemical detection of glucose in human blood serum using a hierarchical NiO2 nanostructure supported on phosphorus doped graphene
Mustafa et al. Fabrication, characterization of NiO–Co3O4/rGO based nanohybrid and application in the development of non-enzymatic glucose sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211019

RJ01 Rejection of invention patent application after publication