CN113502297B - Recombinant pichia pastoris for synthesizing guanosine diphosphate fucose, construction method and application thereof - Google Patents

Recombinant pichia pastoris for synthesizing guanosine diphosphate fucose, construction method and application thereof Download PDF

Info

Publication number
CN113502297B
CN113502297B CN202110654277.6A CN202110654277A CN113502297B CN 113502297 B CN113502297 B CN 113502297B CN 202110654277 A CN202110654277 A CN 202110654277A CN 113502297 B CN113502297 B CN 113502297B
Authority
CN
China
Prior art keywords
leu
ala
gly
ser
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110654277.6A
Other languages
Chinese (zh)
Other versions
CN113502297A (en
Inventor
段烨红
梁书利
林影
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202110654277.6A priority Critical patent/CN113502297B/en
Publication of CN113502297A publication Critical patent/CN113502297A/en
Application granted granted Critical
Publication of CN113502297B publication Critical patent/CN113502297B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/32Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/0703Fucose-1-phosphate guanylyltransferase (2.7.7.30)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses recombinant pichia pastoris for synthesizing guanosine diphosphate fucose, a construction method and application thereof, wherein the recombinant pichia pastoris is obtained by expressing fucose-1-guanosine phosphate transferase and fucose kinase in a genome of Pichia pastoris GS115. The strain capable of synthesizing the guanosine diphosphate fucose is obtained through modification, so that the guanosine diphosphate fucose can be efficiently synthesized. The construction method of the recombinant pichia pastoris is simple, convenient to use and has good application prospect.

Description

Recombinant pichia pastoris for synthesizing guanosine diphosphate fucose, construction method and application thereof
Technical Field
The invention belongs to the technical field of genetic engineering, and particularly relates to recombinant pichia pastoris for synthesizing guanosine diphosphate fucose, and a construction method and application thereof.
Background
Guanylate diphosphate fucose (GDP-L-Fuc) is a nucleotide form of fucose (L-fucse), which provides fucosyl receptors for fucosylation reactions, and plays an important role in tissue growth, angiogenesis, fertilized cell adhesion, inflammation, and tumor metastasis of living organisms, and the like. Meanwhile, oligosaccharides containing fucosyl groups are a major component of breast milk, whose functions are involved in a wide range of biological processes, such as prevention of pathogen infection, improvement of immune system response, reduction of inflammatory response, and the like. The fucosylated oligosaccharides are synthesized under the catalysis of fucosyltransferase with guanyldiphosphate fucose (GDP-L-fucose) as a fucosyl donor. Because of the great demand created by the wide range of roles of fucosyl oligosaccharides, many pharmaceutical companies have attempted to efficiently synthesize sufficient guanosine diphosphate fucose by chemical and biological methods. In chemical synthesis, guanosine diphosphate fucose is synthesized starting from L-fucopyranosyl tetraacetic acid, but chemical synthesis is accompanied by a number of protection and deprotection steps, which complexity makes chemical synthesis impractical for industrial applications. Biosynthesis is based on the discovery in the organism of two metabolic pathways for the synthesis of GDP-L-fuse: salvage pathways and de novo pathways, both of which occur in the cytoplasm. Guanosine diphosphate fucose biosynthesis is shown in figure 1.
The salvage pathway is found in the metabolic pathway of humans, where exogenous fucose is transferred into the cell, and ATP is phosphorylated (EC2.7.1.52) by the consumption of fucose kinase to form fucose-1-phosphate (Fuc-1-P). Fuc-1-P binds Guanosine Triphosphate (GTP) to GDP-L-fucose under the catalysis of fucose-1-phosphate guanyl transferase (EC2.7.7.30). From the head synthesis pathway, which was first found in bacteria and then found to be present in plants, mammals and invertebrates, GDP-fucose was synthesized catalytically from GDP-mannose by guanosine diphosphate mannose dehydratase (GMD, ec 4.2.1.47) and guanosine diphosphate mannose epimerase (WCAG, EC1.1.1.271).
Pichia pastoris is widely used as an excellent host for expression of foreign proteins, and its product is FDA certified as "generally regarded as safe" (GRAS) safety level.
Therefore, how to use pichia pastoris to synthesize guanosine diphosphate fucose efficiently by biological methods is still a problem to be solved in the art.
Disclosure of Invention
The invention aims to provide a construction method and application of recombinant pichia pastoris for synthesizing guanosine diphosphate fucose, and the constructed recombinant pichia pastoris can efficiently synthesize guanosine diphosphate fucose.
The technical scheme adopted by the invention is as follows:
in a first aspect of the invention, there is provided a vector comprising an expression sequence for a fucose-1-phosphate guanosine transferase and/or an expression sequence for a fucose kinase.
In some embodiments of the invention, the amino acid sequence of the fucose-1-phosphogguanosine transferase is shown in SEQ ID NO.1, and the amino acid sequence of the fucose kinase is shown in SEQ ID NO. 2.
In some embodiments of the invention, the fucose-1-phosphate guanylate transferase is derived from the FPGT gene of a wild boar (Sus scrofa) and the fucose kinase gene is derived from the FCSK gene of the wild boar (Sus scrofa).
In some embodiments of the invention, the expression sequence of the fucose-1-phosphogguanosine transferase is shown in SEQ ID NO.3 and the expression sequence of the fucose kinase is shown in SEQ ID NO. 4.
In some embodiments of the invention, the sequence of the vector is shown in SEQ ID NO. 5.
In a second aspect of the invention, there is provided a recombinant cell comprising the expression vector of the first aspect of the invention, wherein the cell is a non-plant cell.
In some embodiments of the invention, the cell is pichia pastoris.
In some preferred embodiments of the invention, the cell is pichia pastoris GS115.
In a third aspect of the present invention, there is provided a method for constructing a recombinant cell according to the second aspect of the present invention, comprising the steps of: transferring the vector of the first aspect of the invention into a cell.
In some embodiments of the invention, the construction method is specifically to electrotransform competent cells of pichia pastoris GS115 with the vector according to the first aspect of the invention.
In a fourth aspect of the invention there is provided the use of a vector according to the first aspect of the invention or a recombinant cell according to the second aspect of the invention.
In some preferred embodiments of the invention, the use is in particular in the preparation of guanosine diphosphate fucose.
In a fifth aspect of the invention there is provided a method of preparing guanosine diphosphate fucose produced by the recombinant cell of the second aspect of the invention.
In some embodiments of the invention, the fermentation conditions are to introduce the recombinant cell seed solution into a fermentation medium at an inoculum size with an OD600 value of 0.5-1.5, and to culture at 200-300 rpm for 100-140 h at 25-35 ℃.
In some preferred embodiments of the invention, the fermentation conditions are such that the recombinant cell seed fluid is inoculated into the fermentation medium in an inoculated amount having an OD of 1 and incubated at 30 ℃ for 120h at 250 rpm.
The invention also provides guanosine diphosphate fucose prepared by the method of the fifth aspect of the invention.
The beneficial effects of the invention are as follows:
the present invention provides a vector comprising an expression sequence of a fucose-1-phosphate guanylate transferase and/or an expression sequence of a fucose kinase. And provides a recombinant cell which is obtained by expressing fucose-1-phosphate guanosine transferase and a fucose kinase gene on the basis of Pichia pastoris GS115, and a recombinant strain capable of synthesizing guanosine diphosphate fucose is obtained by modification. The construction method of the recombinant pichia pastoris is simple, convenient to use and has good application prospect.
Drawings
FIG. 1 is a schematic representation of guanosine diphosphate fucose biosynthesis.
FIG. 2 is a schematic diagram of the synthesis of guanosine diphosphate fucose plasmids according to example 1 of the present invention.
FIG. 3 is a diagram of PCR-verified agarose gel electrophoresis of yeast colonies transformed with the plasmids expressing the FPGT and FCSK genes in example 1 of the present invention.
FIG. 4 is a high performance liquid chromatogram of example 2 of the present invention.
Fig. 5 is a mass spectrum diagram in example 2 of the present invention.
Detailed Description
The conception and the technical effects produced by the present invention will be clearly and completely described in conjunction with the embodiments below to fully understand the objects, features and effects of the present invention. It is apparent that the described embodiments are only some embodiments of the present invention, but not all embodiments, and that other embodiments obtained by those skilled in the art without inventive effort are within the scope of the present invention based on the embodiments of the present invention.
High Performance Liquid Chromatography (HPLC) detection method: agilent, UV detector, C18 column (250 x 4.6mm,5 μm), mobile phase a:20mM triethylamine acetate buffer (TEAA) pH6.0, mobile phase B: acetonitrile flow rate 0.35mL/min, column temperature 40℃and sample injection volume 10. Mu.L.
EXAMPLE 1 construction of recombinant Pichia pastoris
According to the sequences of fucose-1-phosphogguanyltransferase (FPGT) and Fucoskinase (FCSK) of wild boar [ susscrofa (pig) ] published on NCBI, wherein the fucose-1-phosphogguanyltransferase Gene is shown as Gene ID on NCBI: 100513664, the amino acid sequence of which is shown in SEQ ID NO. 1; gene ID of fucose kinase Gene at NCBI: 100625448 the sequence of which is shown in SEQ ID NO.2, both genes are optimized according to the codon preference of Pichia pastoris. The optimized base sequence of the fucose-1-guanosine phosphate transferase is shown as SEQ ID NO.3, and the base sequence of the fucose kinase is shown as SEQ ID NO. 4; the recombinant plasmid with the sequence shown as SEQ ID NO.5 is constructed through enzyme digestion connection. The schematic diagram of the plasmid is shown in FIG. 2.
Wherein:
SEQ ID NO.5:
in SEQ ID No. 5'_"is the gene FPGT region" - "is the FCSK region," … "is the promoter region.
Electrotransformation of competent cells of recombinant Pichia pastoris GS115 with the constructed recombinant plasmid, wherein the addition amount of the recombinant plasmid is 800-1500 ng, and the electrotransformation conditions are as follows: the voltage is 2.5kV, the electric shock reagent is 5.6ms, the recovery time is 1.5 hours at 30 ℃, YPD Z plates with the final concentration of 100mg/L bleomycin resistance are coated, the culture is carried out for 96 hours at 30 ℃, and a plurality of single colonies are selected.
Successful integration of fucose-1-phosphate guanosine transferase (FPGT) and fucose kinase (FCSK) into the yeast genome was confirmed by bleomycin resistance plate screening, colony PCR validation. The agarose gel electrophoresis identification results are shown in FIG. 3, wherein the bands 1, 2, 3, 4 and 5 are all colony samples, and M is Marker. Colony PCR can be seen to verify that there is a special band, demonstrating successful integration of fucose-1-phosphate guanosine transferase and fucose kinase in the Pichia pastoris GS115 genome. And confirming that the fucose-1-guanosine phosphate transferase and the fucose kinase which are derived from the wild boar are successfully expressed, and obtaining the recombinant pichia pastoris GS115.
EXAMPLE 2 fermentative production of guanosine diphosphate fucose
The recombinant pichia pastoris in the example 1 is prepared into seed liquid, and the formula of the seed liquid culture medium is as follows: glycerol 10g/L, tryptone 10g/L, yeast powder 5g/L, naCl g/L; the seed liquid preparation method comprises the following steps: single colonies on fresh plates were picked and cultured in seed medium for 24h.
Inoculating the seed solution into a fermentation medium according to an inoculum size with an OD value of 1, wherein the fermentation medium comprises the following formula: 20g/L peptone, 10g/L yeast powder and 1.34% YNB;10%10 XpH6.0 phosphate buffer, at 30 ℃ under 250rpm conditions for 120 hours, every 24 hours to feed 1% carbon source, carbon source is methanol, 48 hours after fermentation, every 24 hours to add 1g/L fucose to the culture medium to the end of fermentation.
After the fermentation was completed, guanosine diphosphate fucose was measured in the fermentation cells by high performance liquid chromatography, the results are shown in FIG. 4, and further confirmed by mass spectrometry, and the content of guanosine diphosphate fucose is 289.8mg/L, as shown in FIG. 5.
The present invention has been described in detail in the above embodiments, but the present invention is not limited to the above examples, and various changes can be made within the knowledge of those skilled in the art without departing from the spirit of the present invention. Furthermore, embodiments of the invention and features of the embodiments may be combined with each other without conflict.
SEQUENCE LISTING
<110> university of North China
<120> recombinant Pichia pastoris for synthesizing guanosine diphosphate fucose, construction method and application thereof
<130>
<160> 5
<170> PatentIn version 3.5
<210> 1
<211> 599
<212> PRT
<213> Sus scrofa
<400> 1
Met Ala Ala Ala Ser Ala Pro Leu Gly Val Ser Leu Gln Glu Ala Thr
1 5 10 15
Gln Arg Arg Leu Arg Arg Phe Ser Glu Leu Arg Gly Lys Pro Val Ala
20 25 30
Ala Gly Glu Phe Trp Asp Ile Val Ala Ile Thr Ala Ala Asp Glu Lys
35 40 45
Gln Glu Leu Ala Tyr Lys Gln Gln Leu Ser Glu Lys Leu Lys Lys Lys
50 55 60
Glu Leu Pro Leu Gly Val Gln Tyr Leu Val Phe Val Asp Pro Ala Gly
65 70 75 80
Ala Lys Ile Gly Asn Gly Gly Ser Thr Leu Cys Ala Leu Arg Cys Leu
85 90 95
Glu Lys Leu Tyr Gly Asp Gln Trp Asn Ser Phe Thr Ile Leu Leu Ile
100 105 110
His Ser Gly Gly Tyr Ser Gln Arg Leu Pro Asn Ala Ser Ala Leu Gly
115 120 125
Lys Ile Phe Thr Ala Leu Pro Phe Gly Ser Pro Ile Tyr Gln Met Leu
130 135 140
Glu Leu Lys Leu Ala Met Tyr Ile Asp Phe Pro Ser His Met Asn Pro
145 150 155 160
Gly Ile Leu Val Thr Cys Ala Asp Asp Ile Glu Leu Tyr Ser Ile Gly
165 170 175
Glu Ser Glu Phe Ile Arg Phe Asp Lys Pro Gly Phe Thr Ala Leu Ala
180 185 190
His Pro Ser Ser Leu Thr Val Gly Thr Thr His Gly Val Phe Val Leu
195 200 205
Glu Pro Phe Asn Arg Leu Glu Tyr Arg Asp Leu Glu Tyr Arg Cys Cys
210 215 220
His Arg Phe Leu His Lys Pro Ser Ile Glu Met Met Tyr Lys Phe Asp
225 230 235 240
Ala Val Cys Arg Pro Gly Asn Phe Ser Gln Gln Asp Phe Gly Gly Gly
245 250 255
Asp Thr Pro Ser Leu Lys Leu Asp Pro Glu Tyr Val Tyr Thr Asp Ser
260 265 270
Val Phe Tyr Met Asp His Lys Thr Ala Lys Lys Leu Leu Ala Phe Tyr
275 280 285
Glu Lys Ile Asp Thr Leu Asn Cys Glu Ile Asp Ala Tyr Gly Asp Phe
290 295 300
Leu Gln Ala Leu Gly Pro Gly Ala Thr Val Glu Tyr Thr Arg Asn Thr
305 310 315 320
Ser Asn Val Thr Lys Glu Glu Ser Glu Leu Val Asp Met Arg Gln Arg
325 330 335
Ile Phe His Leu Leu Lys Gly Thr Pro Leu Asn Val Ile Val Leu Asn
340 345 350
Asn Ser Lys Phe Tyr His Ile Gly Thr Thr Lys Glu Tyr Leu Phe His
355 360 365
Phe Thr Ser Asp Ser Ser Leu Lys Ser Glu Leu Gly Leu Gln Ser Ile
370 375 380
Ala Phe Ser Ile Phe Pro Ala Ile Pro Glu Tyr Ser Gly Asn Lys Ser
385 390 395 400
Cys Ile Ile Gln Ser Ile Leu Asp Ser Arg Cys Ser Leu Ala Pro Gly
405 410 415
Ser Val Val Glu Tyr Ser Arg Leu Gly Pro Asp Val Ser Val Gly Glu
420 425 430
Asn Cys Ile Ile Ser Gly Ser His Ile Ile Thr Arg Ala Ile Leu Pro
435 440 445
Ala Tyr Ser Phe Val Cys Ser Leu Ser Leu Lys Ile Asn Gly His Ile
450 455 460
Lys Tyr Ser Thr Met Ala Cys Gly Val Gln Asp Asn Leu Lys Lys Asn
465 470 475 480
Val Lys Thr Leu Ser Asp Val Lys Leu Leu Gln Phe Phe Gly Val Ser
485 490 495
Leu Leu Ser Cys Leu Asp Val Trp Asn Leu Glu Val Thr Glu Glu Leu
500 505 510
Phe Ser Gly Asn Lys Thr Cys Leu Ser Leu Trp Asn Ala Arg Ile Phe
515 520 525
Pro Val Cys Ser Ser Leu Ser Asp Ser Val Ile Ala Ser Leu Lys Met
530 535 540
Leu Asn Ala Val Gln Ser Lys Ser Val Phe Ser Leu Asn Asn Tyr Lys
545 550 555 560
Leu Leu Ser Ile Glu Glu Met Leu Val Tyr Lys Asp Val Glu Asp Met
565 570 575
Ile Thr Tyr Arg Glu Gln Ile Phe Leu Glu Ile Ala Leu Asn Arg Lys
580 585 590
Gln Ser Val Leu Glu Thr Ser
595
<210> 2
<211> 1083
<212> PRT
<213> Sus scrofa
<400> 2
Met Glu Gln Pro Lys Gly Val Asp Trp Thr Val Ile Ile Leu Thr Cys
1 5 10 15
Gln Tyr Lys Asp Ser Val Glu Val Phe Gln Lys Glu Leu Glu Ile Arg
20 25 30
Gln Lys Arg Glu Gln Ile Pro Ala Ser Thr Leu Leu Leu Ala Val Glu
35 40 45
Asp Pro Glu Val His Val Gly Ser Gly Gly Ala Thr Leu Asn Ala Leu
50 55 60
Leu Val Ala Ala Glu His Leu Ser Ala Arg Ala Gly Phe Thr Val Val
65 70 75 80
Thr Ser Asp Val Leu His Ser Ala Trp Ile Leu Ile Leu His Met Gly
85 90 95
Arg Asp Phe Pro Phe Asp Asp Cys Gly Arg Ala Phe Thr Cys Leu Pro
100 105 110
Val Glu Asn Pro Gln Ala Pro Val Glu Ala Val Val Cys Asn Leu Asp
115 120 125
Cys Leu Leu Asp Ile Met Ser His Arg Leu Gly Pro Gly Ser Pro Pro
130 135 140
Gly Val Trp Val Cys Ser Thr Asp Met Leu Leu Ser Val Pro Pro Asn
145 150 155 160
Pro Gly Ile Asn Trp Asp Gly Phe Arg Gly Ala Arg Val Ile Ala Leu
165 170 175
Pro Gly Ser Thr Ala Tyr Ala Arg Asn His Gly Val Tyr Leu Thr Asp
180 185 190
Ser Gln Gly Phe Val Leu Asp Ile Tyr Tyr Gln Gly Thr Glu Ala Glu
195 200 205
Ile Gln Arg Cys Ala Arg Pro Asp Gly Gln Val Pro Leu Val Ser Gly
210 215 220
Ile Val Phe Phe Ser Val Glu Thr Ala Glu His Leu Leu Ala Thr His
225 230 235 240
Val Ser Pro Pro Leu Asp Ala Cys Thr Tyr Met Gly Leu Asp Ser Gly
245 250 255
Ala Gln Pro Val Gln Leu Ser Leu Phe Phe Asp Ile Leu Leu Cys Met
260 265 270
Ala Arg Asn Val Arg Arg Glu Asp Phe Leu Val Gly Arg Pro Pro Glu
275 280 285
Met Gly Arg Gly Asp Met Glu Thr Glu Gly Tyr Leu Arg Gly Ala Arg
290 295 300
Ala Glu Leu Trp Arg Glu Leu Arg Asp Gln Pro Leu Thr Leu Ala Tyr
305 310 315 320
Val Pro Asp Gly Ser Tyr Asn Tyr Met Thr Asn Ser Ala Ser Glu Phe
325 330 335
Leu His Ser Leu Thr Phe Pro Gly Ala Ser Gly Ala Gln Val Val His
340 345 350
Ser Gln Val Glu Glu Gln Gln Leu Leu Gly Ala Gly Ser Ser Val Val
355 360 365
Ser Cys Leu Leu Glu Gly Pro Val Gln Leu Gly Pro Gly Ser Val Leu
370 375 380
Gln His Cys His Leu Arg Gly Pro Ile His Ile Gly Thr Gly Cys Phe
385 390 395 400
Val Ser Gly Leu Asp Ala Ala Gln Ser Glu Ala Leu His Ser Leu Glu
405 410 415
Leu His Asp Leu Val Leu Gln Gly His His Leu Gln Leu His Gly Ala
420 425 430
Pro Ser Arg Ala Phe Thr Leu Val Gly Arg Leu Asp Ser Trp Glu Arg
435 440 445
Gln Gly Ala Gly Thr Tyr Leu Asn Met Ser Trp Ser Lys Phe Phe Gln
450 455 460
Lys Thr Gly Ile Arg Asp Trp Asp Leu Trp Asp Pro Asp Thr Pro Pro
465 470 475 480
Thr Glu Arg Cys Leu Leu Ser Ala Arg Leu Phe Pro Val Leu His Pro
485 490 495
Leu Arg Ala Leu Gly Pro Gln Asp Met Leu Trp Met Leu Asp Pro Gln
500 505 510
Glu Asp Gly Gly Lys Ala Leu Arg Ala Trp Arg Asp Ser Trp Arg Leu
515 520 525
Ser Trp Glu Gln Leu Gln Pro Cys Leu Asp Arg Ala Ala Thr Leu Ala
530 535 540
Ser Arg Arg Asp Leu Phe Phe Arg Gln Ala Leu His Lys Ala Arg His
545 550 555 560
Val Leu Glu Ala Arg Gln Asp Leu Ser Leu Arg Pro Leu Ile Arg Ala
565 570 575
Ala Val Arg Glu Gly Cys Pro Gly Pro Leu Met Ala Thr Leu Asp Gln
580 585 590
Val Ala Ala Gly Ala Gly Asp Pro Gly Val Ala Ala Arg Ala Leu Ala
595 600 605
Cys Val Ala Asp Ile Leu Gly Cys Met Ala Glu Gly Arg Gly Gly Leu
610 615 620
Arg Ser Gly Pro Ala Ala Asn Pro Glu Trp Val Arg Pro Phe Ser Tyr
625 630 635 640
Leu Glu Cys Gly Asp Leu Ala Gly Gly Val Glu Ala Leu Ala Gln Glu
645 650 655
Arg Glu Lys Trp Leu Ser Arg Pro Ala Leu Leu Val Arg Ala Ala Arg
660 665 670
His Tyr Glu Gly Ala Gly Gln Ile Leu Ile Arg Gln Ala Val Met Ser
675 680 685
Ala Gln His Phe Val Ser Thr Glu Pro Val Glu Leu Pro Ala Pro Gly
690 695 700
Gln Trp Val Val Ala Glu Cys Pro Ala Arg Val Asp Phe Ser Gly Gly
705 710 715 720
Trp Ser Asp Thr Pro Pro Leu Ala Tyr Glu His Gly Gly Ala Val Leu
725 730 735
Gly Leu Ala Val Arg Val Asp Gly Arg Arg Pro Ile Gly Ala Arg Ala
740 745 750
Arg Arg Ile Pro Glu Pro Glu Leu Trp Leu Ala Val Gly Pro Gln His
755 760 765
Asp Lys Met Ala Met Lys Ile Val Cys Arg Ser Leu Asp Asp Leu Gln
770 775 780
Asp Tyr Cys Gln Pro His Ala Pro Gly Ala Leu Leu Lys Ala Ala Phe
785 790 795 800
Ile Cys Ala Gly Ile Leu Ser Val His Ser Glu Leu Ser Leu Ser Glu
805 810 815
Gln Leu Leu Cys Thr Phe Gly Gly Gly Phe Glu Leu Gln Thr Trp Ser
820 825 830
Glu Leu Pro His Gly Ser Gly Leu Gly Thr Ser Ser Ile Leu Ala Gly
835 840 845
Ala Ala Leu Ala Ala Leu Gln Arg Val Ala Gly Arg Ala Val Gly Thr
850 855 860
Glu Ala Leu Ile His Ala Val Leu His Leu Glu Gln Val Leu Thr Thr
865 870 875 880
Gly Gly Gly Trp Gln Asp Gln Val Gly Gly Leu Met Pro Gly Ile Lys
885 890 895
Val Gly Arg Ser Arg Ala Gln Leu Pro Leu Lys Val Glu Val Glu Glu
900 905 910
Ile Thr Val Pro Ala Gly Phe Val Gln Lys Leu Asn Asp His Leu Leu
915 920 925
Leu Val Tyr Thr Gly Lys Thr Arg Leu Ala Arg Asn Leu Leu Gln Asp
930 935 940
Val Leu Arg Ser Trp Tyr Ala Arg Leu Pro Pro Val Val Gln Asn Ala
945 950 955 960
His Asn Leu Val Gln Gln Thr Glu Glu Cys Ala Glu Ala Phe Arg Gln
965 970 975
Gly Ser Leu Pro Arg Leu Gly Gln Cys Leu Thr Ser Tyr Trp Glu Gln
980 985 990
Lys Lys Leu Met Ala Pro Gly Cys Glu Pro Leu Ala Val Arg His Met
995 1000 1005
Met Asp Ala Leu Ala Pro His Val His Gly Gln Ser Leu Ala Gly
1010 1015 1020
Ala Gly Gly Gly Gly Phe Leu Tyr Leu Leu Thr Lys Glu Pro Arg
1025 1030 1035
Gln Lys Glu Ala Leu Glu Ala Val Leu Ala Lys Thr Glu Gly Leu
1040 1045 1050
Gly Asn Tyr Ser Val His Leu Val Glu Val Asp Thr Gln Gly Leu
1055 1060 1065
Ser Leu Gln Leu Leu Gly Thr Glu Thr Ser Thr Gly Cys Ser Phe
1070 1075 1080
<210> 3
<211> 1800
<212> DNA
<213> artificial sequence
<400> 3
atggctgctg cttcagctcc attgggagtt tccttgcaag aagctactca aagaagattg 60
agaagatttt ccgaattgag aggtaagcca gttgctgctg gtgaattttg ggatattgtt 120
gctattactg ctgctgatga aaagcaagaa ttggcttaca agcaacaatt gtccgaaaag 180
ttgaagaaga aggaattgcc attgggagtt caatacttgg tttttgttga tccagctggt 240
gctaagattg gtaacggagg tagcactttg tgtgctttga gatgtttgga aaagttgtac 300
ggtgatcaat ggaactcctt tactattttg ttgattcata gcgggggata ctcccaaaga 360
ttgcctaacg cttcagcttt gggtaagatt tttactgctt tgccatttgg ttcacctatt 420
taccaaatgt tggaattgaa gttggctatg tacattgatt ttccatcaca tatgaaccct 480
ggtattttgg ttacttgtgc tgatgatatt gaattgtact ccattggaga atccgaattt 540
attagatttg ataagccagg atttactgct ttggctcatc catcatcctt gactgttggt 600
actactcatg gagtttttgt tttggaacca tttaacagat tggaatacag agatttggaa 660
tacagatgtt gtcatagatt tttgcataag ccatctattg aaatgatgta caagtttgat 720
gctgtttgta gacctggtaa cttttcccaa caagattttg gtggaggtga tactccatcc 780
ttgaagctag atccagaata cgtttacact gattccgttt tttacatgga tcataagact 840
gctaagaagt tgttggcttt ttacgaaaag attgatactt tgaactgtga aattgatgct 900
tacggtgatt ttttgcaagc tttgggacca ggagctactg ttgaatacac tagaaacact 960
tctaacgtta ctaaggaaga atccgaattg gttgatatga gacaaagaat ttttcatttg 1020
ttgaagggta ctccattgaa cgttattgtt ttgaacaact ctaagtttta ccatattggt 1080
actactaagg aatacttgtt tcattttact tctgattctt ccttgaagtc cgaattggga 1140
ttgcaatcaa ttgctttttc tatttttcca gctattccag aatactcagg taacaagtca 1200
tgtattattc aatctatttt ggattctaga tgttccttgg ctccaggatc agttgttgaa 1260
tactctagat tgggacctga tgtttccgtt ggtgaaaact gtattatttc aggttcacat 1320
attattacta gagctatttt gccagcttac tcctttgttt gttccttgtc cttgaagatt 1380
aacggacata ttaagtactc aactatggct tgtggagttc aagataactt gaagaagaac 1440
gttaagactt tgtccgatgt taagttgttg caattttttg gagtttcctt gttgtcctgt 1500
ttggatgttt ggaacttgga agttactgaa gaattgtttt caggtaacaa gacttgtttg 1560
tccttgtgga acgctagaat ttttccagtt tgttcttcct tgtccgattc cgttattgct 1620
tccttgaaga tgttgaacgc tgttcaatct aagtcagttt tttctttgaa caactacaag 1680
ttgttgtcaa ttgaagaaat gttggtttac aaggatgttg aagatatgat tacttacaga 1740
gaacaaattt ttttggaaat tgctttgaac agaaagcaat ccgttttgga aacttcttaa 1800
<210> 4
<211> 3252
<212> DNA
<213> artificial sequence
<400> 4
atggaacaac ctaagggagt tgattggact gttattattt tgacttgtca atacaaggat 60
tccgttgaag tttttcaaaa ggaattggaa attagacaaa agagagaaca aattccagct 120
tctactttgt tgttggctgt tgaagatcct gaagttcatg ttggtagtgg aggagctact 180
ttgaacgctt tgttggttgc tgctgaacat ttgtccgcta gagctggatt tactgttgtt 240
acttccgatg ttttgcattc cgcttggatt ttgattttgc atatgggtag agattttcca 300
tttgatgatt gtggtagagc ttttacttgt ttgccagttg aaaacccaca agctccagtt 360
gaagctgttg tttgtaactt ggattgtttg ttggatatta tgtcacatag attgggacca 420
ggatcacctc caggagtttg ggtttgttct actgatatgt tgttgtcagt tccacctaac 480
ccaggtatta actgggatgg atttagaggt gctagagtta ttgctttgcc aggaagcact 540
gcttacgcta gaaaccatgg agtttacttg actgattccc aaggatttgt tttggatatt 600
tactaccaag gaactgaagc tgaaattcaa agatgtgcta gacctgatgg tcaagttcca 660
ttggtttccg gtattgtttt tttttccgtt gaaactgctg aacatttgtt ggctactcat 720
gtttccccac cattggatgc ttgtacttac atgggattgg attcaggtgc tcaaccagtt 780
caattgtcat tgttttttga tattttgttg tgtatggcta gaaacgttag aagagaagat 840
tttttggttg gtagaccacc agaaatgggt agaggtgata tggaaactga aggttacttg 900
agaggtgcta gagctgaatt gtggagagaa ttgagagatc aaccattgac tttggcttac 960
gttcctgatg gttcttacaa ctacatgact aactccgctt cagaattttt gcattccttg 1020
acttttccag gtgcttccgg tgctcaagtt gttcattccc aagttgaaga acaacaattg 1080
ttgggtgctg gttcttccgt tgtttcctgt ttgttggaag gaccagttca attgggacca 1140
ggttccgttt tgcaacattg tcatttgaga ggacctattc atattggtac tggatgtttt 1200
gtttcgggct tggatgctgc tcaatccgaa gctttgcatt ccttggaatt gcatgatttg 1260
gttttgcaag gtcatcattt gcaattgcat ggtgctccat ccagagcttt tactttggtt 1320
ggtagattgg attcctggga aagacaaggt gctggtactt acttgaatat gtcctggtct 1380
aagttttttc aaaagactgg tattagagat tgggatttgt gggaccctga tactcctcca 1440
actgaaagat gtttgttgtc cgctagattg tttccagttt tgcatccatt gagagctttg 1500
ggaccacaag atatgttgtg gatgttagat cctcaagaag atggaggtaa ggctttgaga 1560
gcttggagag attcatggag attgtcatgg gaacaattgc aaccatgttt ggatagagct 1620
gctactttgg cttctagaag agatttgttt tttagacaag ctttgcataa ggctcgccat 1680
gttttggaag ctagacaaga tttgtccttg agaccattga ttagagctgc tgttagagaa 1740
ggatgtccag gtccattgat ggctactttg gatcaagttg ctgctggagc tggtgatcca 1800
ggagttgctg ctagagcttt ggcttgtgtt gctgatattt tgggatgtat ggctgaaggt 1860
agaggtggtt tgagatcagg acctgctgct aacccagaat gggttagacc attttcttac 1920
ttggaatgtg gtgatttggc tggaggagtt gaagctttgg ctcaagaaag agaaaagtgg 1980
ttgtctagac ctgctttgtt ggttagagct gctagacatt acgaaggtgc tggacaaatt 2040
ttgattagac aagctgttat gtccgctcaa cattttgttt ctactgaacc agttgaattg 2100
ccagctccag gtcaatgggt tgttgctgaa tgtccagcta gagttgattt ttcaggagga 2160
tggtccgata ctccaccatt ggcttacgaa catggaggtg ctgttttggg attggctgtt 2220
agagttgatg gtagaagacc tattggtgct agagctagac gtattccaga accagaattg 2280
tggttggctg ttggacctca acatgataag atggctatga agattgtttg tagatccttg 2340
gatgatttgc aagattactg tcaacctcat gctccaggag ctttgttgaa ggctgctttt 2400
atttgtgctg gtattttgtc cgttcattca gaattgtcct tgtccgaaca attgttgtgt 2460
acttttggag gaggatttga attgcaaact tggtccgaat tgccacatgg ttcaggattg 2520
ggtacttctt ctattttggc tggtgctgct ttggctgctt tgcaaagagt tgctggtaga 2580
gctgttggta ctgaagcttt gattcatgct gttttgcatt tggaacaagt tttgactact 2640
ggaggaggat ggcaagatca agttggagga ttgatgccag gtattaaggt tggaagatcc 2700
cgtgcgcaat tgccattgaa ggttgaagtt gaagaaatta ctgttcctgc tggttttgtt 2760
caaaagttga acgatcattt gttgttggtt tacactggta agactagatt ggctagaaac 2820
ttgttgcaag atgttttgag atcctggtac gctagattgc caccagttgt tcaaaacgct 2880
cataacttgg ttcaacaaac tgaagaatgt gctgaagctt ttagacaagg ttccttgcca 2940
agattgggtc aatgtttgac ttcttactgg gaacaaaaga agttgatggc tccaggatgt 3000
gaaccattgg ctgttagaca tatgatggat gctttggctc ctcatgttca tggtcaatcc 3060
ttggctggtg ctggtggagg aggttttttg tacttgttga ctaaggaacc tagacaaaag 3120
gaagctttgg aagctgtttt ggctaagact gaaggattgg gtaactactc agttcatttg 3180
gttgaagttg atactcaagg attgtccttg caattgttgg gaactgaaac ttctactgga 3240
tgttcctttt aa 3252
<210> 5
<211> 13774
<212> DNA
<213> artificial sequence
<400> 5
tttccatagg ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg 60
gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct ccctcgtgcg 120
ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag 180
cgtggcgctt tctcaatgct cacgctgtag gtatctcagt tcggtgtagg tcgttcgctc 240
caagctgggc tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct tatccggtaa 300
ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg 360
taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc 420
taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac 480
cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg gtagccggtg 540
gtttttttgt ttgcaagcag cagattacgc gcagaaaaaa aggatctcaa gaagatcctt 600
tgatcttttc tacggggtct gacgctcagt ggaacgaaaa ctcacgttaa gggattttgg 660
tcatgagatc agatcttttt tgtagaaatg tcttggtgtc ctcgtccaat caggtagcca 720
tctctgaaat atctggctcc gttgcaactc cgaacgacct gctggcaacg taaaattctc 780
cggggtaaaa cttaaatgtg gagtaatgga accagaaacg tctcttccct tctctctcct 840
tccaccgccc gttaccgtcc ctaggaaatt ttactctgct ggagagcttc ttctacggcc 900
cccttgcagc aatgctcttc ccagcattac gttgcgggta aaacggaggt cgtgtacccg 960
acctagcagc ccagggatgg aaaagtcccg gccgtcgctg gcaataatag cgggcggacg 1020
catgtcatga gattattgga aaccaccaga atcgaatata aaaggcgaac acctttccca 1080
attttggttt ctcctgaccc aaagacttta aatttaattt atttgtccct atttcaatca 1140
attgaacaac tatatggctg ctgcttcagc tccattggga gtttccttgc aagaagctac 1200
tcaaagaaga ttgagaagat tttccgaatt gagaggtaag ccagttgctg ctggtgaatt 1260
ttgggatatt gttgctatta ctgctgctga tgaaaagcaa gaattggctt acaagcaaca 1320
attgtccgaa aagttgaaga agaaggaatt gccattggga gttcaatact tggtttttgt 1380
tgatccagct ggtgctaaga ttggtaacgg aggtagcact ttgtgtgctt tgagatgttt 1440
ggaaaagttg tacggtgatc aatggaactc ctttactatt ttgttgattc atagcggggg 1500
atactcccaa agattgccta acgcttcagc tttgggtaag atttttactg ctttgccatt 1560
tggttcacct atttaccaaa tgttggaatt gaagttggct atgtacattg attttccatc 1620
acatatgaac cctggtattt tggttacttg tgctgatgat attgaattgt actccattgg 1680
agaatccgaa tttattagat ttgataagcc aggatttact gctttggctc atccatcatc 1740
cttgactgtt ggtactactc atggagtttt tgttttggaa ccatttaaca gattggaata 1800
cagagatttg gaatacagat gttgtcatag atttttgcat aagccatcta ttgaaatgat 1860
gtacaagttt gatgctgttt gtagacctgg taacttttcc caacaagatt ttggtggagg 1920
tgatactcca tccttgaagc tagatccaga atacgtttac actgattccg ttttttacat 1980
ggatcataag actgctaaga agttgttggc tttttacgaa aagattgata ctttgaactg 2040
tgaaattgat gcttacggtg attttttgca agctttggga ccaggagcta ctgttgaata 2100
cactagaaac acttctaacg ttactaagga agaatccgaa ttggttgata tgagacaaag 2160
aatttttcat ttgttgaagg gtactccatt gaacgttatt gttttgaaca actctaagtt 2220
ttaccatatt ggtactacta aggaatactt gtttcatttt acttctgatt cttccttgaa 2280
gtccgaattg ggattgcaat caattgcttt ttctattttt ccagctattc cagaatactc 2340
aggtaacaag tcatgtatta ttcaatctat tttggattct agatgttcct tggctccagg 2400
atcagttgtt gaatactcta gattgggacc tgatgtttcc gttggtgaaa actgtattat 2460
ttcaggttca catattatta ctagagctat tttgccagct tactcctttg tttgttcctt 2520
gtccttgaag attaacggac atattaagta ctcaactatg gcttgtggag ttcaagataa 2580
cttgaagaag aacgttaaga ctttgtccga tgttaagttg ttgcaatttt ttggagtttc 2640
cttgttgtcc tgtttggatg tttggaactt ggaagttact gaagaattgt tttcaggtaa 2700
caagacttgt ttgtccttgt ggaacgctag aatttttcca gtttgttctt ccttgtccga 2760
ttccgttatt gcttccttga agatgttgaa cgctgttcaa tctaagtcag ttttttcttt 2820
gaacaactac aagttgttgt caattgaaga aatgttggtt tacaaggatg ttgaagatat 2880
gattacttac agagaacaaa tttttttgga aattgctttg aacagaaagc aatccgtttt 2940
ggaaacttct taagaacaaa aactcatctc agaagaggat ctgaatagcg ccgtcgacca 3000
tcatcatcat catcattgag ttttagcctt agacatgact gttcctcagt tcaagttggg 3060
cacttacgag aagaccggtc ttgctagatt ctaatcaaga ggatgtcaga atgccatttg 3120
cctgagagat gcaggcttca tttttgatac ttttttattt gtaacctata tagtatagga 3180
ttttttttgt cattttgttt cttctcgtac gagcttgctc ctgatcagcc tatctcgcag 3240
ctgatgaata tcttgtggta ggggtttggg aaaatcattc gagtttgatg tttttcttgg 3300
tatttcccac tcctcttcag agtacagaag attaagtgag aacgcgtaga tcttttttgt 3360
agaaatgtct tggtgtcctc gtccaatcag gtagccatct ctgaaatatc tggctccgtt 3420
gcaactccga acgacctgct ggcaacgtaa aattctccgg ggtaaaactt aaatgtggag 3480
taatggaacc agaaacgtct cttcccttct ctctccttcc accgcccgtt accgtcccta 3540
ggaaatttta ctctgctgga gagcttcttc tacggccccc ttgcagcaat gctcttccca 3600
gcattacgtt gcgggtaaaa cggaggtcgt gtacccgacc tagcagccca gggatggaaa 3660
agtcccggcc gtcgctggca ataatagcgg gcggacgcat gtcatgagat tattggaaac 3720
caccagaatc gaatataaaa ggcgaacacc tttcccaatt ttggtttctc ctgacccaaa 3780
gactttaaat ttaatttatt tgtccctatt tcaatcaatt gaacaactat ttcgaaacga 3840
ggaattcatg gaacaaccta agggagttga ttggactgtt attattttga cttgtcaata 3900
caaggattcc gttgaagttt ttcaaaagga attggaaatt agacaaaaga gagaacaaat 3960
tccagcttct actttgttgt tggctgttga agatcctgaa gttcatgttg gtagtggagg 4020
agctactttg aacgctttgt tggttgctgc tgaacatttg tccgctagag ctggatttac 4080
tgttgttact tccgatgttt tgcattccgc ttggattttg attttgcata tgggtagaga 4140
ttttccattt gatgattgtg gtagagcttt tacttgtttg ccagttgaaa acccacaagc 4200
tccagttgaa gctgttgttt gtaacttgga ttgtttgttg gatattatgt cacatagatt 4260
gggaccagga tcacctccag gagtttgggt ttgttctact gatatgttgt tgtcagttcc 4320
acctaaccca ggtattaact gggatggatt tagaggtgct agagttattg ctttgccagg 4380
aagcactgct tacgctagaa accatggagt ttacttgact gattcccaag gatttgtttt 4440
ggatatttac taccaaggaa ctgaagctga aattcaaaga tgtgctagac ctgatggtca 4500
agttccattg gtttccggta ttgttttttt ttccgttgaa actgctgaac atttgttggc 4560
tactcatgtt tccccaccat tggatgcttg tacttacatg ggattggatt caggtgctca 4620
accagttcaa ttgtcattgt tttttgatat tttgttgtgt atggctagaa acgttagaag 4680
agaagatttt ttggttggta gaccaccaga aatgggtaga ggtgatatgg aaactgaagg 4740
ttacttgaga ggtgctagag ctgaattgtg gagagaattg agagatcaac cattgacttt 4800
ggcttacgtt cctgatggtt cttacaacta catgactaac tccgcttcag aatttttgca 4860
ttccttgact tttccaggtg cttccggtgc tcaagttgtt cattcccaag ttgaagaaca 4920
acaattgttg ggtgctggtt cttccgttgt ttcctgtttg ttggaaggac cagttcaatt 4980
gggaccaggt tccgttttgc aacattgtca tttgagagga cctattcata ttggtactgg 5040
atgttttgtt tcgggcttgg atgctgctca atccgaagct ttgcattcct tggaattgca 5100
tgatttggtt ttgcaaggtc atcatttgca attgcatggt gctccatcca gagcttttac 5160
tttggttggt agattggatt cctgggaaag acaaggtgct ggtacttact tgaatatgtc 5220
ctggtctaag ttttttcaaa agactggtat tagagattgg gatttgtggg accctgatac 5280
tcctccaact gaaagatgtt tgttgtccgc tagattgttt ccagttttgc atccattgag 5340
agctttggga ccacaagata tgttgtggat gttagatcct caagaagatg gaggtaaggc 5400
tttgagagct tggagagatt catggagatt gtcatgggaa caattgcaac catgtttgga 5460
tagagctgct actttggctt ctagaagaga tttgtttttt agacaagctt tgcataaggc 5520
tcgccatgtt ttggaagcta gacaagattt gtccttgaga ccattgatta gagctgctgt 5580
tagagaagga tgtccaggtc cattgatggc tactttggat caagttgctg ctggagctgg 5640
tgatccagga gttgctgcta gagctttggc ttgtgttgct gatattttgg gatgtatggc 5700
tgaaggtaga ggtggtttga gatcaggacc tgctgctaac ccagaatggg ttagaccatt 5760
ttcttacttg gaatgtggtg atttggctgg aggagttgaa gctttggctc aagaaagaga 5820
aaagtggttg tctagacctg ctttgttggt tagagctgct agacattacg aaggtgctgg 5880
acaaattttg attagacaag ctgttatgtc cgctcaacat tttgtttcta ctgaaccagt 5940
tgaattgcca gctccaggtc aatgggttgt tgctgaatgt ccagctagag ttgatttttc 6000
aggaggatgg tccgatactc caccattggc ttacgaacat ggaggtgctg ttttgggatt 6060
ggctgttaga gttgatggta gaagacctat tggtgctaga gctagacgta ttccagaacc 6120
agaattgtgg ttggctgttg gacctcaaca tgataagatg gctatgaaga ttgtttgtag 6180
atccttggat gatttgcaag attactgtca acctcatgct ccaggagctt tgttgaaggc 6240
tgcttttatt tgtgctggta ttttgtccgt tcattcagaa ttgtccttgt ccgaacaatt 6300
gttgtgtact tttggaggag gatttgaatt gcaaacttgg tccgaattgc cacatggttc 6360
aggattgggt acttcttcta ttttggctgg tgctgctttg gctgctttgc aaagagttgc 6420
tggtagagct gttggtactg aagctttgat tcatgctgtt ttgcatttgg aacaagtttt 6480
gactactgga ggaggatggc aagatcaagt tggaggattg atgccaggta ttaaggttgg 6540
aagatcccgt gcgcaattgc cattgaaggt tgaagttgaa gaaattactg ttcctgctgg 6600
ttttgttcaa aagttgaacg atcatttgtt gttggtttac actggtaaga ctagattggc 6660
tagaaacttg ttgcaagatg ttttgagatc ctggtacgct agattgccac cagttgttca 6720
aaacgctcat aacttggttc aacaaactga agaatgtgct gaagctttta gacaaggttc 6780
cttgccaaga ttgggtcaat gtttgacttc ttactgggaa caaaagaagt tgatggctcc 6840
aggatgtgaa ccattggctg ttagacatat gatggatgct ttggctcctc atgttcatgg 6900
tcaatccttg gctggtgctg gtggaggagg ttttttgtac ttgttgacta aggaacctag 6960
acaaaaggaa gctttggaag ctgttttggc taagactgaa ggattgggta actactcagt 7020
tcatttggtt gaagttgata ctcaaggatt gtccttgcaa ttgttgggaa ctgaaacttc 7080
tactggatgt tccttttaag cggccgccag cttgggcccg aacaaaaact catctcagaa 7140
gaggatctga atagcgccgt cgaccatcat catcatcatc attgagtttt agccttagac 7200
atgactgttc ctcagttcaa gttgggcact tacgagaaga ccggtcttgc tagattctaa 7260
tcaagaggat gtcagaatgc catttgcctg agagatgcag gcttcatttt tgatactttt 7320
ttatttgtaa cctatatagt ataggatttt ttttgtcatt ttgtttcttc tcgtacgagc 7380
ttgctcctga tcagcctatc tcgcagctga tgaatatctt gtggtagggg tttgggaaaa 7440
tcattcgagt ttgatgtttt tcttggtatt tcccactcct cttcagagta cagaagatta 7500
agtgagacct tcgtttgtgc ggatccatga catttccctt gctacctgca tacgcaagtg 7560
ttgcagagtt tgataattcc ttgagtttgg taggaaaagc cgtgtttccc tatgctgctg 7620
accagctgca caacctgatc aagttcactc aatcgactga gcttcaagtt aatgtgcaag 7680
ttgagtcatc cgttacagag gaccaatttg aggagctgat cgacaacttg ctcaagttgt 7740
acaataatgg tatcaatgaa gtgattttgg acctagattt ggcagaaaga gttgtccaaa 7800
ggatgatccc aggcgctagg gttatctata ggaccctggt tgataaagtt gcatccttgc 7860
ccgctaatgc tagtatcgct gtgccttttt cttctccact gggcgatttg aaaagtttca 7920
ctaatggcgg tagtagaact gtttatgctt tttctgagac cgcaaagttg gtagatgtga 7980
cttccactgt tgcttctggt ataatcccca ttattgatgc tcggcaattg actactgaat 8040
acgaactttc tgaagatgtc aaaaagttcc ctgtcagtga aattttgttg gcgtctttga 8100
ctactgaccg ccccgatggt ctattcacta ctttggtggc tgactcttct aattactcgt 8160
tgggcctggt gtactcgtcc aaaaagtcta ttccggaggc tataaggaca caaactggag 8220
tctaccaatc tcgtcgtcac ggtttgtggt ataaaggtgc tacatctgga gcaactcaaa 8280
agttgctggg tatcgaattg gattgtgatg gagactgctt gaaatttgtg gttgaacaaa 8340
caggtgttgg tttctgtcac ttggaacgca cttcctgttt tggccaatca aagggtctta 8400
gagccatgga agccaccttg tgggatcgta agagcaatgc tccagaaggt tcttatacca 8460
aacggttatt tgacgacgaa gttttgttga acgctaaaat tagggaggaa gctgatgaac 8520
ttgcagaagc taaatccaag gaagatatag cctgggaatg tgctgactta ttttattttg 8580
cattagttag atgtgccaag tacggtgtga cgttggacga ggtggagaga aacctggata 8640
tgaagtccct aaaggtcact agaaggaaag gagatgccaa gccaggatac accaaggaac 8700
aacctaaaga agaatccaaa cctaaagaag tcccttctga aggtcgtatt gaattgtgca 8760
aaattgacgt ttctaaggcc tcctcacaag aaattgaaga tgcccttcgt cgtcctatcc 8820
agaaaacgga acagattatg gaattagtca aaccaattgt cgacaatgtt cgtcaaaatg 8880
gtgacaaagc ccttttagaa ctaactgcca agtttgatgg agtcgctttg aagacacctg 8940
tgttagaagc tcctttccca gaggaactta tgcaattgcc agataacgtt aagagagcca 9000
ttgatctctc tatagataac gtcaggaaat tccatgaagc tcaactaacg gagacgttgc 9060
aagttgagac ttgccctggt gtagtctgct ctcgttttgc aagacctatt gagaaagttg 9120
gcctctatat tcctggtgga accgcaattc tgccttccac ttccctgatg ctgggtgttc 9180
ctgccaaagt tgctggttgc aaagaaattg tttttgcatc tccacctaag aaggatggta 9240
cccttacccc agaagtcatc tacgttgccc acaaggttgg tgctaagtgt atcgtgctag 9300
caggaggcgc ccaggcagta gctgctatgg cttacggaac agaaactgtt cctaagtgtg 9360
acaaaatatt tggtccagga aaccagttcg ttactgctgc caagatgatg gttcaaaatg 9420
acacatcagc cctgtgtagt attgacatgc ctgctgggcc ttctgaagtt ctagttattg 9480
ctgataaata cgctgatcca gatttcgttg cctcagacct tctgtctcaa gctgaacatg 9540
gtattgattc ccaggtgatt ctgttggctg tcgatatgac agacaaggag cttgccagaa 9600
ttgaagatgc tgttcacaac caagctgtgc agttgccaag ggttgaaatt gtacgcaagt 9660
gtattgcaca ctctacaacc ctatcggttg caacctacga gcaggctttg gaaatgtcca 9720
atcagtacgc tcctgaacac ttgatcctgc aaatcgagaa tgcttcttct tatgttgatc 9780
aagtacaaca cgctggatct gtgtttgttg gtgcctactc tccagagagt tgtggagatt 9840
actcctccgg taccaaccac actttgccaa cgtacggata tgcccgtcaa tacagcggag 9900
ttaacactgc aaccttccag aagttcatca cttcacaaga cgtaactcct gagggactga 9960
aacatattgg ccaagcagtg atggatctgg ctgctgttga aggtctagat gctcaccgca 10020
atgctgttaa ggttcgtatg gagaaactgg gacttattta aggatcctac cgttcgtata 10080
gcatacatta tacgaagtta taacatccaa agacgaaagg ttgaatgaaa cctttttgcc 10140
atccgacatc cacaggtcca ttctcacaca taagtgccaa acgcaacagg aggggataca 10200
ctagcagcag accgttgcaa acgcaggacc tccactcctc ttctcctcaa cacccacttt 10260
tgccatcgaa aaaccagccc agttattggg cttgattgga gctcgctcat tccaattcct 10320
tctattaggc tactaacacc atgactttat tagcctgtct atcctggccc ccctggcgag 10380
gttcatgttt gtttatttcc gaatgcaaca agctccgcat tacacccgaa catcactcca 10440
gatgagggct ttctgagtgt ggggtcaaat agtttcatgt tccccaaatg gcccaaaact 10500
gacagtttaa acgctgtctt ggaacctaat atgacaaaag cgtgatctca tccaagatga 10560
actaagtttg gttcgttgaa atgctaacgg ccagttggtc aaaaagaaac ttccaaaagt 10620
cggcataccg tttgtcttgt ttggtattga ttgacgaatg ctcaaaaata atctcattaa 10680
tgcttagcgc agtctctcta tcgcttctga accccggtgc acctgtgccg aaacgcaaat 10740
ggggaaacac ccgctttttg gatgattatg cattgtctcc acattgtatg cttccaagat 10800
tctggtggga atactgctga tagcctaacg ttcatgatca aaatttaact gttctaaccc 10860
ctacttgaca gcaatatata aacagaagga agctgccctg tcttaaacct ttttttttat 10920
catcattatt agcttacttt cataattgcg actggttcca attgacaagc ttttgatttt 10980
aacgactttt aacgacaact tgagaagatc aaaaaacaac taattattcg aaacggaatt 11040
gtgagcggat aacaaaggat gtccaattta ctgaccgtac accaaaattt gcctgcatta 11100
ccggtcgatg caacgagtga tgaggttcgc aagaacctga tggacatgtt cagggatcgc 11160
caggcgtttt ctgagcatac ctggaaaatg cttctgtccg tttgccggtc gtgggcggca 11220
tggtgcaagt tgaataaccg gaaatggttt cccgcagaac ctgaagatgt tcgcgattat 11280
cttctatatc ttcaggcgcg cggtctggca gtaaaaacta tccagcaaca tttgggccag 11340
ctaaacatgc ttcatcgtcg gtccgggctg ccacgaccaa gtgacagcaa tgctgtttca 11400
ctggttatgc ggcgcatccg aaaagaaaac gttgatgccg gtgaacgtgc aaaacaggct 11460
ctagcgttcg aacgcactga tttcgaccag gttcgttcac tcatggaaaa tagcgatcgc 11520
tgccaggata tacgtaatct ggcatttctg gggattgctt ataacaccct gttacgtata 11580
gccgaaattg ccaggatcag ggttaaagat atctcacgta ctgacggtgg gagaatgtta 11640
atccatattg gcagaacgaa aacgctggtt agcaccgcag gtgtagagaa ggcacttagc 11700
ctgggggtaa ctaaactggt cgagcgatgg atttccgtct ctggtgtagc tgatgatccg 11760
aataactacc tgttttgccg ggtcagaaaa aatggtgttg ccgcgccatc tgccaccagc 11820
cagctatcaa ctcgcgccct ggaagggatt tttgaagcaa ctcatcgatt gatttacggc 11880
gctaaggatg actctggtca gagatacctg gcctggtctg gacacagtgc ccgtgtcgga 11940
gccgcgcgag atatggcccg cgctggagtt tcaataccgg agatcatgca agctggtggc 12000
tggaccaatg taaatattgt catgaactat atccgtaccc tggatagtga aacaggggca 12060
atggtgcgcc tgctggaaga tggcgattag cgaacaaaaa ctcatctcag aagaggatct 12120
gaatagcgcc gtcgaccatc atcatcatca tcattgagtt ttagccttag acatgactgt 12180
tcctcagttc aagttgggca cttacgagaa gaccggtctt gctagattct aatcaagagg 12240
atgtcagaat gccatttgcc tgagagatgc aggcttcatt tttgatactt ttttatttgt 12300
aacctatata gtataggatt ttttttgtca ttttgtttct tctcgtacga gcttgctcct 12360
gatcagccta tctcgcagct gatgaatatc ttgtggtagg ggtttgggaa aatcattcga 12420
gtttgatgtt tttcttggta tttcccactc ctcttcagag tacagaagat taagtgagac 12480
cttcgtttgt gcggaacccc cacacaccat agcttcaaaa tgtttctact ccttttttac 12540
tcttccagat tttctcggac tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag 12600
catactaaat tttccctctt tcttcctcta gggtgtcgtt aattacccgt actaaaggtt 12660
tggaaaagaa aaaagagacc gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat 12720
ttttatcacg tttctttttc ttgaaatttt tttttttagt ttttttctct ttcagtgacc 12780
tccattgata tttaagttaa taaacggtct tcaatttctc aagtttcagt ttcatttttc 12840
ttgttctatt acaacttttt ttacttcttg ttcattagaa agaaagcata gcaatctaat 12900
ctaaggggcg gtgttgacaa ttaatcatcg gcatagtata tcggcatagt ataatacgac 12960
aaggtgagga actaaaccat ggccaagttg accagtgccg ttccggtgct caccgcgcgc 13020
gacgtcgccg gagcggtcga gttctggacc gaccggctcg ggttctcccg ggacttcgtg 13080
gaggacgact tcgccggtgt ggtccgggac gacgtgaccc tgttcatcag cgcggtccag 13140
gaccaggtgg tgccggacaa caccctggcc tgggtgtggg tgcgcggcct ggacgagctg 13200
tacgccgagt ggtcggaggt cgtgtccacg aacttccggg acgcctccgg gccggccatg 13260
accgagatcg gcgagcagcc gtgggggcgg gagttcgccc tgcgcgaccc ggccggcaac 13320
tgcgtgcact tcgtggccga ggagcaggac tgacacgtcc gacggcggcc cacgggtccc 13380
aggcctcgga gatccgtccc ccttttcctt tgtcgatatc atgtaattag ttatgtcacg 13440
cttacattca cgccctcccc ccacatccgc tctaaccgaa aaggaaggag ttagacaacc 13500
tgaagtctag gtccctattt atttttttat agttatgtta gtattaagaa cgttatttat 13560
atttcaaatt tttctttttt ttctgtacag ataacttcgt atagcataca ttatacgaac 13620
ggtaacgcgt gtacgcatgt aacattatac tgaaaacctt gcttgagaag gttttgggac 13680
gctcgaaggc tttaatttgc aagctggaga ccaacatgtg agcaaaaggc cagcaaaagg 13740
ccaggaaccg taaaaaggcc gcgttgctgg cgtt 13774

Claims (8)

1. A recombinant pichia pastoris cell, wherein the recombinant cell comprises a vector comprising an expression sequence for a fucose-1-phosphate guanosine transferase and an expression sequence for a fucose kinase; the expression sequence of the fucose-1-guanosine phosphate transferase is shown as SEQ ID NO.3, and the expression sequence of the fucose kinase is shown as SEQ ID NO. 4.
2. The recombinant pichia pastoris cell of claim 1, wherein the amino acid sequence of the fucose-1-phosphogguanyltransferase is shown as SEQ ID No.1 and the amino acid sequence of the fucose kinase is shown as SEQ ID No. 2.
3. The recombinant pichia pastoris cell of claim 1, wherein the vector has the sequence shown in SEQ ID No. 5.
4. The recombinant pichia pastoris cell of claim 1, wherein the cell is pichia pastoris GS115.
5. The method for constructing the recombinant pichia pastoris cell according to any one of claims 1 to 4, comprising the steps of: transferring the vector of any one of claims 1 to 4 into a pichia cell.
6. The use of the recombinant pichia pastoris cell of any one of claims 1 to 4 for the preparation of guanosine diphosphate fucose.
7. A method of preparing guanosine diphosphate fucose produced by fermentation of the recombinant pichia pastoris cell of any one of claims 1 to 4.
8. The method according to claim 7, wherein the fermentation conditions are that the seed solution of the recombinant pichia pastoris cells is inoculated into a fermentation medium with an inoculum size of 0.5 to 1.5 OD, and cultured at 25 to 35 ℃ at 200 to 300rpm for 100 to 140 hours.
CN202110654277.6A 2021-06-11 2021-06-11 Recombinant pichia pastoris for synthesizing guanosine diphosphate fucose, construction method and application thereof Active CN113502297B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110654277.6A CN113502297B (en) 2021-06-11 2021-06-11 Recombinant pichia pastoris for synthesizing guanosine diphosphate fucose, construction method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110654277.6A CN113502297B (en) 2021-06-11 2021-06-11 Recombinant pichia pastoris for synthesizing guanosine diphosphate fucose, construction method and application thereof

Publications (2)

Publication Number Publication Date
CN113502297A CN113502297A (en) 2021-10-15
CN113502297B true CN113502297B (en) 2023-08-18

Family

ID=78009907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110654277.6A Active CN113502297B (en) 2021-06-11 2021-06-11 Recombinant pichia pastoris for synthesizing guanosine diphosphate fucose, construction method and application thereof

Country Status (1)

Country Link
CN (1) CN113502297B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191905A (en) * 2011-03-17 2012-10-11 National Institute Of Advanced Industrial Science & Technology Synthesis method of sugar nucleotide using yeast
CN107699535A (en) * 2017-11-08 2018-02-16 光明乳业股份有限公司 A kind of recombined bacillus subtilis for inducing synthesis guanosine diphosphate fucose and its construction method and application
CN109749976A (en) * 2019-01-30 2019-05-14 光明乳业股份有限公司 A kind of recombined bacillus subtilis efficiently synthesizing guanosine diphosphate fucose and its construction method and application
CN111471605A (en) * 2020-03-17 2020-07-31 山东大学 Saccharomyces cerevisiae engineering strain for high yield of fucosyllactose and application thereof
CN111471606A (en) * 2020-03-17 2020-07-31 山东大学 Optimized saccharomyces cerevisiae strain capable of producing fucosyllactose at high yield and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150093782A1 (en) * 2013-10-01 2015-04-02 The University Of Wyoming Compositions and methods for reducing fucosylation of glycoproteins in insect cells and methods of use thereof for production of recombinant glycoproteins

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191905A (en) * 2011-03-17 2012-10-11 National Institute Of Advanced Industrial Science & Technology Synthesis method of sugar nucleotide using yeast
CN107699535A (en) * 2017-11-08 2018-02-16 光明乳业股份有限公司 A kind of recombined bacillus subtilis for inducing synthesis guanosine diphosphate fucose and its construction method and application
CN109749976A (en) * 2019-01-30 2019-05-14 光明乳业股份有限公司 A kind of recombined bacillus subtilis efficiently synthesizing guanosine diphosphate fucose and its construction method and application
CN111471605A (en) * 2020-03-17 2020-07-31 山东大学 Saccharomyces cerevisiae engineering strain for high yield of fucosyllactose and application thereof
CN111471606A (en) * 2020-03-17 2020-07-31 山东大学 Optimized saccharomyces cerevisiae strain capable of producing fucosyllactose at high yield and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
发酵法生产L-岩藻糖的研究进展;马巍等;《食品与发酵工业》;20210114;第47卷(第16期);第308-312页 *

Also Published As

Publication number Publication date
CN113502297A (en) 2021-10-15

Similar Documents

Publication Publication Date Title
US20060107350A1 (en) Fatty acid elongases
CN101914559A (en) Sesquiterpene synthases and methods of use
CN110117601B (en) Grifola frondosa glucan synthase, encoding gene and application thereof
CN107475256A (en) It is a kind of based on more target sequence sgRNA expression vectors of endogenous tRNA systems of processing and its application in plant gene editor
CN106906214A (en) Novel plant terminator sequence
EP1356072B1 (en) Compositions and methods for the synthesis and subsequent modification of uridine-5&#39;-diphosphosulfoquinovose (udp-sq)
CN113502297B (en) Recombinant pichia pastoris for synthesizing guanosine diphosphate fucose, construction method and application thereof
CN112342230A (en) Construction and application of engineering strain for producing N-acetylglucosamine
CN113881579A (en) Method for synthesizing trichoderma long-chain antibacterial peptide and improving antibacterial activity
CN102676563A (en) Method for preparing human serum albumin-human parathyroid hormone
CN110343684B (en) Pear fruit vacuole acidic invertase and application of activity inhibitor thereof
CN110042068A (en) A method of transformation signal peptide improves enterokinase secreting, expressing amount
CN111378676B (en) Construction and application of pCUP1 vector plasmid
CN111269930A (en) Method for detecting genetic stability of filamentous fungus transformation system
Ma et al. The aquaporin MePIP2; 7 improves MeMGT9‐mediated Mg2+ acquisition in cassava
CN116348606A (en) Method for enzymatic synthesis of acetyl-CoA by diacerein donor
BR112013000219A2 (en) method for the production of a recombinant poi a high production cell line and a high production cell culture, methods to increase the yield and prolong the production phase of a recombinant poi
CN110079544A (en) A kind of method of monascorubin color value in raising fermentation liquid
CN111363711A (en) Method for producing lysine by adsorption immobilized fermentation of recombinant corynebacterium glutamicum
WO2020081468A1 (en) Stevia rebaudiana kaurenoic acid hydroxylase variants for high efficiency production of rebaudiosides
CN113412329B (en) Phloroglucinol resistant cells, particularly yeasts
WO2019233853A1 (en) Microorganisms and the production of fine chemicals
CN102373189A (en) Fatty acid synthesis-related protein and encoding gene and application thereof
CN112940092B (en) Corn ZmbHLH124 protein and application of coding gene thereof in regulating and controlling plant drought tolerance
CN115322913B (en) Recombinant saccharomyces cerevisiae for producing rose essential oil, and construction method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant