CN113501542A - 一种基于“板-垒结构”纳米填料复合的介电薄膜 - Google Patents

一种基于“板-垒结构”纳米填料复合的介电薄膜 Download PDF

Info

Publication number
CN113501542A
CN113501542A CN202110788662.XA CN202110788662A CN113501542A CN 113501542 A CN113501542 A CN 113501542A CN 202110788662 A CN202110788662 A CN 202110788662A CN 113501542 A CN113501542 A CN 113501542A
Authority
CN
China
Prior art keywords
film
titanium dioxide
polyvinylidene fluoride
dielectric
graphene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110788662.XA
Other languages
English (en)
Inventor
薛庆忠
于世凡
朱旭
薛金伟
夏富军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN202110788662.XA priority Critical patent/CN113501542A/zh
Publication of CN113501542A publication Critical patent/CN113501542A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • C03C17/009Mixtures of organic and inorganic materials, e.g. ormosils and ormocers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/477Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/114Deposition methods from solutions or suspensions by brushing, pouring or doctorblading
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides

Abstract

本发明提供了一种采用二维金属碳化物Ti3C2作为钛源,以水热法为制备方法,通过在高温液相中同时还原氧化石墨烯和氧化生成二氧化钛,制备还原氧化石墨烯‑二氧化钛的板‑垒结构纳米材料,再进一步以其为填料,采用刮膜和退火工艺制备高质量的聚偏氟乙烯基介电薄膜。以此方法制备的聚合物复合薄膜具有优异的介电性质,经过特殊的填料结构调控,控制二维纳米片的分散状态,改善其电子注入状态,优化了界面接触,主要控制薄膜的介电损耗,使得在5.5wt%填充量下的介电薄膜的介电常数提升至211,而介电损耗仅有0.1。此方法采用新型钛源制备高分散性的二氧化钛结构,由此制备的介电薄膜介电储能性能优异,预计具有较好的应用前景。

Description

一种基于“板-垒结构”纳米填料复合的介电薄膜
技术领域
本发明属于介电电容器技术领域,具体涉及一种基于二维过渡金属碳化物(Ti3C2)衍生的还原氧化石墨烯-二氧化钛复合填料的合成方法以及聚偏氟乙烯基介电薄膜的制备工艺。
背景技术
聚合物材料具有优异的延展性、耐化学腐蚀性、加工性和击穿自愈性,成为绝佳的电介质候选材料,其中聚偏氟乙烯(PVDF)及其衍生物具有铁电特性,被广泛应用于能量脉冲系统和柔性储能器件。即便如此,PVDF单质的介电常数低于10,应用范围受到限制,满足不了高容量的使用需求。引入高电导率的第二相材料,如石墨烯,能够从增加极化界面的角度提升介电聚合物的介电储能性质。然而石墨烯具有较大的表面能而极易在聚合物基体中团聚,严重影响复合材料的介电性能。此外,碳材料与聚合物的相容性一般,随着掺杂量的增加,团聚在聚合物基体中的石墨烯会构成导电网络,进而明显增加复合材料的介电损耗。以往的方法将二氧化钛、二氧化硅等低导电氧化物包覆在石墨烯表面构成三明治夹层结构,能够异质导电网络的形成。但传统的方法具有低可控性,极易使产物团聚在二维材料表面,反而会加剧石墨烯的聚结。我们则利用形状匹配的基本思想,采用一种二维过渡金属碳化物(Ti3C2)为钛的生长平台,能够更均匀地在还原氧化石墨烯(rGO)上生长二氧化钛(TiO2)颗粒。实验证明,二氧化钛的生长是可控的。最终,我们成功构建还原氧化石墨烯与二氧化钛立方体交叠的板-垒结构,这种纳米复合填料能够大大提升聚偏氟乙烯基介电薄膜的介电常数,并缓解导电网络的形成,抑制介电损耗。
发明内容
本发明的主要目的在于采用新型氧化方法在还原氧化石墨烯表面生长尺寸可控的二氧化钛颗粒,并构建了一种rGO-TiO2的板-垒结构。该结构能够促进二氧化钛的分散并成功抑制石墨烯的直接堆叠团聚。并且以该复合材料为增强相制备的聚偏氟乙烯基复合介电薄膜具有优异的介电性能,能够将介电损耗保持在较低水平。
本发明的具体制备方法如下:
(1)将氧化石墨烯(片径10-50微米)、少层MXene(片径<3微米)按照5:4的质量比混合,加入到40mL水中,在高功率超声波发生器中超声分散30分钟,得到均匀的反应前体分散液;
(2)向步骤(1)中添加一定量的氟硼酸钠,并再次超声分散30分钟,溶解氟硼酸钠并进一步混合均匀;
(3)将步骤(2)的混合溶液转移到100mL的聚四氟乙烯反应釜中,确认完全密封后,在均相反应器中以180℃的高温环境下反应。反应结束后,自然冷却至室温;
(4)将固体产物及时用去离子水洗涤、分散,溶解剩余的氟硼酸钠,收集过滤物,在冷冻干燥条件下完全烘干,便得到复合纳米填料堆砌状还原氧化石墨烯-二氧化钛(rGO-TiO2);
(5)取适量的rGO-TiO2粉末充分分散在DMF溶液中,加入预设比例的聚偏氟乙烯粉末,使聚偏氟乙烯和DMF的比例为400:3(mg:mL),持续搅拌6小时,并不定时晃动使其初步溶解;
(6)待聚偏氟乙烯溶解完全,将其转移至80℃水浴中继续搅拌溶解1小时,得到均匀的复合分散胶液;
(7)取平整干净的钢化玻璃,将步骤(6)中的胶液均匀滴在玻璃基板上,立即用可调式刮膜器将胶液摊平,并将玻璃基板转移至60℃真空干燥箱内干燥12小时;
(8)将干燥后的聚合物基膜取出,将干燥箱继续升温至200℃,再次将聚合物基膜放入静置10分钟,随即迅速取出,置入准备好的冰水中退火,得到致密化处理的还原氧化石墨烯-二氧化钛/聚偏氟乙烯复合薄膜(记为rGO-TiO2/PVDF)。
附图说明
图1分别为(a)rGO-TiO2的SEM图像;(b)rGO-TiO2的TEM图像;(c)rGO-TiO2的HRTEM图像;(d)添加不同浓度还原剂的rGO-TiO2的XRD曲线对比(短划线后面的数字代表氟硼酸钠的浓度)。
图2为GO、rGO和rGO-TiO2的Raman表征曲线。
图3分别为(a)1wt%填充量的rGO-TiO2/PVDF薄膜和(b)5wt%填充量的rGO-TiO2/PVDF薄膜实物图。
图4分别为不同填充量的rGO-TiO2/PVDF(PGT)介电薄膜的(a)介电常数频谱曲线,(b)电导率频谱曲线和(c)介电损耗频谱曲线。
具体实施方式
下面结合附图和实施例来详细描述本发明。
量取40mL的1mg/mL少层MXene水溶液,添加50mg的氧化石墨烯纳米片,在高功率超声波发生器中超声分散30分钟;然后称量440mg的氟硼酸钠加入到上述分散液中,再次超声分散30分钟得到均匀分散的前体反应液。将分散液转移至特氟龙反应釜中,在160℃下反应8h,反应结束后自然冷却至室温,将获得的rGO气凝胶置入烧杯中,添加适量去离子水,采用磁力搅拌1h,将其完全分散,后多次负压抽滤,洗涤残余的氟硼酸钠和杂质。将所获固体在冷冻干燥下保持36h,最终得到板-垒结构的rGO-TiO2粉末。
介电薄膜制作方法:取等规格的烧杯,称取一系列质量的rGO-TiO2粉末,分散在9mL的N,N-二甲基甲酰胺(DMF)中,并在高功率超声发生器中分散30分钟。称取1200mg的聚偏氟乙烯粉末,加入到上述分散液中,在常温下采用磁力搅拌12h,之后再在80℃下搅拌1h,消除气泡和未溶解颗粒。取一块平整干净的特制玻璃,采用可调式刮膜器,在玻璃上均匀涂一层约600μm厚的溶胶膜。随后将玻璃基板在60℃真空干燥箱内干燥12h。干燥结束后,将基板取出,将温度升至200℃,再将基板放入干燥箱。保持10分钟后,立即将基板取出,完全浸入准备好的冰水中退火处理,提升薄膜的机械性能。最后,将薄膜拭净并缓慢揭下。制备好的介电薄膜裁成合适大小,采用真空离子镀仪镀上直径1.2cm的银电极。
制备完成的碳基填充料微观形貌如图1(a-c)所示。可以明显看出,二氧化钛颗粒呈现立方状或者近立方状,原因是二氧化钛的(0 0 1)晶面在氟离子的诱导下暴露出来,加速生长至立方体形貌。氧化物颗粒均匀分散在rGO片层之间和表面,尺径大约在600nm左右,形成一种板-垒结构,一定程度上阻止了rGO的大规模团聚行为。从高倍透射电子显微图像(图1c)可以观察到二氧化钛晶体的晶格间距在0.35nm,代表着锐钛矿相二氧化钛的(1 01)晶面。图1(d)的XRD图也能进一步验证经氟硼酸钠诱导的rGO-TiO2出现纯化的锐钛矿晶格,这意味着氟硼酸钠的存在将抑制金红石相的二氧化钛生长,提供均匀稳定的立方相二氧化钛结构。对比XRD还可以看出在0.1M的氟硼酸钠浓度下生长的二氧化钛衍射峰最狭长,意味着结晶度最高,对二氧化钛的诱导有着最佳效果。石墨烯的表面有序度以及二氧化钛的结构信息也可以通过拉曼光谱进一步验证。如图2所示,位于149cm-1、198cm-1、398cm-1、511cm-1和634cm-1的衍射峰分别代表着TiO2的Eg、Eg、B1g、A1g和Eg的振动模式,是典型的锐钛矿相TiO2的拉曼衍射峰型。图中代表着碳的D峰和G峰也清晰得显示出来,从D峰和G峰的强度比可以得知,在TiO2和MXene中碳元素的诱导之下,还原氧化石墨烯表面有序度明显降低,表面形成一层高缺陷低电导的碳层,这有利于抑制导电网络的形成。
薄膜成品图如图3所示,大规模、高强度、低厚度的复合介电薄膜很容易成型,可以依据需要填充不同体积分数的填料。为探究不同填充状态下的介电薄膜的介电性能参数,分别测试了rGO-TiO2/PVDF的介电常数、介电损耗和电导率的频谱变化曲线。如图4所示,经填充复合的介电薄膜性质得到明显改善。首先在低填充量下(1wt%-4wt%),介电常数得到不同程度的提升,而且介电损耗能够与纯聚偏氟乙烯一样维持在较低水平,甚至更低。在5.5wt%的填充量下,介电常数可以达到211(1kHz),介电损耗值也控制在较低的0.104。当进一步填充时,复合介电薄膜的介电常数和介电损耗有了指数级的增长,标志着聚合物基质内形成导电网络。从电导率变化曲线(图4b)也可以获悉,复合薄膜的电导率在渗流阈值之前保持在低水平,而达渗流阈值之后,电导率迅速提升,直至形成导电网络。

Claims (2)

1.一种基于二维金属碳化物Ti3C2的具有“板-垒结构”还原氧化石墨烯-二氧化钛材料的制备方法,其具体制备过程为:
(1)将5份的氧化石墨烯(1000目)、4份的少层MXene纳米片(片径<5微米)混合分散在40mL去离子水中,在高功率超声波发生器中超声分散30分钟,得到均匀的反应前体分散液;
(2)向步骤(1)中添加氟硼酸钠作为反应控制剂,使其浓度达到0.1mol/L,并再次超声分散30分钟,进一步混合均匀;
(3)将步骤(2)的混合溶液转移到100mL容量的聚四氟乙烯反应釜中,确认完全密封后,在均相反应器中以160℃的高温环境下反应8小时。反应结束后,自然冷却至室温;
(4)将固体产物及时用去离子水洗涤、分散,溶解剩余的氟硼酸钠;采用抽滤的方法将其完全洗净,收集过滤物。
(5)将固体在-60℃条件下冷冻干燥36小时,便得到具有板-垒结构的还原氧化石墨烯-二氧化钛复合材料,可用于聚合物基复合介电材料的制备。
2.一种基于上述“板-垒结构”还原氧化石墨烯-二氧化钛填料的聚偏氟乙烯复合介电薄膜的制备方法,其具体工艺流程为:
(1)取适量的rGO-TiO2粉末充分分散在DMF溶液中,加入预设比例的聚偏氟乙烯粉末,使聚偏氟乙烯和DMF的比例为3:4,磁子搅拌6小时,并及时干预使其充分溶解;
(2)待聚偏氟乙烯溶解完全,将其转移至80℃水浴中继续搅拌溶解1小时,得到均匀的复合分散胶液;
(3)取平整干净的钢化玻璃,将上步的胶液均匀滴在玻璃基板上,立即用可调式刮膜器将胶液摊平,并将玻璃基板转移至60℃真空干燥箱内干燥12小时;
(4)将干燥后的聚合物基膜取出,将干燥箱继续升温至200℃,再次将聚合物基膜放入静置10分钟,随即迅速取出,置入准备好的冰水中退火,得到致密化处理的还原氧化石墨烯-二氧化钛/聚偏氟乙烯复合薄膜。
CN202110788662.XA 2021-07-12 2021-07-12 一种基于“板-垒结构”纳米填料复合的介电薄膜 Pending CN113501542A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110788662.XA CN113501542A (zh) 2021-07-12 2021-07-12 一种基于“板-垒结构”纳米填料复合的介电薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110788662.XA CN113501542A (zh) 2021-07-12 2021-07-12 一种基于“板-垒结构”纳米填料复合的介电薄膜

Publications (1)

Publication Number Publication Date
CN113501542A true CN113501542A (zh) 2021-10-15

Family

ID=78013005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110788662.XA Pending CN113501542A (zh) 2021-07-12 2021-07-12 一种基于“板-垒结构”纳米填料复合的介电薄膜

Country Status (1)

Country Link
CN (1) CN113501542A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103055835A (zh) * 2012-12-25 2013-04-24 吕晓莹 一种碳纤维负载二氧化钛纳米薄片的制备方法
CN105551828A (zh) * 2015-12-11 2016-05-04 郑州大学 一种纳米二氧化钛/石墨烯复合材料及其制备方法
CN106653359A (zh) * 2016-10-25 2017-05-10 浙江大学 高介电常数二氧化钛/石墨烯复合材料的制备方法
CN109192940A (zh) * 2018-08-13 2019-01-11 中南大学 一种二氧化钛/石墨烯多元改性Mxene复合材料及其制备方法
CN109777009A (zh) * 2018-12-27 2019-05-21 佛山科学技术学院 一种用于制备高储能密度电容器的GR-TiO2-PVDF纳米复合材料及其制备方法
CN111790417A (zh) * 2020-05-23 2020-10-20 同济大学 Mxene衍生TiO2纳米片-石墨烯凝胶复合材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103055835A (zh) * 2012-12-25 2013-04-24 吕晓莹 一种碳纤维负载二氧化钛纳米薄片的制备方法
CN105551828A (zh) * 2015-12-11 2016-05-04 郑州大学 一种纳米二氧化钛/石墨烯复合材料及其制备方法
CN106653359A (zh) * 2016-10-25 2017-05-10 浙江大学 高介电常数二氧化钛/石墨烯复合材料的制备方法
CN109192940A (zh) * 2018-08-13 2019-01-11 中南大学 一种二氧化钛/石墨烯多元改性Mxene复合材料及其制备方法
CN109777009A (zh) * 2018-12-27 2019-05-21 佛山科学技术学院 一种用于制备高储能密度电容器的GR-TiO2-PVDF纳米复合材料及其制备方法
CN111790417A (zh) * 2020-05-23 2020-10-20 同济大学 Mxene衍生TiO2纳米片-石墨烯凝胶复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Hu et al. Ti 2 Nb 2x O 4+ 5x anode materials for lithium-ion batteries: a comprehensive review
Zhong et al. Co3O4/Ni (OH) 2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications
CN107934965B (zh) 一种Ti3C2-Co(OH)(CO3)0.5纳米复合材料的制备方法
KR20120045411A (ko) 스피넬형 리튬 티타늄 산화물/그래핀 복합체 및 그 제조방법
CN104030280A (zh) 石墨烯纸的制备方法
CN106229485A (zh) 一种由二维层状过渡金属碳化物MXene原位制备过渡金属氧化物/碳复合材料的方法
KR101267317B1 (ko) 마이크로웨이브-폴리올 합성법을 이용한 전이금속 산화물/그래핀 복합체 및 이의 제조방법
CN109809481B (zh) 一种利用碳化钛超薄纳米片制备具有中空结构的二氧化钛多面体的方法
WO2014032399A1 (zh) 一种石墨烯和石墨烯基复合材料的低温制备方法
Liu et al. Synthesis of MnO2-graphene composites with enhanced supercapacitive performance via pulse electrodeposition under supergravity field
CN108288703A (zh) 一种石墨烯包覆掺氟钛酸锂纳米线的制备方法及其应用
KR20120103947A (ko) 전이금속 산화물/그래핀 복합체 및 이의 제조방법
CN106098405B (zh) 一种三维大米状TiO2/石墨烯复合水凝胶及其制备方法
CN111792669B (zh) 一种TiO2纳米棒/多层石墨烯复合材料及制备方法
Aggrey et al. On the diatomite-based nanostructure-preserving material synthesis for energy applications
CN111498957B (zh) 二硫化钼@二硫化钴@二氧化钛纳米管整体式电容型脱盐电极的制备方法
Cui et al. A ternary MnO 2-deposited RGO/lignin-based porous carbon composite electrode for flexible supercapacitor applications
Guan et al. RGO/KMn8O16 composite as supercapacitor electrode with high specific capacitance
Mahmoudabad et al. Synthesis and characterization of PbO nanostructure and NiO doped with PbO through combustion of citrate/nitrate gel
Sun et al. Morphology control of Cu and Cu 2 O through electrodeposition on conducting polymer electrodes
KR101419340B1 (ko) 그라파이트 산화물 및 그래핀 나노시트 제조 방법
CN106887580B (zh) 一种锂离子电池负极材料及其制备方法
CN109817939B (zh) 一种包覆型正极材料、其制备方法和应用
CN113501542A (zh) 一种基于“板-垒结构”纳米填料复合的介电薄膜
Zhao et al. Enhanced dielectric properties of PVDF-based composite film with BaTiO 3@ SrTiO 3 nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211015

WD01 Invention patent application deemed withdrawn after publication