CN113499672A - Air purification structure, catalyst film preparation method and air purifier thereof - Google Patents

Air purification structure, catalyst film preparation method and air purifier thereof Download PDF

Info

Publication number
CN113499672A
CN113499672A CN202110827139.3A CN202110827139A CN113499672A CN 113499672 A CN113499672 A CN 113499672A CN 202110827139 A CN202110827139 A CN 202110827139A CN 113499672 A CN113499672 A CN 113499672A
Authority
CN
China
Prior art keywords
air
air purification
dielectric layer
purification structure
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110827139.3A
Other languages
Chinese (zh)
Inventor
李家星
曹茹雅
周剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN202110827139.3A priority Critical patent/CN113499672A/en
Publication of CN113499672A publication Critical patent/CN113499672A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultra-violet radiation
    • A61L9/205Ultra-violet radiation using a photocatalyst or photosensitiser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20792Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2096Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/91Bacteria; Microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma

Abstract

The invention discloses an air purification structure, a catalyst film preparation method and an air purifier thereof, wherein the air purification structure comprises the following components: the dielectric barrier discharge tube comprises a high-voltage electrode, a dielectric layer and a grounding electrode which are coaxially arranged from inside to outside in sequence, a discharge cavity for air to pass through is formed between the dielectric layer and the grounding electrode, the high-voltage electrode is used for being connected with a high-voltage wire, and the grounding electrode is used for being connected with a ground wire; a catalyst thin film disposed on an outer surface of the dielectric layer, the catalyst thin film includingBiOBr photocatalyst and ZnIn2S4A photocatalyst. Through the technical scheme of the embodiment, the medium blocking discharge and the photocatalyst can run in a coordinated mode, and the efficiency of gas purification treatment is improved.

Description

Air purification structure, catalyst film preparation method and air purifier thereof
Technical Field
The invention relates to the field of air purification, in particular to an air purification structure, a catalyst film preparation method and an air purifier thereof.
Background
Air purifier reaches clear purpose through the comprehensive application of multiple technique, and the air purification technique of commonly using has: active carbon adsorption, ion technology, HEPA high-efficiency filtration technology, electrostatic dust collection technology and the like.
The dielectric barrier discharge can generate stable low-temperature plasma under atmospheric pressure. When gas passes through a high-voltage electric field, a large amount of electrons, atoms, molecules and free radicals with high reactivity are generated and can react with various organic and inorganic pollutant molecules to achieve the aim of removing, but the gas purification treatment efficiency is low.
Disclosure of Invention
The present invention is directed to solving at least one of the problems of the prior art.
Therefore, the invention provides an air purification structure, which can enable medium blocking discharge and a photocatalyst to operate cooperatively, and improves the efficiency of gas purification treatment.
The invention also provides a preparation method of the catalyst film applied to the air purification structure.
The invention also provides an air purifier with the air purification structure.
According to an embodiment of the first aspect of the present invention, an air purification structure includes:
the dielectric barrier discharge tube comprises a high-voltage electrode, a dielectric layer and a grounding electrode which are coaxially arranged from inside to outside in sequence, a discharge cavity for air to pass through is formed between the dielectric layer and the grounding electrode, the high-voltage electrode is used for being connected with a high-voltage wire, and the grounding electrode is used for being connected with a ground wire;
a catalyst film disposed on the outer surface of the dielectric layer, the catalyst film including a BiOBr photocatalyst and ZnIn2S4A photocatalyst.
According to the air purification structure provided by the embodiment of the invention, at least the following beneficial effects are achieved: when high-voltage alternating current is connected between the high-voltage electrode and the grounding electrode, air enters a discharge cavity between the dielectric layer and the grounding electrodeThe dielectric barrier discharge can generate stable low-temperature plasma under atmospheric pressure, the low-temperature plasma emits high-activity particles, and ozone, hydroxyl radicals and ultraviolet light are generated in the discharge cavity; ultraviolet light is irradiated on a photocatalyst containing BiOBr and ZnIn2S4When the photocatalyst is arranged on a catalyst film of the photocatalyst, catalytic reaction is carried out, and ozone and hydroxyl can be generated as well; and the ozone, hydroxyl free radical and ultraviolet light that produce all can carry out sterilization disinfection to the air and handle, above-mentioned technical scheme blocks discharge and photocatalyst collaborative work with the medium to gas purification's efficiency has been promoted well.
According to some embodiments of the invention, the dielectric layer is made of glass.
According to some embodiments of the invention, the dielectric layer is made of ceramic.
According to some embodiments of the invention, the dielectric layer is made of enamel.
According to some embodiments of the invention, the high voltage electrode is cylindrical in shape.
According to some embodiments of the invention, the high voltage electrode is made of copper.
According to some embodiments of the invention, the high voltage electrode is made of aluminum.
According to some embodiments of the invention, the power supply connected with the high-voltage electrode is an alternating current high-voltage power supply of 5-20 kHz.
The preparation method of the catalyst thin film according to the embodiment of the second aspect of the present invention is applied to the air purification structure, and the method includes:
BiOBr photocatalyst and ZnIn are prepared by a layer-by-layer electrostatic self-assembly method2S4The photocatalyst is alternately attached to the outer surface of the dielectric layer.
The preparation method of the catalyst film provided by the embodiment of the invention has at least the following beneficial effects: according to the air purification structure prepared by the method, when high-voltage alternating current is connected between the high-voltage electrode and the grounding electrode and air enters the discharge cavity between the dielectric layer and the grounding electrode, dielectric barrier discharge can be generated under atmospheric pressureThe low-temperature plasma emits high-activity particles, and ozone, hydroxyl radicals and ultraviolet light are generated in the discharge cavity; ultraviolet light is irradiated on a photocatalyst containing BiOBr and ZnIn2S4When the photocatalyst is arranged on a catalyst film of the photocatalyst, catalytic reaction is carried out, and ozone and hydroxyl can be generated as well; and the ozone, hydroxyl free radical and ultraviolet light that produce all can carry out sterilization disinfection to the air and handle, above-mentioned technical scheme blocks discharge and photocatalyst collaborative work with the medium to gas purification's efficiency has been promoted well.
An air cleaner according to an embodiment of a third aspect of the present invention includes the air cleaning structure in the above-described embodiments.
The air purifier provided by the embodiment of the invention at least has the following beneficial effects: when high-voltage alternating current is connected between the high-voltage electrode and the grounding electrode, and air enters a discharge cavity between the dielectric layer and the grounding electrode, the dielectric barrier discharge can generate stable low-temperature plasma under atmospheric pressure, the low-temperature plasma emits high-activity particles, and ozone, hydroxyl radicals and ultraviolet light are generated in the discharge cavity; ultraviolet light is irradiated on a photocatalyst containing BiOBr and ZnIn2S4When the photocatalyst is arranged on a catalyst film of the photocatalyst, catalytic reaction is carried out, and ozone and hydroxyl can be generated as well; and the ozone, hydroxyl free radical and ultraviolet light that produce all can carry out sterilization disinfection to the air and handle, above-mentioned technical scheme blocks discharge and photocatalyst collaborative work with the medium to gas purification's efficiency has been promoted well.
Additional aspects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
Drawings
The above and/or additional aspects and advantages of the present invention will become apparent and readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
fig. 1 is a schematic cross-sectional view of an air purification structure according to an embodiment of the present invention;
fig. 2 is a partial structural schematic view of an air purification structure according to an embodiment of the present invention.
Reference numerals:
high voltage electrode 100, dielectric layer 200, ground electrode 300, discharge cavity 400, catalyst film 500.
Detailed Description
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like or similar reference numerals refer to the same or similar elements or elements having the same or similar function throughout. The embodiments described below with reference to the accompanying drawings are illustrative only for the purpose of explaining the present invention, and are not to be construed as limiting the present invention.
In the description of the present invention, it should be understood that the orientation or positional relationship referred to in the description of the orientation, such as the upper, lower, front, rear, left, right, etc., is based on the orientation or positional relationship shown in the drawings, and is only for convenience of description and simplification of description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and thus, should not be construed as limiting the present invention.
In the description of the present invention, the meaning of a plurality of means is one or more, the meaning of a plurality of means is two or more, and larger, smaller, larger, etc. are understood as excluding the number, and larger, smaller, inner, etc. are understood as including the number. If the first and second are described for the purpose of distinguishing technical features, they are not to be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated or implicitly indicating the precedence of the technical features indicated.
In the description of the present invention, unless otherwise explicitly limited, terms such as arrangement, installation, connection and the like should be understood in a broad sense, and those skilled in the art can reasonably determine the specific meanings of the above terms in the present invention in combination with the specific contents of the technical solutions.
Referring to fig. 1 to 2, there is provided an air purification structure according to an embodiment of a first aspect of the present invention, including: dielectric barrier discharge tube, dielectricThe barrier discharge tube comprises a high-voltage electrode 100, a dielectric layer 200 and a grounding electrode 300 which are coaxially arranged from inside to outside in sequence, a discharge cavity 400 for air to pass through is formed between the dielectric layer 200 and the grounding electrode 300, the high-voltage electrode 100 is used for being connected with a high-voltage wire, and the grounding electrode 300 is used for being connected with a ground wire; a catalyst film 500, the catalyst film 500 being disposed on the outer surface of the dielectric layer 200, the catalyst film 500 including a BiOBr photocatalyst and ZnIn2S4A photocatalyst.
It should be noted that when a high voltage alternating current is connected between the high voltage electrode 100 and the ground electrode 300 and air enters the discharge cavity 400 between the dielectric layer 200 and the ground electrode 300, the dielectric barrier discharge can generate a stable low temperature plasma under atmospheric pressure, the low temperature plasma emits high active particles, and ozone, hydroxyl radicals and ultraviolet light are generated in the discharge cavity 400; ultraviolet light is irradiated on a photocatalyst containing BiOBr and ZnIn2S4When the photocatalyst is arranged on the catalyst film 500, catalytic reaction is carried out, and ozone and hydroxyl can be generated; and the ozone, hydroxyl free radical and ultraviolet light that produce all can carry out sterilization disinfection to the air and handle, above-mentioned technical scheme blocks discharge and photocatalyst collaborative work with the medium to gas purification's efficiency has been promoted well.
It should be noted that the dielectric barrier discharge is a non-equilibrium gas discharge with an insulating dielectric inserted into the discharge space, which is also called dielectric barrier corona discharge or silent discharge. The dielectric barrier discharge can work in a high air pressure and wide frequency range, the common working air pressure is 10-10000, and the power supply frequency can be from 50Hz to 1 MHz. It should be noted that, it is prior art that the air generates the low-temperature plasma between the discharge cavities 400, and the working principle thereof is not described in detail in the embodiment of the present invention.
It should be noted that BiOBr (bismuth oxybromide) is a novel visible light responsive semiconductor photocatalytic material, and has the characteristics of forbidden bandwidth, open layered structure, high oxidation capability, indirect transition mode and the like; and ZnIn2S4(indium zinc sulfide) is an important and novel ternary semiconductor material with strong absorption capacity in a visible light regionHas stronger photocatalytic property.
It can be understood that the air containing dust, bacteria and viruses, and Volatile Organic Compounds (VOCs) passes through the pre-filter to filter and adsorb the passing suspended particles and PM 2.5. The air after the preliminary filtering flows through the discharge cavity 400, and the dielectric barrier discharge generates ozone, hydroxyl radicals, and ultraviolet light in the discharge cavity 400. Wherein, the plasma can modify the surface of the dust and sterilize bacteria. Irradiating BiOBr and ZnIn with ultraviolet light generated by plasma reaction2S4When the composite photocatalyst film 500 is formed, a photocatalytic reaction occurs to generate ozone and hydroxyl radicals. The air is then sterilized and disinfected, the VOCs are rapidly decomposed into carbon dioxide and water, and the purified air is discharged through the separation net.
In some embodiments of the invention, the dielectric layer 200 is made of glass. The dielectric layer 200 may be glass, which is lighter in weight and less costly.
In some embodiments of the invention, the dielectric layer 200 is made of ceramic. The dielectric layer 200 may also be ceramic, which has a strong insulating property and is very suitable for being used as a material for preparing the dielectric layer 200 according to the embodiment of the present invention.
In some embodiments of the invention, dielectric layer 200 is made of enamel. The enamel also has strong insulating property and is also suitable for being used as a preparation material of the dielectric layer 200 of the embodiment of the invention.
Referring to fig. 2, in some embodiments of the invention, the hv electrode 100 is cylindrical in shape.
In some embodiments of the present invention, the high voltage electrode 100 is made of copper. Copper has better conductivity and relatively lower preparation cost.
In some embodiments of the present invention, high voltage electrode 100 is made of aluminum. Aluminum also has good electrical conductivity and is relatively low in cost.
In some embodiments of the present invention, the power source connected to the high voltage electrode 100 is an AC high voltage of 5 to 20 kHz. In the embodiment of the invention, the power supply is 5-20 kHz alternating current high voltage, and plasma is generated in the discharge cavity 400 through the 5-20 kHz alternating current high voltage.
An embodiment according to the second aspect of the present invention provides a catalyst thin film preparation method, which is applied to the air purification structure, and the method includes:
BiOBr photocatalyst and ZnIn are prepared by a layer-by-layer electrostatic self-assembly method2S4The photocatalyst is alternately attached to the outer surface of the dielectric layer.
Layer-by-layer (LbL) electrostatic self-assembly, also known as electrostatic self-assembled multilayer (ESAM), is a process in which two oppositely charged polymers, electrolytes, are electrostatically interacted to assemble by layer-by-layer adsorption onto a surface of a surface-treated charged solid substrate, thereby forming a nanoscale polymer film.
An embodiment according to a third aspect of the present invention provides an air cleaner including the air cleaning structure of the above embodiment.
According to the scheme, when high-voltage alternating current is connected between the high-voltage electrode 100 and the grounding electrode 300 and air enters the discharge cavity 400 between the dielectric layer 200 and the grounding electrode 300, the dielectric barrier discharge can generate stable low-temperature plasma under atmospheric pressure, the low-temperature plasma emits high-activity particles, and ozone, hydroxyl radicals and ultraviolet light are generated in the discharge cavity 400; ultraviolet light is irradiated on a photocatalyst containing BiOBr and ZnIn2S4When the photocatalyst is arranged on the catalyst film 500, catalytic reaction is carried out, and ozone and hydroxyl can be generated; and the ozone, hydroxyl free radical and ultraviolet light that produce all can carry out sterilization disinfection to the air and handle, above-mentioned technical scheme blocks discharge and photocatalyst collaborative work with the medium to gas purification's efficiency has been promoted well.
In the description herein, references to the description of the term "one embodiment," "some embodiments," "an illustrative embodiment," "an example," "a specific example," or "some examples" or the like mean that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the invention. In this specification, the schematic representations of the terms used above do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
While embodiments of the invention have been shown and described, it will be understood by those of ordinary skill in the art that: various changes, modifications, substitutions and alterations can be made to the embodiments without departing from the principles and spirit of the invention, the scope of which is defined by the claims and their equivalents.

Claims (10)

1. An air purification structure, comprising:
the dielectric barrier discharge tube comprises a high-voltage electrode, a dielectric layer and a grounding electrode which are coaxially arranged from inside to outside in sequence, a discharge cavity for air to pass through is formed between the dielectric layer and the grounding electrode, the high-voltage electrode is used for being connected with a high-voltage wire, and the grounding electrode is used for being connected with a ground wire;
a catalyst film disposed on the outer surface of the dielectric layer, the catalyst film including a BiOBr photocatalyst and ZnIn2S4A photocatalyst.
2. An air purification structure as claimed in claim 1, wherein: the dielectric layer is made of glass.
3. An air purification structure as claimed in claim 1, wherein: the dielectric layer is made of ceramic.
4. An air purification structure as claimed in claim 1, wherein: the medium layer is made of enamel.
5. An air purification structure as claimed in claim 1, wherein: the high-voltage electrode is cylindrical in shape.
6. An air purification structure as claimed in claim 5, wherein: the high voltage electrode is made of copper.
7. An air purification structure as claimed in claim 5, wherein: the high voltage electrode is made of aluminum.
8. An air purification structure as claimed in claim 1, wherein: and the power supply connected with the high-voltage electrode is 5-20 kHz alternating current high-voltage electricity.
9. A catalyst thin film production method, which is applied to the air purification structure according to any one of claims 1 to 8, the method comprising:
BiOBr photocatalyst and ZnIn are prepared by a layer-by-layer electrostatic self-assembly method2S4The photocatalyst is alternately attached to the outer surface of the dielectric layer.
10. An air cleaner characterized by comprising the air cleaning structure according to any one of claims 1 to 8.
CN202110827139.3A 2021-07-21 2021-07-21 Air purification structure, catalyst film preparation method and air purifier thereof Pending CN113499672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110827139.3A CN113499672A (en) 2021-07-21 2021-07-21 Air purification structure, catalyst film preparation method and air purifier thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110827139.3A CN113499672A (en) 2021-07-21 2021-07-21 Air purification structure, catalyst film preparation method and air purifier thereof

Publications (1)

Publication Number Publication Date
CN113499672A true CN113499672A (en) 2021-10-15

Family

ID=78013802

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110827139.3A Pending CN113499672A (en) 2021-07-21 2021-07-21 Air purification structure, catalyst film preparation method and air purifier thereof

Country Status (1)

Country Link
CN (1) CN113499672A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114558595A (en) * 2022-03-16 2022-05-31 淮北师范大学 Visible light catalyst for degrading antibiotic residues

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114558595A (en) * 2022-03-16 2022-05-31 淮北师范大学 Visible light catalyst for degrading antibiotic residues
CN114558595B (en) * 2022-03-16 2023-08-08 淮北师范大学 Visible light catalyst for degrading antibiotic residues

Similar Documents

Publication Publication Date Title
KR100535123B1 (en) Hybrid type air cleaner for automobile
AU745172B2 (en) Electrostatic precipitator
US8003058B2 (en) Air purification devices
EP1968740B1 (en) Air purification devices
WO2018234631A9 (en) Air purifier
KR102279299B1 (en) Air purifier that efficiently removes ultrafine dust with a particle size of 0.1 μm or more, and comprising a photocatalytic system with improved sterilization ability
CN108954533B (en) A kind of plasma generation ladder type module and the module deodorization and disinfection purification device
CN100355459C (en) Static reinforced nano photocatalytic air disinfection and clarification device
KR100526300B1 (en) Electrostatic particle collecting ventilation apparatus
KR102224237B1 (en) Air purification apparatus
CN113499672A (en) Air purification structure, catalyst film preparation method and air purifier thereof
CN2656867Y (en) High-adsorptivity multifunctional air purifier
CN1276224C (en) Multifunctional air purifier with high adsorbability
KR100762818B1 (en) Air cleaning system
CN106352424B (en) Wide-spectrum ultraviolet sterilization system
KR102286104B1 (en) Apparatus for Removing VOCs and VOCs Removing Method Using the Same
KR20190076432A (en) Plasma wire having carbon coating layer and dust collector using the same
KR20200019646A (en) Plasma wire having carbon coating layer and dust collector using the same
CN203555979U (en) Non-uniform dielectric barrier discharge/nano TiO2 air-conditioning system cleaning and sterilizing device
KR102030011B1 (en) Apparatus and method for air cleaning using separate electrical discharge compartment
CN112344502A (en) Polar plate structure, sterilizing device and air purifier
CN101455853B (en) Sanzi effect generator suitable for air sterilization of air-conditioner passenger train
CN205995215U (en) A kind of nanoscale environmental protection integrated dedusting cleaning system
CN106268301B (en) Air purifying and filtering system with super-strong adsorption force
CN213577834U (en) Novel central air conditioning removes dust and disinfects device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination