CN113493777B - 一种β-半乳糖苷酶及其在乳糖降解中的应用 - Google Patents

一种β-半乳糖苷酶及其在乳糖降解中的应用 Download PDF

Info

Publication number
CN113493777B
CN113493777B CN202110714060.XA CN202110714060A CN113493777B CN 113493777 B CN113493777 B CN 113493777B CN 202110714060 A CN202110714060 A CN 202110714060A CN 113493777 B CN113493777 B CN 113493777B
Authority
CN
China
Prior art keywords
galactosidase
beta
ala
leu
gal39
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110714060.XA
Other languages
English (en)
Other versions
CN113493777A (zh
Inventor
何宁宁
李尚勇
宋静宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN202110714060.XA priority Critical patent/CN113493777B/zh
Publication of CN113493777A publication Critical patent/CN113493777A/zh
Application granted granted Critical
Publication of CN113493777B publication Critical patent/CN113493777B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2468Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
    • C12N9/2471Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01023Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明涉及一种β‑半乳糖苷酶及其在乳糖降解中的应用。所述β‑半乳糖苷酶氨基酸序列如SEQ ID NO.1所示。本发明的β‑半乳糖苷酶Gal39为结构与功能新颖的乳糖水解酶,其氨基酸序列与已有性质报道的β‑半乳糖苷酶序列相似度仅为79.28%,是一个新酶。本发明所述的β‑半乳糖苷酶产量可达366.2U/mL,最适反应温度为40℃,最适反应PH为7.5。本发明所述的β‑半乳糖苷酶具有耐热性,在60℃下孵育1小时仍保持56.2%的酶活性。本发明所述的β‑半乳糖苷酶产量大,稳定性好,具有优良的工业化应用潜质。

Description

一种β-半乳糖苷酶及其在乳糖降解中的应用
技术领域
本发明涉及一种β-半乳糖苷酶及其在乳糖降解中的应用,属于生物技术领域。
背景技术
β-半乳糖苷酶(EC3.2.1.23,乳糖酶)是水解β-D-半乳糖苷键产生游离D-半乳糖的活性酶。其作为一种重要的医用酶,广泛存在于微生物和动植物中。β-半乳糖苷酶还可以用于制造低聚半乳糖(具有半乳糖残基的低聚糖),同时可以作为乳糖不耐症的潜在治疗选择。
现已知米曲霉(Aspergillus oryzae)、乳酸克鲁维酵母(Kluyveromyceslactis)、马克斯克鲁维酵母(K.marxinus)和细菌环状芽孢杆菌(Bacillus circulans)等微生物可产生β-半乳糖苷酶。其中,来自环状芽孢杆菌的β-半乳糖苷酶(专利文献1,非专利文献1)是能够用乳糖生成低聚半乳糖的酶,是工业上制造低聚半乳糖的重要的酶(例如,以“BIOLACTA”的商品名销售β-半乳糖苷酶制剂)。
专利文献
专利文献1:国际公开第2010/140435号小册子
非专利文献
非专利文献1:Song,J.;Abe,K.;Imanaka,H.;Imamura,K.;Minoda,M.;Yamaguchi,S.;Nakanishi,K.Causes of the production of multiple forms ofβ-galactosidaseby Bacillus circulans.Bioscience,biotechnology,and biochemistry 2011,75,268-278,doi:10.1271/bbb.100574.
在工业上,向底物乳糖添加乳糖酶,通常需要加热进行。在酶反应中,为了提高底物的溶解度以及抑制杂菌的生长,提高反应温度是一种简单易行的方法。目前,报道的糖苷酶活力较低且耐热性有待提高,严重限制了其工业化应用前景。
发明内容
本发明针对现有技术的不足,提供了一种新型β-半乳糖苷酶Gal39及其制备方法。本发明的β-半乳糖苷酶Gal39为结构与功能新颖的乳糖水解酶,其氨基酸序列与已有性质报道的β-半乳糖苷酶序列相似度仅为79.28%,是一个新酶。本发明所述β-半乳糖苷酶Gal39最适反应温度为40℃,最适反应pH为7.5;其具有耐热性,在60℃下孵育1小时仍可保持56.2%的活性,利于提高底物的溶解度以及防止杂菌污染。该酶产量大,是用于制造低聚半乳糖的理想选择。
一方面,本发明提供一种新型β-半乳糖苷酶Gal39,其氨基酸序列如SEQ ID NO.1所示。
SEQ ID NO.1:
MTIFYGIGDYNPEQWPEATWHEDVTLMQEAGVNNLLVSVAIFAWSKLEPEPGRFDFGWLDRLLDLLHEHGIGVCLATATAAPPPWLAHQHPESLPVTATGVRLGVGSRQQYSPSSPAYKEAAARLVRAIAERYKGHPALKLWHVNNEYGCHVYESFDEDSAAAFRAWLRARYGTLEALALNAAWGTAFWSQLYHHWEEITPPRAAPTFLNPTQQLDWRRFCSDALLALYERDILREVTPEVPITTNFIGVHKPIDAWRWAEALDLVANDAYPDPSDPEAPIHAAFASDVMRSLKGGAPWLLMEQAPNQVQWRPRNALKAPGVMRLWSLQALARGARGVMFFQWRQSKAGAEKFHSGMVPHGGTETRTWHEVKALGQELKGLGELLESTLRSDVAVVLDWDTWWALELDAKPSDGVRYLETLYAPYAELWRRNIGVTFVRRSPDADLSPYKLVVAPNLYLVTDEAAANLESYVRGGGVLVMGFFSGIVDEHDQVRLGGYPAPFRQLLGLRVEEFDALPSALPAGARLSVRLPAGDVSAETWADVIHLEGAEALGTFGAGFYAGGPAVTRHRFGRGVSFYIGTRLAAEGLAWVLAEACREAGVAPVLETPPGVEAVARTRGGARYLALFNHSDETVTVALPERFTALGSGALQEAAGTLELAARDAVFLRARSATHAQEPAERERSPSTVPL。
另一方面,本发明还提供一种新型β-半乳糖苷酶Gal39对应的核酸序列,如SEQ IDNO.2所示。
SEQ ID NO.2:
atgaccattttttatggcattggcgattataacccggaacagtggccggaagcgacctggcatgaagatgtgaccctgatgcaggaagcgggcgtgaacaacctgctggtgagcgtggcgatttttgcgtggagcaaactggaaccggaaccgggccgctttgattttggctggctggatcgcctgctggatctgctgcatgaacatggcattggcgtgtgcctggcgaccgcgaccgcggcgccgccgccgtggctggcgcatcagcatccggaaagcctgccggtgaccgcgaccggcgtgcgcctgggcgtgggcagccgccagcagtatagcccgagcagcccggcgtataaagaagcggcggcgcgcctggtgcgcgcgattgcggaacgctataaaggccatccggcgctgaaactgtggcatgtgaacaacgaatatggctgccatgtgtatgaaagctttgatgaagatagcgcggcggcgtttcgcgcgtggctgcgcgcgcgctatggcaccctggaagcgctggcgctgaacgcggcgtggggcaccgcgttttggagccagctgtatcatcattgggaagaaattaccccgccgcgcgcggcgccgacctttctgaacccgacccagcagctggattggcgccgcttttgcagcgatgcgctgctggcgctgtatgaacgcgatattctgcgcgaagtgaccccggaagtgccgattaccaccaactttattggcgtgcataaaccgattgatgcgtggcgctgggcggaagcgctggatctggtggcgaacgatgcgtatccggatccgagcgatccggaagcgccgattcatgcggcgtttgcgagcgatgtgatgcgcagcctgaaaggcggcgcgccgtggctgctgatggaacaggcgccgaaccaggtgcagtggcgcccgcgcaacgcgctgaaagcgccgggcgtgatgcgcctgtggagcctgcaggcgctggcgcgcggcgcgcgcggcgtgatgttttttcagtggcgccagagcaaagcgggcgcggaaaaatttcatagcggcatggtgccgcatggcggcaccgaaacccgcacctggcatgaagtgaaagcgctgggccaggaactgaaaggcctgggcgaactgctggaaagcaccctgcgcagcgatgtggcggtggtgctggattgggatacctggtgggcgctggaactggatgcgaaaccgagcgatggcgtgcgctatctggaaaccctgtatgcgccgtatgcggaactgtggcgccgcaacattggcgtgacctttgtgcgccgcagcccggatgcggatctgagcccgtataaactggtggtggcgccgaacctgtatctggtgaccgatgaagcggcggcgaacctggaaagctatgtgcgcggcggcggcgtgctggtgatgggcttttttagcggcattgtggatgaacatgatcaggtgcgcctgggcggctatccggcgccgtttcgccagctgctgggcctgcgcgtggaagaatttgatgcgctgccgagcgcgctgccggcgggcgcgcgcctgagcgtgcgcctgccggcgggcgatgtgagcgcggaaacctgggcggatgtgattcatctggaaggcgcggaagcgctgggcacctttggcgcgggcttttatgcgggcggcccggcggtgacccgccatcgctttggccgcggcgtgagcttttatattggcacccgcctggcggcggaaggcctggcgtgggtgctggcggaagcgtgccgcgaagcgggcgtggcgccggtgctggaaaccccgccgggcgtggaagcggtggcgcgcacccgcggcggcgcgcgctatctggcgctgtttaaccatagcgatgaaaccgtgaccgtggcgctgccggaacgctttaccgcgctgggcagcggcgcgctgcaggaagcggcgggcaccctggaactggcggcgcgcgatgcggtgtttctgcgcgcgcgcagcgcgacccatgcgcaggaaccggcggaacgcgaacgcagcccgagcaccgtgccgctg。
另一方面,本发明还提供一种β-半乳糖苷酶Gal39的制备与纯化方法。
另一方面,本发明还提供了所述β-半乳糖苷酶Gal39在降解乳糖中的应用。
另一方面,一种降解乳糖的方法,所选用的β-半乳糖苷酶为Gal39。
优选:所述降解条件中反应温度为0~70℃。最适反应温度为40℃。
优选:所述降解条件中反应pH为5.5~10.5。最适反应pH为7.5。
有益效果:
1.本发明的β-半乳糖苷酶Gal39为结构与功能新颖的乳糖水解酶,其氨基酸序列与已有性质报道的β-半乳糖苷酶序列相似度仅为79.28%。
2.本发明提供了一种制备β-半乳糖苷酶Gal39的方法,即利用基因工程的技术方法,将Gal39的基因序列异源重组表达到大肠杆菌,经发酵后,发酵液酶活力高达366.2U/mL,具有工业化生产的潜质。该酶纯化方法简单,可利用镍柱对其进行一步亲和纯化。
3.本发明的β-半乳糖苷酶Gal39具有优良的理化性质,该酶最适反应温度和pH分别为40℃和7.5,其具有热稳定的特性,在60℃下孵育1小时仍可保持56.2%的活性。本发明所述的β-半乳糖苷酶Gal39具有良好的工业化应用前景。
附图说明
图1为本发明β-半乳糖苷酶Gal39蛋白质分离纯化图(M,蛋白质标准品;1-3,纯化所得β-半乳糖苷酶Gal39);
图2为本发明β-半乳糖苷酶Gal39的温度和pH适应性分析(A,β-半乳糖苷酶Gal39的最适反应温度;B,β-半乳糖苷酶Gal39的最适反应pH;
图3为本发明β-半乳糖苷酶Gal39的热稳定性分析;
图4为薄层层析(TLC)法检测本发明β-半乳糖苷酶Gal39的酶解产物(M,半乳糖标准品;0和1为空白;2为该酶降解乳糖60min);
具体实施方式
实施例1β-半乳糖苷酶Gal39的序列分析及重组表达
本发明所述β-半乳糖苷酶Gal39的产酶基因Gal39来源于海洋细菌Baciliiussp.BY39,包含有2070个碱基序列,编码690个氨基酸序列。利用National Center forBiotechnology Information(NCBI)中的保守结构域分析Conserved domain(CDD)和多重序列比对Basic Local Alignment Search Tool(Blast)发现,该序列包含有一段多糖水解酶GH家族的β-半乳糖苷酶保守区。已经报道的β-半乳糖苷酶中,与Gal39氨基酸序列相似度最高的为多糖水解酶第42家族(GH42)的β-半乳糖苷酶(Genbank CP002049.1),两者之间的氨基酸序列相似度(Identity)为79.28%。该发明所述的β-半乳糖苷酶Gal39归属于多糖水解酶(GH42)家族。本发明所述β-半乳糖苷酶Gal39序列新颖,与其他同一家族序列相比,长度较短,含有3个独立的结构域,利用同源模建和分子对接发现,本发明所述β-半乳糖苷酶Gal39催化腔与乳糖分子的结合能力强。
将β-半乳糖苷酶Gal39的产酶序列以限制性内切酶Nco I和Xho I为酶切位点,设计重组引物如下(下划线为限制性内切酶位点,斜体为限制性内切酶保护碱基):
正向引物:SEQ ID NO.3:PGal39-F:
5’-CATGCCATGGAAGTTGTCTTGTATCGCT-3’(Nco I)
反向引物:SEQ ID NO.4:PGal39-R:
5’-CCGCTCGAGCTTGATTTCGTATGGGTCA-3’(Xho I)
PCR扩增条件为:94℃预变性3min;94℃变性30秒,55℃退火30秒,72℃延伸1min,共30个循环;72℃延伸5min;4℃稳定15min。PCR反应所用DNA聚合酶为Primerstar HS购自大连宝生物公司。
PCR产物用限制性内切酶Nco I和Xho I进行双酶切,通过琼脂糖凝胶电泳回收酶切后的PCR产物。pET28a(+)质粒DNA(美国Invitrogen公司),同样用限制性内切酶Nco I和Xho I进行双酶切,进行琼脂糖凝胶电泳并回收酶切后的产物片段。酶切所用酶和底物反应体系(温度、时间、DNA用量等)均参照大连宝生物提供的产品说明操作。
双酶切处理的PCR产物和pET-28a(+)质粒载体参照DNA连接酶(大连宝生物公司)说明书进行连接反应;连接产物转化至大肠杆菌DH5α菌株(美国Invitrogen公司),涂布在Luria-Bertani(LB)培养基固体平板上(含有50μg/mL卡那霉素),37℃温箱中培养12-16小时后,挑取单克隆;将单克隆转接至LB液体培养基中(含有50μg/mL卡那霉素),转速为160rpm的37℃摇床中培养过夜。将单克隆进行序列测定,选择阳性克隆,并将其命名为pET28a-Gal39。重组质粒转化至大肠杆菌BL21(DE3)(购自大连宝生物公司),将重组大肠菌株命名为BL21(DE3)/pET28a-Gal39,保存在-80℃备用。
需要说明的是,在本发明公开了壳聚糖酶CsnH的氨基酸序列的前提下,本领域普通技术人员可以推导出对应的核苷酸序列,这些核苷酸序列都应理解为在本发明保护范围内。利用人工合成的手段获得氨基酸序列和核苷酸序列是本领域成熟的技术手段。
实施例2β-半乳糖苷酶Gal39的制备及纯化方法
将重组菌株BL21(DE3)/pET28a-Gal39在100mL的LB液体培养基中(50μg/mL卡那霉素),在37℃摇床中160rpm震荡培养至OD600=0.6,加入终浓度为0.1mM的诱导剂异丙基-β-D-硫代半乳糖苷(IPTG),在20℃诱导24h。β-半乳糖苷酶活性测定方法为:50μL酶液加入450μL 10mM邻-硝基酚-β-D-半乳糖苷(ONPG)底物(20mM磷酸盐缓冲液,pH=8.0),在40℃下反应10min,加入500μL的Na2CO3试剂终止反应。将混合物以10,000rpm离心10min,在OD420下检测其吸光度。酶活力定义为1U为每min产生1μM ONP所需要的酶量。经检测,发酵液中壳聚糖酶活力可达366.2U/mL。
发酵停止后,12000rpm离心10min,弃上清液后收集菌体。将菌体重悬于20mM磷酸盐缓冲液中,使用超声细胞破碎仪破碎菌体(全程操作在冰上,保持低温)。最后,将细菌裂解物离心并收集上清液,使用Akta150 FPLC纯化系统进行纯化。将收集的上清液上样于经过预平衡的5mL镍离子亲和层析柱上,上样流速为5mL/min。洗涤缓冲液(500mM NaCl,20mM磷酸缓冲液,PH7.6)用于去除杂质蛋白,使用洗脱缓冲液(500mM咪唑,500mM NaCl,20mM磷酸缓冲液,PH7.6)用于活性成分。将活性成分透析去除咪唑,分装储存在-20℃备用。纯化所得β-半乳糖苷酶进行聚丙烯酰胺凝胶电泳(SDS-PAGE),如图1所示,纯化所得β-半乳糖苷酶Gal39的分子量为76kDa,与序列分析中预测的蛋白大小一致。
实施例3β-半乳糖苷酶Gal39的最适温度和pH测定
将实施例2中纯化所得β-半乳糖苷酶Gal39在不同条件下进行酶活力测定,检测不同温度和pH对酶活力的影响。在不同温度(0-80℃)下反应10min,检测不同反应温度对酶活力的影响,以最高酶活力为100%,计算不同温度下Gal39的相对酶活力。如图2A所示,β-半乳糖苷酶Gal39的最适反应温度为40℃。
将实施例2中纯化所得β-半乳糖苷酶Gal39与Britton-Robinson缓冲液体系(PH5.5-10.5)的乳糖底物反应。该缓冲液由磷酸,硼酸和乙酸组成,可以添加不同量的氢氧化钠以形成具有宽pH范围的缓冲溶液。在最适温度下检测活性,酶活性最高值为100%。如图2B所示,β-半乳糖苷酶Gal39的最适反应pH为7.5。
实施例4β-半乳糖苷酶Gal39的热稳定性测定
将实施例2中纯化所得β-半乳糖苷酶Gal39在不同温度(0-80℃)下孵育1h,然后检测其酶活力。以不孵育酶液的活力为100%;检测不同孵育温度对其热稳定性的影响;如图3所示,β-半乳糖苷酶Gal39在最适温度40℃下孵育1小时,保持83.6%的活性;在60℃孵育1小时,仍可保持56.2%的活性。
实施例5β-半乳糖苷酶Gal39酶解产物薄层层析分析
将实施例2中纯化所得β-半乳糖苷酶Gal39纯酶与乳糖在40℃下进行反应,检测其酶解产物。将100μL纯化的Gal39和900μL乳糖底物(5mg/mL)在200mM磷酸盐缓冲液(PH 7.5)中于40℃下孵育6小时,在不同的时间点收集产物,并通过煮沸10分钟使酶失活,然后在高效薄层层析板(HPTLC)检测。具体为:将HPTLC层析板裁剪成7cm宽合适大小的样本,将4μL样品点样在硅胶TLC板原点处,置于有展开剂(正丁醇:冰醋酸:水=2:2:1)的展缸中30min,吹干层析板,浸入显色剂(0.5%茚三酮乙醇溶液)中2s,取出吹干,80℃烘烤,至样品出现。如图4所示,与标准品迁徙率比较发现,β-半乳糖苷酶Gal39酶解主产物为葡萄糖和半乳糖。
序列表
<110> 青岛大学
<120> 一种β-半乳糖苷酶及其在乳糖降解中的应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 690
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 1
Met Thr Ile Phe Tyr Gly Ile Gly Asp Tyr Asn Pro Glu Gln Trp Pro
1 5 10 15
Glu Ala Thr Trp His Glu Asp Val Thr Leu Met Gln Glu Ala Gly Val
20 25 30
Asn Asn Leu Leu Val Ser Val Ala Ile Phe Ala Trp Ser Lys Leu Glu
35 40 45
Pro Glu Pro Gly Arg Phe Asp Phe Gly Trp Leu Asp Arg Leu Leu Asp
50 55 60
Leu Leu His Glu His Gly Ile Gly Val Cys Leu Ala Thr Ala Thr Ala
65 70 75 80
Ala Pro Pro Pro Trp Leu Ala His Gln His Pro Glu Ser Leu Pro Val
85 90 95
Thr Ala Thr Gly Val Arg Leu Gly Val Gly Ser Arg Gln Gln Tyr Ser
100 105 110
Pro Ser Ser Pro Ala Tyr Lys Glu Ala Ala Ala Arg Leu Val Arg Ala
115 120 125
Ile Ala Glu Arg Tyr Lys Gly His Pro Ala Leu Lys Leu Trp His Val
130 135 140
Asn Asn Glu Tyr Gly Cys His Val Tyr Glu Ser Phe Asp Glu Asp Ser
145 150 155 160
Ala Ala Ala Phe Arg Ala Trp Leu Arg Ala Arg Tyr Gly Thr Leu Glu
165 170 175
Ala Leu Ala Leu Asn Ala Ala Trp Gly Thr Ala Phe Trp Ser Gln Leu
180 185 190
Tyr His His Trp Glu Glu Ile Thr Pro Pro Arg Ala Ala Pro Thr Phe
195 200 205
Leu Asn Pro Thr Gln Gln Leu Asp Trp Arg Arg Phe Cys Ser Asp Ala
210 215 220
Leu Leu Ala Leu Tyr Glu Arg Asp Ile Leu Arg Glu Val Thr Pro Glu
225 230 235 240
Val Pro Ile Thr Thr Asn Phe Ile Gly Val His Lys Pro Ile Asp Ala
245 250 255
Trp Arg Trp Ala Glu Ala Leu Asp Leu Val Ala Asn Asp Ala Tyr Pro
260 265 270
Asp Pro Ser Asp Pro Glu Ala Pro Ile His Ala Ala Phe Ala Ser Asp
275 280 285
Val Met Arg Ser Leu Lys Gly Gly Ala Pro Trp Leu Leu Met Glu Gln
290 295 300
Ala Pro Asn Gln Val Gln Trp Arg Pro Arg Asn Ala Leu Lys Ala Pro
305 310 315 320
Gly Val Met Arg Leu Trp Ser Leu Gln Ala Leu Ala Arg Gly Ala Arg
325 330 335
Gly Val Met Phe Phe Gln Trp Arg Gln Ser Lys Ala Gly Ala Glu Lys
340 345 350
Phe His Ser Gly Met Val Pro His Gly Gly Thr Glu Thr Arg Thr Trp
355 360 365
His Glu Val Lys Ala Leu Gly Gln Glu Leu Lys Gly Leu Gly Glu Leu
370 375 380
Leu Glu Ser Thr Leu Arg Ser Asp Val Ala Val Val Leu Asp Trp Asp
385 390 395 400
Thr Trp Trp Ala Leu Glu Leu Asp Ala Lys Pro Ser Asp Gly Val Arg
405 410 415
Tyr Leu Glu Thr Leu Tyr Ala Pro Tyr Ala Glu Leu Trp Arg Arg Asn
420 425 430
Ile Gly Val Thr Phe Val Arg Arg Ser Pro Asp Ala Asp Leu Ser Pro
435 440 445
Tyr Lys Leu Val Val Ala Pro Asn Leu Tyr Leu Val Thr Asp Glu Ala
450 455 460
Ala Ala Asn Leu Glu Ser Tyr Val Arg Gly Gly Gly Val Leu Val Met
465 470 475 480
Gly Phe Phe Ser Gly Ile Val Asp Glu His Asp Gln Val Arg Leu Gly
485 490 495
Gly Tyr Pro Ala Pro Phe Arg Gln Leu Leu Gly Leu Arg Val Glu Glu
500 505 510
Phe Asp Ala Leu Pro Ser Ala Leu Pro Ala Gly Ala Arg Leu Ser Val
515 520 525
Arg Leu Pro Ala Gly Asp Val Ser Ala Glu Thr Trp Ala Asp Val Ile
530 535 540
His Leu Glu Gly Ala Glu Ala Leu Gly Thr Phe Gly Ala Gly Phe Tyr
545 550 555 560
Ala Gly Gly Pro Ala Val Thr Arg His Arg Phe Gly Arg Gly Val Ser
565 570 575
Phe Tyr Ile Gly Thr Arg Leu Ala Ala Glu Gly Leu Ala Trp Val Leu
580 585 590
Ala Glu Ala Cys Arg Glu Ala Gly Val Ala Pro Val Leu Glu Thr Pro
595 600 605
Pro Gly Val Glu Ala Val Ala Arg Thr Arg Gly Gly Ala Arg Tyr Leu
610 615 620
Ala Leu Phe Asn His Ser Asp Glu Thr Val Thr Val Ala Leu Pro Glu
625 630 635 640
Arg Phe Thr Ala Leu Gly Ser Gly Ala Leu Gln Glu Ala Ala Gly Thr
645 650 655
Leu Glu Leu Ala Ala Arg Asp Ala Val Phe Leu Arg Ala Arg Ser Ala
660 665 670
Thr His Ala Gln Glu Pro Ala Glu Arg Glu Arg Ser Pro Ser Thr Val
675 680 685
Pro Leu
690
<210> 2
<211> 2070
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
atgaccattt tttatggcat tggcgattat aacccggaac agtggccgga agcgacctgg 60
catgaagatg tgaccctgat gcaggaagcg ggcgtgaaca acctgctggt gagcgtggcg 120
atttttgcgt ggagcaaact ggaaccggaa ccgggccgct ttgattttgg ctggctggat 180
cgcctgctgg atctgctgca tgaacatggc attggcgtgt gcctggcgac cgcgaccgcg 240
gcgccgccgc cgtggctggc gcatcagcat ccggaaagcc tgccggtgac cgcgaccggc 300
gtgcgcctgg gcgtgggcag ccgccagcag tatagcccga gcagcccggc gtataaagaa 360
gcggcggcgc gcctggtgcg cgcgattgcg gaacgctata aaggccatcc ggcgctgaaa 420
ctgtggcatg tgaacaacga atatggctgc catgtgtatg aaagctttga tgaagatagc 480
gcggcggcgt ttcgcgcgtg gctgcgcgcg cgctatggca ccctggaagc gctggcgctg 540
aacgcggcgt ggggcaccgc gttttggagc cagctgtatc atcattggga agaaattacc 600
ccgccgcgcg cggcgccgac ctttctgaac ccgacccagc agctggattg gcgccgcttt 660
tgcagcgatg cgctgctggc gctgtatgaa cgcgatattc tgcgcgaagt gaccccggaa 720
gtgccgatta ccaccaactt tattggcgtg cataaaccga ttgatgcgtg gcgctgggcg 780
gaagcgctgg atctggtggc gaacgatgcg tatccggatc cgagcgatcc ggaagcgccg 840
attcatgcgg cgtttgcgag cgatgtgatg cgcagcctga aaggcggcgc gccgtggctg 900
ctgatggaac aggcgccgaa ccaggtgcag tggcgcccgc gcaacgcgct gaaagcgccg 960
ggcgtgatgc gcctgtggag cctgcaggcg ctggcgcgcg gcgcgcgcgg cgtgatgttt 1020
tttcagtggc gccagagcaa agcgggcgcg gaaaaatttc atagcggcat ggtgccgcat 1080
ggcggcaccg aaacccgcac ctggcatgaa gtgaaagcgc tgggccagga actgaaaggc 1140
ctgggcgaac tgctggaaag caccctgcgc agcgatgtgg cggtggtgct ggattgggat 1200
acctggtggg cgctggaact ggatgcgaaa ccgagcgatg gcgtgcgcta tctggaaacc 1260
ctgtatgcgc cgtatgcgga actgtggcgc cgcaacattg gcgtgacctt tgtgcgccgc 1320
agcccggatg cggatctgag cccgtataaa ctggtggtgg cgccgaacct gtatctggtg 1380
accgatgaag cggcggcgaa cctggaaagc tatgtgcgcg gcggcggcgt gctggtgatg 1440
ggctttttta gcggcattgt ggatgaacat gatcaggtgc gcctgggcgg ctatccggcg 1500
ccgtttcgcc agctgctggg cctgcgcgtg gaagaatttg atgcgctgcc gagcgcgctg 1560
ccggcgggcg cgcgcctgag cgtgcgcctg ccggcgggcg atgtgagcgc ggaaacctgg 1620
gcggatgtga ttcatctgga aggcgcggaa gcgctgggca cctttggcgc gggcttttat 1680
gcgggcggcc cggcggtgac ccgccatcgc tttggccgcg gcgtgagctt ttatattggc 1740
acccgcctgg cggcggaagg cctggcgtgg gtgctggcgg aagcgtgccg cgaagcgggc 1800
gtggcgccgg tgctggaaac cccgccgggc gtggaagcgg tggcgcgcac ccgcggcggc 1860
gcgcgctatc tggcgctgtt taaccatagc gatgaaaccg tgaccgtggc gctgccggaa 1920
cgctttaccg cgctgggcag cggcgcgctg caggaagcgg cgggcaccct ggaactggcg 1980
gcgcgcgatg cggtgtttct gcgcgcgcgc agcgcgaccc atgcgcagga accggcggaa 2040
cgcgaacgca gcccgagcac cgtgccgctg 2070
<210> 3
<211> 28
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
catgccatgg aagttgtctt gtatcgct 28
<210> 4
<211> 28
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ccgctcgagc ttgatttcgt atgggtca 28

Claims (6)

1.一种β-半乳糖苷酶,其氨基酸序列如SEQ ID NO.1所示。
2.编码如权利要求 1 所述的β-半乳糖苷酶的基因。
3.如权利要求1所述的β-半乳糖苷酶在降解牛奶中乳糖的应用。
4.一种降解乳糖的方法,所述方法不包括作为治疗选择的应用,其特征是,所选用的半乳糖苷酶为权利要求1所述的β-半乳糖苷酶。
5.如权利要求4所述的方法,其特征是,降解条件中反应温度为0~70℃。
6.如权利要求4所述的方法,其特征是,降解条件中反应pH为5.5~10.5。
CN202110714060.XA 2021-06-25 2021-06-25 一种β-半乳糖苷酶及其在乳糖降解中的应用 Active CN113493777B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110714060.XA CN113493777B (zh) 2021-06-25 2021-06-25 一种β-半乳糖苷酶及其在乳糖降解中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110714060.XA CN113493777B (zh) 2021-06-25 2021-06-25 一种β-半乳糖苷酶及其在乳糖降解中的应用

Publications (2)

Publication Number Publication Date
CN113493777A CN113493777A (zh) 2021-10-12
CN113493777B true CN113493777B (zh) 2023-11-07

Family

ID=77998041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110714060.XA Active CN113493777B (zh) 2021-06-25 2021-06-25 一种β-半乳糖苷酶及其在乳糖降解中的应用

Country Status (1)

Country Link
CN (1) CN113493777B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564146B (zh) * 2021-08-09 2023-07-14 青岛大学 一种耐热β-半乳糖苷酶及其在乳糖降解的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104972A (ja) * 1996-06-20 1998-01-13 Yotsuba Nyugyo Kk 耐熱性β−ガラクトシダーゼをコードする遺伝子
US6727084B1 (en) * 1999-07-09 2004-04-27 Universite De Liege Cold-active beta-galactosidase, the process for its preparation and the use thereof
CN104130990A (zh) * 2014-08-08 2014-11-05 南京林业大学 一种β-半乳糖苷酶及其应用
JP2017195793A (ja) * 2016-04-26 2017-11-02 国立大学法人 和歌山大学 β−ガラクトシダーゼ
CN111849941A (zh) * 2020-08-12 2020-10-30 青岛大学 一种新型β-半乳糖苷酶及其在降解牛奶中乳糖的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101619863B1 (ko) * 2014-05-23 2016-05-24 주식회사 제노포커스 신규 베타-갈락토시다아제

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104972A (ja) * 1996-06-20 1998-01-13 Yotsuba Nyugyo Kk 耐熱性β−ガラクトシダーゼをコードする遺伝子
US6727084B1 (en) * 1999-07-09 2004-04-27 Universite De Liege Cold-active beta-galactosidase, the process for its preparation and the use thereof
CN104130990A (zh) * 2014-08-08 2014-11-05 南京林业大学 一种β-半乳糖苷酶及其应用
JP2017195793A (ja) * 2016-04-26 2017-11-02 国立大学法人 和歌山大学 β−ガラクトシダーゼ
CN111849941A (zh) * 2020-08-12 2020-10-30 青岛大学 一种新型β-半乳糖苷酶及其在降解牛奶中乳糖的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
beta-galactosidase [Truepera radiovictrix];佚名;GeneBank;第1页 *
Characterization of a β-galactosidase from Bacillus subtilis with transgalactosylation activity;Carneiro等;International Journal of Biological Macromolecules;第120卷;第279-287页 *

Also Published As

Publication number Publication date
CN113493777A (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
Ohtsu et al. Thermostable β-galactosidase from an extreme thermophile, Thermus sp. A4: Enzyme purification and characterization, and gene cloning and sequencing
KR20080045766A (ko) 비피도박테륨에서 단리한 베타-갈락토시다제
JP3212798B2 (ja) 超耐熱性β−ガラクトシダーゼ遺伝子
Chen et al. Molecular characterization of a germination-specific muramidase from Clostridium perfringens S40 spores and nucleotide sequence of the corresponding gene
CN116376875B (zh) 耐热性提高的n-乙酰氨基葡萄糖苷酶突变体及其应用
CN111849941A (zh) 一种新型β-半乳糖苷酶及其在降解牛奶中乳糖的应用
WO2021212723A1 (zh) 一种β-半乳糖苷酶GALA及其应用
JPH10508475A (ja) トリペプチジルアミノペプチダーゼ
CN113493777B (zh) 一种β-半乳糖苷酶及其在乳糖降解中的应用
CN109735520B (zh) 一种具有热稳定特性的ι-卡拉胶酶及其应用
US6087149A (en) Starch conversion process
CN113564146B (zh) 一种耐热β-半乳糖苷酶及其在乳糖降解的应用
CN109486804B (zh) 一种具有热恢复特性的新型壳聚糖酶CsnM及其应用
CN113667661B (zh) 一种β-葡萄糖苷酶及其在制备葡萄糖和昆布寡糖中的应用
EP0606008B1 (en) Gene coding for hyperthermostable beta-galactosidase
EP0739983A2 (en) Gene encoding lacto-n-biosidase
CN109762799B (zh) 一种κ-卡拉胶酶及其应用
CN114149987B (zh) 一种人工改造的β-半乳糖苷酶GaLT1及其在水解乳糖中的应用
Brechtel et al. Cell wall of Thermoanaerobacterium thermosulfurigenes EM1: isolation of its components and attachment of the xylanase XynA
US20030129723A1 (en) Thermophilic endoglucanase
Quyen et al. Cloning, high-level expression and characterization of a β-galactosidase from Bacillus subtilis G1
Leng et al. Cloning, functional expression and purification of endo-β-galactosidase from Flavobacterium keratolyticus
Gutiérrez-Nava et al. Expression and characterization of the celcflB gene from Cellulomonas flavigena encoding an endo-β-1, 4-glucanase
Lee et al. Sequence analysis of a β-agarase gene (pjaA) from Pseudomonas sp. isolated from marine environment
CN113493781B (zh) 一种壳聚糖酶及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant