CN113458214B - Pipe bending equipment and crease-resist die angle adjusting mechanism and method thereof - Google Patents

Pipe bending equipment and crease-resist die angle adjusting mechanism and method thereof Download PDF

Info

Publication number
CN113458214B
CN113458214B CN202110880935.3A CN202110880935A CN113458214B CN 113458214 B CN113458214 B CN 113458214B CN 202110880935 A CN202110880935 A CN 202110880935A CN 113458214 B CN113458214 B CN 113458214B
Authority
CN
China
Prior art keywords
die
crease
clamping
adjusting
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110880935.3A
Other languages
Chinese (zh)
Other versions
CN113458214A (en
Inventor
林姚辰
曾元松
林伟明
吴为
吕凤工
林军凯
闫晶
黄宏
邹成龙
王鹤飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang King Mazon Machinery Co ltd
AVIC Beijing Aeronautical Manufacturing Technology Research Institute
Original Assignee
Zhejiang Kingmasun Intelligent Manufacturing Co ltd
AVIC Beijing Aeronautical Manufacturing Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Kingmasun Intelligent Manufacturing Co ltd, AVIC Beijing Aeronautical Manufacturing Technology Research Institute filed Critical Zhejiang Kingmasun Intelligent Manufacturing Co ltd
Priority to CN202110880935.3A priority Critical patent/CN113458214B/en
Publication of CN113458214A publication Critical patent/CN113458214A/en
Application granted granted Critical
Publication of CN113458214B publication Critical patent/CN113458214B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D11/00Bending not restricted to forms of material mentioned in only one of groups B21D5/00, B21D7/00, B21D9/00; Bending not provided for in groups B21D5/00 - B21D9/00; Twisting
    • B21D11/18Joggling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/10Die sets; Pillar guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/18Lubricating, e.g. lubricating tool and workpiece simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

The invention discloses a pipe bending device and an anti-crease die angle adjusting mechanism and method thereof, and the pipe bending device comprises a rack, a first adjusting motor, an adjusting seat, a support, a pillar, a first mounting plate and an anti-crease die, wherein the anti-crease die is arranged on the first mounting plate in a sliding manner, the first mounting plate is fixedly arranged on the pillar, the pillar is fixedly arranged on the support, the support is arranged on the adjusting seat in a sliding manner, the adjusting seat is rotatably arranged on the rack, an included angle is formed between the sliding direction of the anti-crease die and the sliding direction of the support, and the first adjusting motor is used for driving the adjusting seat to rotate on the rack; this technical scheme realizes the regulation to crease-resistance mould position through the slip of crease-resistance mould on first mounting panel and the slip of support on adjusting the seat, realizes the regulation to crease-resistance mould angle through the rotation of adjusting the seat to finally play the return bend demand that adapts to different specification pipes, and then promote the crease-resistance effect of crease-resistance mould.

Description

Pipe bending equipment and crease-resist die angle adjusting mechanism and method thereof
Technical Field
The invention relates to the technical field of pipe processing, in particular to a pipe bending device and a crease-resist die angle adjusting mechanism and method thereof.
Background
Because the airplane and the rocket conduit bear important work such as fuel input, mechanism opening, pressure control, environment regulation and the like in preparation, if any part is damaged due to failure, a serious tragedy of 'airplane destruction and personal death' and 'rocket destruction and satellite death' of the airplane can be caused, and the important tragedy is directly related to the personal safety of passengers already owned by officers.
The aircraft and the rocket are provided with a plurality of metal hollow pipe components commonly called as 'conduits', the conduits are mainly used for transmitting various liquids and gases, supporting fuel oil, power and the like required by the flight of the aircraft and the rocket, completing various work tasks, and are very important parts on the aircraft and the rocket. The guide pipe has a hollow structure, and the airplane and the rocket have strict requirements on each component, so that the lighter the guide pipe is, the better the guide pipe is, the weight index of the guide pipe is usually measured by taking gram as a unit, and the importance of light weight on the airplane and the rocket can be seen, so that the pipe wall of the guide pipe is usually very thin and is usually called as a thin-wall pipe, and the thin-wall pipe is more prone to have defects of ellipse, instability, wrinkling and the like in the bending process. The shape of the conduit is complex due to the limitation of the installation environment of the airplane and the rocket, and the bending part of a plurality of conduits has serious deformation due to small bending radius, is extremely easy to become oval and even unstably crinkle in the bending process, is a common technical problem in the conduit bending processing industry, and cannot be thoroughly solved so far.
In the pipe bending operation, a crease-resistant die is generally used, and the crease-resistant die of the pipe bending machine in the current market has the following problems:
1) The position control is single when using, can't carry out better angle adaptation to the body from different directions or angle, leads to the body to buckle when easy wrinkle.
2) When lubricated, lubricating oil use amount is big, forms extravagantly, and lubricating oil drops to the bending machine on the pipe easily moreover for whole bending machine is very dirty.
Disclosure of Invention
In order to solve the technical problems, the invention aims to provide a pipe bending device and an angle adjusting mechanism and method of a crease-resist die thereof, so that the angle of the crease-resist die can be adjusted according to the specification of a guide pipe, and the crease-resist effect of the crease-resist die is further improved.
In order to achieve the purpose, the invention adopts the following technical scheme:
an angle adjusting mechanism of a crease-resist die comprises a frame, a first adjusting motor, an adjusting seat, a support and a crease-resist die set, wherein the first adjusting motor, the adjusting seat, the support, a support and the crease-resist die set are installed on the frame, the crease-resist die set comprises a first installing plate and a crease-resist die, a linear fifth semicircular groove is arranged on the crease-resist die set, an arc-shaped bending part for being attached to a bending die is further arranged on the back surface opposite to the fifth semicircular groove, the crease-resist die set is installed on the first installing plate in a sliding manner, the first installing plate is fixedly installed on the support, the support is installed on the adjusting seat in a sliding manner, the adjusting seat is rotatably installed on the frame,
the first adjusting motor is used for driving the adjusting base to rotate on the frame.
Preferably, still include the speed reduction subassembly, the speed reduction subassembly includes speed reduction casing, gear wheel, pinion and axis of rotation, the axis of rotation is installed on speed reduction casing, the top of axis of rotation is passed behind the frame with adjust seat fixed connection, the pinion cover is established and is installed on first adjusting motor's output shaft, the gear wheel cover is established and is installed in the axis of rotation, pinion and gear wheel mesh transmission.
Preferably, the adjusting seat is provided with two parallel first sliding chutes which are T-shaped grooves;
still be equipped with a small motor, first lead screw, first slider and second slider are T type piece, first slider and second slider respectively slidable mounting in two first spouts and with support fixed connection, be equipped with on the first slider be used for with first lead screw complex screw hole, first lead screw and small motor are all installed on adjusting the seat, thereby the small motor rotates through the first lead screw of drive and makes the support slide on adjusting the seat.
Preferably, the anti-wrinkle module further comprises a fixing clamp, a clamping bolt and a clamping nut, the first mounting plate is slidably mounted on the fixing clamp, the fixing clamp comprises a first clamping portion and a second clamping portion, a first gap, a clamping circular hole and a second gap are sequentially arranged between the first clamping portion and the second clamping portion, and the first gap and the second gap are respectively located at two opposite ends of the clamping circular hole and are communicated with the clamping circular hole; the fixing clamp is preliminarily sleeved with the clamping round hole and installed on the supporting column, the clamping bolt sequentially penetrates through the first clamping portion, the first gap and the second clamping portion and then is fixedly installed on the fixing clamp through the clamping nut, and the fixing clamp is tightly installed on the supporting column.
As preferred, still be equipped with a threaded rod and establish with the cover and install a plurality of tight nuts in top on the threaded rod, threaded rod fixed mounting is on the support, install three crease-resistant module on the pillar altogether, the diameter variation in size of the fifth half slot on the crease-resistant mould in the three crease-resistant module, fixation clamp in the three crease-resistant module is established through first mounting hole cover and is installed on the threaded rod, a plurality of tight nuts in top offset with the up end and the lower terminal surface of fixation clamp in the three crease-resistant module respectively.
Preferably, the fixing clamp is further provided with an adjusting screw, a threaded hole is formed in the first mounting plate, the left side wall of the fixing clamp extends leftwards to form a first extending portion, and a second mounting hole is formed in the first extending portion; and the adjusting screw penetrates through the second mounting hole and then is in threaded fit with the threaded hole.
Preferably, the wrinkle-resistant module further comprises an oil nozzle, and the oil nozzle is fixedly installed on the fixing clamp;
the fixed clamp is provided with an oil inlet channel, and the oil inlet channel is connected with the oil nozzle;
a plurality of oil outlet channels are arranged on the crease-resist die, the oil outlet channels are communicated with the oil inlet channels on the fixing clamp, and oil outlets of the oil outlet channels are located on the wall of the fifth semicircular groove;
and when the ball is contacted with the guide pipe and generates relative motion, the ball rotates around the sphere center of the ball, so that the oil is sent out.
Preferably, the wrinkle-resistant module further comprises an oil nozzle, and the oil nozzle is fixedly installed on the fixing clamp;
the fixed clamp is provided with an oil inlet channel, and the oil inlet channel is connected with the oil nozzle;
a plurality of oil outlet channels are arranged on the crease-resist die, the oil outlet channels are communicated with the oil inlet channels on the fixing clamp, and oil outlets of the oil outlet channels are located on the wall of the fifth semicircular groove;
the oil outlets of the oil outlet channels are respectively provided with a contact sensor, and when the guide pipe is in contact with the contact sensors, the oil nozzle can be triggered to inject oil so as to lubricate and inject oil to the guide pipe.
An anti-crease die angle adjusting method adopts the anti-crease die angle adjusting mechanism; the method comprises the following specific steps:
the method comprises the following steps: according to the requirements of the catheter, firstly, a first adjusting motor is used for enabling a crease-resist die to rotate to a specified angle, and an included angle which is not more than 2 degrees is formed between the crease-resist die and the catheter when the crease-resist die rotates to the specified angle;
step two: and then the position of the crease-resist die is finely adjusted through a small motor and an adjusting screw rod respectively.
A pipe bending device comprises the anti-wrinkling die angle adjusting mechanism.
The invention has the technical effects that: through the slip of crease-resistance mould on first mounting panel and the slip of support on adjusting the seat, realize the regulation to crease-resistance mould position, realize the regulation to crease-resistance mould angle through the rotation of adjusting the seat to finally play the return bend demand that adapts to different specification pipes, and then promote the crease-resistance effect of crease-resistance mould.
Drawings
Fig. 1 is a schematic structural diagram of a numerical control elbow device for inhibiting the elbow from wrinkling and becoming elliptical according to an embodiment of the present invention;
FIG. 2 is a first schematic view (before pipe bending) of the combination of the wrinkle resisting mechanism, the supporting mechanism, the die clamping device and the die bending mechanism according to a first embodiment of the present invention;
FIG. 3 is a second schematic view of the combination of the wrinkle resisting mechanism, the supporting mechanism, the die clamping device and the die bending mechanism (in pipe bending operation) according to the first embodiment of the present invention;
FIG. 4 is a schematic structural view of a support mechanism according to a first embodiment of the present invention (a portion of the link pressure block is omitted);
FIG. 5 is a schematic view of the structure of an articulated pressure block according to one embodiment of the present invention;
FIG. 6 is a schematic structural diagram of a mold clamping device according to an embodiment of the present invention;
FIG. 7 is a schematic view of a structure of a clamp die according to an embodiment of the present invention;
FIG. 8 is an exploded view of a clamp die according to an embodiment of the present invention;
fig. 9 is a first cross-sectional view of the automatic feeding and transferring device according to the first embodiment of the present invention;
FIG. 10 is a second cross-sectional view of the automatic feeding and transferring device according to the first embodiment of the present invention;
FIG. 11 is a schematic structural diagram of an automatic feeding and transferring device according to a first embodiment of the present invention;
FIG. 12 is a schematic structural view of an inner barrel according to an embodiment of the present invention;
fig. 13 is a first schematic structural diagram of an anti-wrinkle mechanism according to a first embodiment of the invention;
FIG. 14 is a schematic structural diagram II of the anti-wrinkle mechanism in the first embodiment of the invention;
fig. 15 is a schematic structural diagram three of an anti-wrinkle mechanism in the first embodiment of the invention;
FIG. 16 is a schematic view of an anti-wrinkle module according to an embodiment of the present invention;
FIG. 17 is a first schematic structural diagram of a mold guiding mechanism according to a second embodiment of the present invention;
FIG. 18 is a second schematic structural view of a second mold guiding mechanism according to a second embodiment of the present invention;
FIG. 19 is a third schematic structural view of a mold guiding mechanism according to a second embodiment of the present invention;
FIG. 20 is a fourth schematic structural view of a mold guiding mechanism according to a second embodiment of the present invention;
FIG. 21 is a schematic view of the combination of the wrinkle resisting mechanism, the die guide holder, the die clamping device and the die bending mechanism in the third embodiment of the present invention;
fig. 22 is a schematic view of the combination of the wrinkle resisting mechanism, the die guide holder, the die clamping device and the die bending mechanism in the third embodiment of the invention.
Description of the reference numerals: 1. a frame;
2. an automatic feeding and transferring device; 20. a mounting seat; 21. an inner sleeve; 22. an outer sleeve; 23. a material clamping component; 230. an outer cylinder; 231. an inner barrel; 232. a clamping block; 240. a first servo motor; 250. a second servo motor; 260. a first oil cylinder; 261. a first connecting member; 262. a fork member; 263. a second connecting member; 220. an annular groove; 27. a first housing; 251. a first driving tooth; 252. a first passive tooth; 280. an oil tank; 281. a second passive tooth; 282. a camshaft; 283. a cam plate; 284. an oiling pin; 285. a spring; 2310. a circular ring part; 2311. a first connection portion; 2312. a second connecting portion; 233. a bolt member;
3. an anti-wrinkle mechanism; 30. a first adjustment motor; 31. an adjusting seat; 32. a support; 33. a pillar; 34. a first mounting plate; 35. a crease-resist die; 350. a fifth semicircular groove; 360. a reduction casing; 361. a bull gear; 362. a pinion gear; 363. a rotating shaft; 310. a first chute; 364. a small motor; 365. a first lead screw; 366. a first slider; 367. a second slider; 38. a fixing clip; 380. a first clamping portion; 381. a second clamping portion; 382. a first gap; 383. clamping the circular hole; 384. a second gap; 368. a threaded rod; 369. tightly pushing the nut; 370. adjusting the screw rod; 385. a first extension portion; 371. a nozzle tip; 352. an oil outlet channel; 372. a first heating pipe; 351. a third mounting hole;
4. a support mechanism; 40. a first semicircular groove; 41. a guide seat; 42. a movable joint pressing block; 420. a semicircular groove; 421. a first side wall; 422. a second side wall; 423. an arc-shaped slot; 43. hinging a shaft; 424. an accommodating chamber; 44. a chain link; 410. a first guide groove; 45. a guide block; 46. a support frame;
5. a mold clamping device; 50. a rotating frame; 51. clamping a mold; 510. a second semi-circular groove; 52. a die clamping seat; 514. a base; 511. an elastic block; 512. a clamping piece; 5140. an upper barrier plate; 5141. a lower barrier plate; 5120. a first long hole; 5142. a second long hole; 5143. a third long hole; 513. a guide pin;
6. a die bending mechanism; 60. bending a die; 600. a third semi-circular groove; 602. an upper flange; 603. a lower flange;
7. a conduit;
80. a mounting frame; 81. a fourth drive; 82. a first guide die; 83. a second guide die; 84. a third guide die; 820. a first arc surface; 830. a second arc surface; 840. a third arc surface; 85. a second mounting plate; 86. a second screw rod; 87. a guide bar; 88. an orthodontic nut; 89. a counter-threaded nut;
90. a guide die holder; 91. a second heating pipe; 900. and a fourth mounting hole.
Detailed Description
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like or similar reference numerals refer to the same or similar elements or elements having the same or similar function throughout. The embodiments described below with reference to the accompanying drawings are illustrative and intended to explain the present invention and should not be construed as limiting the present invention.
In the description of the present invention, it is to be understood that the terms "center", "longitudinal", "lateral", "length", "width", "thickness", "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", "bottom", "inner", "clockwise", "counterclockwise", and the like, indicate orientations and positional relationships based on those shown in the drawings, and are used only for convenience of description and simplicity of description, and do not indicate or imply that the device or element being referred to must have a particular orientation, be constructed and operated in a particular orientation, and thus, are not to be considered as limiting the present invention.
Furthermore, the terms "first", "second" and "first" are used for descriptive purposes only and are not to be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, a feature defined as "first" or "second" may explicitly or implicitly include one or more of that feature. In the description of the present invention, unless otherwise specified, "a plurality" means two or more unless explicitly defined otherwise.
In the present invention, unless otherwise expressly specified or limited, the terms "mounted," "connected," "secured," and the like are to be construed broadly and can, for example, be fixedly connected, detachably connected, or integrally connected; can be mechanically or electrically connected; they may be connected directly or indirectly through intervening media, or they may be interconnected between two elements. The specific meanings of the above terms in the present invention can be understood according to specific situations by those of ordinary skill in the art.
In the present invention, unless otherwise expressly stated or limited, "above" or "below" a first feature means that the first and second features are in direct contact, or that the first and second features are not in direct contact but are in contact with each other via another feature therebetween. Also, the first feature being "on," "above" and "over" the second feature includes the first feature being directly on and obliquely above the second feature, or merely indicating that the first feature is at a higher level than the second feature. "beneath," "under" and "beneath" a first feature includes the first feature being directly beneath and obliquely beneath the second feature, or simply indicating that the first feature is at a lesser elevation than the second feature.
The first embodiment is as follows:
the numerical control pipe bending equipment for inhibiting the deformation of the bent pipe into the shape of wrinkles and ovality comprises a rack 1, and an automatic feeding and transferring device 2, an anti-wrinkling mechanism 3, a supporting mechanism 4, a die clamping device 5 and a die bending mechanism 6 which are arranged on the rack 1, wherein the automatic feeding and transferring device 2 is used for feeding a guide pipe 7 to a position among the anti-wrinkling mechanism 3, the supporting mechanism 4, the die clamping device 5 and the die bending mechanism 6 and completing the pipe bending operation of the guide pipe 7 under the common cooperation of the anti-wrinkling mechanism 3, the supporting mechanism 4, the die clamping device 5 and the die bending mechanism 6, wherein before the pipe bending operation is performed, the anti-wrinkling mechanism 3 and the die bending mechanism 6 are positioned on the right side of the guide pipe 7, and the supporting mechanism 4 and the die clamping device 5 are positioned on the left side of the guide pipe 7.
In the embodiment of the present invention, as shown in fig. 2 and 3, the supporting mechanism 4 is provided with a first semicircular groove 40, the first semicircular groove 40 can be attached to the outer side wall of the straight portion on the conduit 7, and when the conduit 7 is bent, the first semicircular groove 40 can be attached to the outer side wall of the bent portion on the conduit 7; in this way, before the bending operation is performed on the conduit 7, the first semicircular groove 40 is attached to the outer side wall of the straight line part of the conduit 7, so as to play a role in guiding and preliminary positioning; when the guide pipe 7 is bent, the first semicircular groove 40 can be attached to the outer side wall of the bent part of the guide pipe 7, so that the outer side wall of the guide pipe 7 is supported, the ovality of the guide pipe 7 is further reduced, and the outer side wall of the guide pipe 7 can be effectively prevented from being broken by stretching;
in addition, since the support mechanism 4 in the embodiment of the present invention supports the outer sidewall of the conduit 7 to achieve the purpose of reducing the ovality of the conduit 7, the support mechanism 4 in the embodiment of the present invention can also cooperate with the mandrel to achieve the purpose of further reducing the ovality of the conduit 7.
In the embodiment of the present invention, as shown in fig. 2, 3 and 4, the support mechanism 4 includes a guide seat 41 and a plurality of articulated pressing blocks 42, the guide seat 41 is installed on the frame 1, the plurality of articulated pressing blocks 42 are distributed side by side and slidably installed on the guide seat 41, and two adjacent articulated pressing blocks 42 are hinged to each other;
the right end face of the movable joint pressing block 42 is provided with a semicircular groove 420, and the semicircular grooves 420 on the movable joint pressing blocks 42 are matched to form a first semicircular groove 40.
Like this, when a plurality of movable joint briquetting 42 are in same straightway, the first semicircle groove 40 that is formed by a plurality of semicircle grooves 420 is just linear, and when a plurality of movable joint briquetting 42 were in an arc section, the first semicircle groove 40 that is formed by a plurality of semicircle grooves 420 was just arc-shaped, and then made first semicircle groove 40 laminate on can all the time with pipe 7 when the return bend operation to play the effect that supports pipe 7 bending part's lateral wall.
In the embodiment of the present invention, as shown in fig. 5, the articulated pressure block 42 includes a front first side wall 421 and a rear first side wall 421, which are symmetrically distributed, and a front second side wall 422 and a rear second side wall 422, which are symmetrically distributed, where the first side wall 421 is located on the left half of the articulated pressure block 42, the second side wall 422 is located on the right half of the articulated pressure block 42, an included angle formed between the first side wall 421 and the second side wall 422 on the same side is an obtuse angle, and a distance between the two second side walls 422 gradually decreases from left to right;
two adjacent articulating pressure blocks 42 are hinged at the intersection of first side wall 421 and second side wall 422.
Further preferably, the included angle formed between the first side wall 421 and the second side wall 422 on the same side is in the range of 150 ° to 175 °; thus, a movable space is formed between two adjacent movable joint pressing blocks 42; meanwhile, the contact area of the plurality of articulated pressing blocks 42 and the bent part of the guide pipe 7 can be enlarged as much as possible, so that the first semicircular groove 40 can fully cover the bent part of the guide pipe 7, and the bent part of the guide pipe 7 can be sufficiently supported.
In the embodiment of the present invention, the two adjacent movable joint pressing blocks 42 may be hinged to each other in an up-down crossing manner, or as shown in the figure, the movable joint pressing block 42 is provided with two symmetrical arc-shaped grooves 423 at the front and the back, the arc-shaped grooves 423 are located at the junction of the first side wall 421 and the second side wall 422, and the two adjacent arc-shaped grooves 423 on the two adjacent movable joint pressing blocks 42 are matched to form a hinge hole;
and a plurality of hinged shafts 43 are further arranged, the hinged shafts 43 are respectively positioned in the hinged holes, and two adjacent movable joint pressing blocks 42 are hinged through the hinged shafts 43.
With such an arrangement, the rotation between two adjacent link pressing blocks 42 is more flexible.
It should be noted here that the hinge opening formed by the two curved grooves 423 is notched, i.e. the curvature of the curved grooves 423 does not exceed 180 °, so that there is a space for rotation between two adjacent joint blocks 42.
Still more preferably, as shown in fig. 4 and 5, the articulated pressing block 42 is further provided with a containing cavity 424 with an open end, and the open ends of the containing cavity 424 are respectively positioned on the front side wall and the rear side wall of the articulated pressing block 42;
a plurality of chain links 44 are further provided, the chain links 44 are respectively arranged in the accommodating cavities 424 on the movable joint pressing blocks 42, and two adjacent chain links 44 are rotatably connected with the hinge shafts 43 between two adjacent chain links 44.
With the arrangement, the plurality of movable joint pressing blocks 42 are connected in a chain-like manner, so that the flexibility of rotation of the movable joint pressing blocks 42 is ensured.
In the embodiment of the present invention, the chain link 44 includes a plurality of chain sheets stacked one above the other and spaced apart from each other, the plurality of chain sheets in two adjacent chain links 44 are stacked one above the other in a crossing manner, and the plurality of chain sheets in two adjacent chain links 44 are each pivotally mounted on the hinge shaft 43 between the two adjacent chain links 44.
In the embodiment of the present invention, a linear first guide slot 410 is provided on the guide holder 41, the plurality of link pressing blocks 42 are slidably mounted on the first guide slot 410, and some link pressing blocks 42 of the plurality of link pressing blocks 42 can move into and out of the first guide slot 410; thereby enabling the articulated pressing block 42 to always follow the guide tube 7 when the guide tube 7 is pushed to move forward by the automatic feeding and transferring device 2.
Further preferably, a plurality of guide blocks 45 corresponding to the movable joint pressing blocks 42 one by one are further provided, the guide blocks 45 are fixedly connected with or integrally formed with the left half section of the movable joint pressing block 42, the guide blocks 45 are slidably mounted on the first guide groove 410, and the guide blocks 45 can move in and out of the first guide groove 410 along with the movable joint pressing blocks 42;
the first guide groove 410 is a T-shaped groove or a dovetail groove.
It is so arranged that the guide block 45 can move out of and into the first guide groove 410 only in the direction of the first guide groove 410.
In the embodiment of the present invention, as shown in fig. 2, fig. 3 and fig. 6, the die clamping device 5 includes a rotating frame 50 and a die clamping device 51, the rotating frame 50 is rotatably mounted on the machine frame 1, the die clamping device 51 is mounted on the rotating frame 50, and the die clamping device 51 is hinged to the link pressing block 42 located at the foremost end; a linear second semicircular groove 510 is formed in the right end face of the clamping die 51;
as shown in fig. 2 and fig. 3, the bending die mechanism 6 includes a bending die 60 rotatably mounted on the frame 1, the bending die 60 rotates around a central axis thereof, the rotating frame 50 rotates around the central axis of the bending die 60, an arc-shaped third semicircular groove 600 and a linear fourth semicircular groove are arranged on a side wall of the bending die 60, the third semicircular groove 600 is tangent to the fourth semicircular groove, and the clamping die 51 can abut against the bending die 60 so that the second semicircular groove 510 and the fourth semicircular groove cooperate to form a clamping hole, thereby clamping and fixing the conduit 7.
In the embodiment of the present invention, it is preferable that the rotating frame 50 and the bending die 60 rotate together, and the clamping die 51 rotates to drive the plurality of movable joint pressing blocks 42 to move together, so that the right end faces of the plurality of movable joint pressing blocks 42 sequentially abut against the bending die 60, and simultaneously the first semicircular groove 40 is gradually bent to form a supporting hole for supporting the outer side wall of the bending portion of the guide tube 7 in cooperation with the third semicircular groove 600, so as to clamp the bending portion of the guide tube 7.
Thus, since the support hole formed by the first semicircular groove 40 and the third semicircular groove 600 is a standard circular hole, the support hole can reduce the amplitude of the overall ellipse of the guide tube 7 by giving sufficient support to the outer half side of the outer side wall of the guide tube 7 during the bending process of the guide tube 7;
in addition, the rotating and bending direction of the plurality of movable joint pressing blocks 42 is the inner side direction, namely, the first semicircular groove 40 can completely cover the outer half side of the outer side wall of the bent part of the guide pipe 7, so that the outer half side of the outer side wall of the bent part of the guide pipe 7 can be uniformly supported, and the phenomenon that the outer half side of the outer side wall of the bent part of the guide pipe 7 is locally excessively elliptic is avoided;
finally, the outer half of the outer side wall of the curved portion of the duct 7 is in abutment with the first semicircular groove 40, so that when the outer half of the outer side wall of the curved portion of the duct 7 is stretched, the friction existing between the outer half of the outer side wall of the curved portion of the duct 7 and the first semicircular groove 40 can prevent the outer half of the outer side wall from being excessively stretched.
Further preferably, the right end face of the movable joint pressing block 42 is an inwards concave arc face and can be attached to the side wall of the bending die 60; thereby ensuring the stability of the articulated pressure pieces 42 against the support of the outer side wall of the curved portion of the duct 7 during the bending operation.
Further preferably, an upper flange 602 and a lower flange 603 are disposed on a sidewall of the bending die 60, the third semicircular groove 600 and the fourth semicircular groove are both located between the upper flange 602 and the lower flange 603, when the clamping die 51 abuts against the bending die 60 and the plurality of movable joint pressing blocks 42 abut against the bending die 60, an upper end surface and a lower end surface of the clamping die 51 abut against the upper flange 602 and the lower flange 603, respectively, and an upper end surface and a lower end surface of the plurality of movable joint pressing blocks 42 abut against the upper flange 602 and the lower flange 603, respectively. In this way, the stability of the articulated pressure pieces 42 against the support of the outer wall of the curved section of the guide tube 7 during the bending operation can be further ensured.
In the embodiment of the present invention, the die clamping device 5 further includes a die clamping seat 52 and a first driving element, the die clamping seat 51 is fixedly installed on the die clamping seat 52, and the first driving element is used for driving the die clamping seat 52 to slide on the rotating frame 50;
the supporting mechanism 4 further comprises a second driving element and a supporting frame 46, the guide seat 41 is installed on the supporting frame 46, and the second driving element is used for driving the supporting frame 46 to slide left and right on the rack 1;
wherein, before the pipe bending operation, the die holder 52 is located at an initial position, and the supporting frame 46 is located at the initial position;
when the pipe bending operation is performed, the first driving piece drives the die holder 52 to move to a clamping position in a direction close to the bending die 60, and at the moment, the die holder 51 abuts against the bending die 60;
the second driving element drives the die holder 52 to move to a clamping position in a direction close to the bending die 60, and at the moment, at least one movable joint pressing block 42 abuts against the bending die 60;
after the pipe bending operation is completed, the first driving member drives the die holder 52 to return to the initial position in the direction away from the bending die 60, and the second driving member drives the supporting frame 46 to return to the initial position in the direction away from the bending die 60.
It is worth noting here that the distance that the die holder 52 moves from the initial position to the clamping position is equal to the distance that the supporting frame 46 moves from the initial position to the clamping position; and
the die holder 52 is of an L-shaped structure, and a plurality of die holders 51 can be arranged in the vertical direction to adapt to the catheters 7 with different radiuses; and
a plurality of bending dies 60 may be superimposed on the intermediate shaft for mounting the bending die 60 to accommodate conduits 7 of different radii.
In the present embodiment, when the articulated pressing pieces 42 slide on the first guide grooves 410, the adjacent two first side walls 421 of the adjacent two articulated pressing pieces 42 are abutted against each other. Thus, after the pipe bending operation is completed once, in the process that the rotating frame 50 rotates back, when the clamping die 51 pushes the movable joint pressing blocks 42 to enter the first guide groove 410, the first side wall 421 of the movable joint pressing block 42 about to enter the first guide groove 410 abuts against the first side wall 421 of the movable joint pressing block 42 in the first guide groove 410, and then the movable joint pressing blocks can be automatically adjusted to be in a state of being distributed in parallel with the movable joint pressing blocks 42 on the first guide groove 410, so that the movable joint pressing blocks can smoothly enter the first guide groove 410 and are prevented from being blocked.
Further preferably, the supporting mechanism 4 further comprises a third driving element for driving the guiding seat 41 to slide back and forth on the supporting frame 46, wherein after completing a pipe bending operation, the third driving element drives the guiding seat 41 to move back by a distance of at least one link pressing block 42, and after the rotating frame 50 rotates back to the initial position, the third driving element drives the guiding seat 41 to move forward to return to the initial position.
With this arrangement, it is further ensured that the movable joint pressing piece 42 can smoothly enter the first guide groove 410 when retracted.
In an embodiment of the present invention, the first driving element, the second driving element and the third driving element may be motors or hydraulic cylinders.
The clamping die 51 may adopt a specific structure disclosed in chinese patent document CN 101096041B; the structure in the embodiment of the present invention may also be adopted, specifically, as shown in fig. 6, 7 and 8, the clamping die 51 includes a base 514, an elastic block 511 and a plurality of clamping pieces 512 stacked up and down, the base 514 is installed on the clamping die holder 52 and hinged to the movable joint pressing block 42 located at the foremost end, the plurality of clamping pieces 512 are all installed on the base 514 in a manner of sliding left and right, the elastic block 511 is installed between the base 514 and the plurality of clamping pieces 512 and located at the left side of the plurality of clamping pieces 512, so as to provide elastic resistance for preventing the plurality of clamping pieces 512 from moving toward the base 514, and the right end surfaces of the plurality of clamping pieces 512 together form a right end surface of the clamping die 51 and form a second semicircular groove 510.
Thus, each clamping piece 512 can move independently, and the right end face of each clamping piece 512 can be attached to the outer side wall of the conduit 7 under the action of the elastic piece, so that the elbow is prevented from becoming elliptical.
Preferably, the base 514 includes an upper blocking plate 5140 and a lower blocking plate 5141, the plurality of clamping pieces 512 are located between the upper blocking plate 5140 and the lower blocking plate 5141, an uppermost clamping piece 512 of the plurality of clamping pieces 512 abuts against the upper blocking plate 5140, and a lowermost clamping piece 512 of the plurality of clamping pieces 512 abuts against the lower blocking plate 5141.
In the embodiment of the present invention, two parallel first long holes 5120 are formed in the clamping piece 512, two parallel second long holes 5142 are formed in the upper blocking plate 5140, and two parallel third long holes 5143 are formed in the lower blocking plate 5141; the second long hole 5142 of the upper blocking plate 5140, the first long holes 5120 of the plurality of clamping pieces 512 and the third long hole 5143 of the lower blocking plate 5141 together form two long hole-shaped through holes;
two guide pins 513 are further provided, the two guide pins 513 being respectively installed in the two through holes and capable of restricting the movement of the clamping piece 512 in the front-rear direction.
More preferably, both ends of the first long hole 5120, both ends of the second long hole 5142, and both ends of the third long hole 5143 face in the left-right direction, respectively.
Further preferably, the top of the guide pin 513 is in interference fit with the second long hole 5142, and the bottom of the guide pin 513 is in interference fit with the third long hole 5143.
More preferably, the guide pin 513 abuts against the left end of the first long hole 5120 and a gap is left between the guide pin and the right end of the first long hole 5120; this allows the grip tab 512 to have a space for movement.
In the embodiment of the present invention, a vertical second guide groove is formed on the die holder 52, the second guide groove is a T-shaped groove or a dovetail groove, and the base 514 is mounted on the second guide groove through a first connecting block. So set up, firstly make things convenient for the dismouting of die clamp 51, secondly can also install a plurality of die clamps 51 in order to adapt to the crooked operation of different diameter pipes 7.
It should be noted that in other embodiments, the clamping die 51 of the present embodiment can also be used in a tube bending machine without the articulated press blocks 42;
and, the design structure of stacking up and down multiple sheets adopted in the clamp die 51 in the embodiment of the present invention to prevent the guide tube 7 from becoming oval can also be applied to the bending die 60, the wrinkle-proof die 35 and the movable joint pressing block 42 in the wrinkle-proof mechanism 3, and can also be applied to the guide die matched with the wrinkle-proof die 35 in the common pipe bender.
In the embodiment of the present invention, as shown in fig. 13, 14, 15 and 16, the wrinkle preventing mechanism 3 includes a first adjusting motor 30, an adjusting seat 31, a support 32, a support 33 and wrinkle preventing modules, the wrinkle preventing modules include a first mounting plate 34 and a wrinkle preventing die 35, the wrinkle preventing die 35 is provided with a linear fifth semicircular groove 350, an arc-shaped bending portion for being attached to the bending die 60 is further provided on a back surface opposite to the fifth semicircular groove 350, a front half of the wrinkle preventing die 35 can extend into the third semicircular groove 600 and be attached to the third semicircular groove 600, and the fifth semicircular groove 350 and the fourth semicircular groove are communicated, the wrinkle preventing die 35 is slidably mounted on the first mounting plate 34, the first mounting plate 34 is fixedly mounted on the support 33, the support 33 is fixedly mounted on the support 32, the support 32 is slidably mounted on the adjusting seat 31, the adjusting seat 31 is rotatably mounted on the frame 1,
wherein, the sliding direction of the wrinkle-proof die 35 forms an included angle with the sliding direction of the support 32, preferably forms an included angle of 90 degrees, and the first adjusting motor 30 is used for driving the adjusting seat 31 to rotate on the frame 1.
Like this, through the slip of crease-resistance mould 35 on first mounting panel 34 and the slip of support 32 on adjusting seat 31, realize the regulation to crease-resistance mould 35 position, realize the regulation to crease-resistance mould 35 angle through the rotation of adjusting seat 31 to finally play the return bend demand that adapts to different specification pipes 7.
In the embodiment of the present invention, the wrinkle resisting mechanism 3 further includes a decelerating component, the decelerating component includes a decelerating housing 360, a large gear 361, a small gear 362 and a rotating shaft 363, the rotating shaft 363 is installed on the decelerating housing 360, the top end of the rotating shaft 363 penetrates through the machine frame 1 and is fixedly connected to the adjusting base 31, the small gear 362 is installed on the output shaft of the first adjusting motor 30 in a sleeved manner, the large gear 361 is installed on the rotating shaft 363 in a sleeved manner, and the small gear 362 and the large gear 361 are in meshing transmission.
In the embodiment of the present invention, as shown in fig. 14 and 15, two parallel first sliding grooves 310 are provided on the adjusting seat 31, and the first sliding grooves 310 are T-shaped grooves;
the adjusting device is further provided with a small motor 364, a first screw rod 365, a first sliding block 366 and a second sliding block 367, wherein the first sliding block 366 and the second sliding block 367 are both T-shaped blocks, the first sliding block 366 and the second sliding block 367 are respectively installed in the two first sliding grooves 310 in a sliding mode and fixedly connected with the support 32, a threaded hole used for being matched with the first screw rod 365 is formed in the first sliding block 366, the first screw rod 365 and the small motor 364 are both installed on the adjusting seat 31, and the small motor 364 drives the first screw rod 365 to rotate so that the support 32 can slide on the adjusting seat 31; thereby achieving the purpose of adjusting the position of the wrinkle prevention die 35 and improving the stability of the wrinkle prevention die 35 in the left and right directions.
Further preferably, as shown in fig. 16, the wrinkle resistant module further includes a fixing clip 38, a clamping bolt and a clamping nut, the first mounting plate 34 is slidably mounted on the fixing clip 38, the fixing clip 38 includes a first clamping portion 380 and a second clamping portion 381, a first gap 382, a clamping circular hole 383 and a second gap 384 are sequentially disposed between the first clamping portion 380 and the second clamping portion 381, and the first gap 382 and the second gap 384 are respectively located at two opposite ends of the clamping circular hole 383 and are communicated with the clamping circular hole 383; the fixing clamp 38 is initially sleeved and installed on the pillar 33 through the clamping round hole 383, the clamping bolt sequentially passes through the first clamping portion 380, the first gap 382 and the second clamping portion 381 and then is fixedly installed on the fixing clamp 38 through the clamping nut, and the fixing clamp 38 is clamped and installed on the pillar 33.
Preferably, the anti-wrinkle device is further provided with a threaded rod 368 and a plurality of jacking nuts 369 sleeved on the threaded rod 368, the threaded rod 368 is fixedly installed on the support 32, three anti-wrinkle modules are installed on the support 33, the diameters of fifth semicircular grooves 350 on anti-wrinkle dies 35 in the three anti-wrinkle modules are different, fixing clamps 38 in the three anti-wrinkle modules are sleeved on the threaded rod 368 through first installation holes, and the jacking nuts 369 abut against the upper end surfaces and the lower end surfaces of the fixing clamps 38 in the three anti-wrinkle modules respectively; this further ensures the stability of the mounting of the retaining clip 38 on the post 33; that is, the stability of the blank holder 35 in the up-and-down direction is ensured.
Further preferably, an adjusting screw 370 is further provided, a threaded hole is provided on the first mounting plate 34, a left side wall of the fixing clip 38 extends leftwards to form a first extension 385, and a second mounting hole is provided on the first extension 385; the adjusting screw 370 penetrates through the second mounting hole and then is in threaded fit with the threaded hole; this arrangement allows the first mounting plate 34 to slide on the retaining clip 38 while ensuring stability when the first mounting plate 34 stops sliding.
In the embodiment of the present invention, the wrinkle resistant module further includes a choke 371, where the choke 371 is fixedly installed on the fixing clip 38;
an oil inlet channel is arranged on the fixing clamp 38 and connected with the oil nozzle 371;
a plurality of oil outlet channels 352 are arranged on the crease-resist die 35, the oil outlet channels 352 are all communicated with the oil inlet channel on the fixing clamp 38, and oil outlets of the oil outlet channels 352 are all positioned on the wall of the fifth semicircular groove 350;
the oil outlets of the oil outlet channels 352 are provided with a ball, the ball forms a spherical seal at the oil outlet, the ball protrudes out of the groove wall of the fifth semicircular groove 350, and when the ball is contacted with the conduit 7 and generates relative motion, the ball rotates around the center of the ball to send out oil.
It should be noted here that the structure and function of the ball of the present invention that rotates freely around its center of sphere can refer to the structure and function of the ball in the pen tip of a ball-point pen that rotates freely, the surface of the ball is filled with lubricant, and the lubricant can be supplemented during the rotation of the ball, so that when the blank-proof mold 35 cooperates with the articulated pressing blocks 42 to clamp the guide tube 7, the balls on the blank-proof mold 35 contact the guide tube 7, and there is lubricant between the balls and the guide tube 7;
then when the conduit 7 is pushed by the automatic feeding and transferring device 2 to move forward, the friction force between the conduit 7 and the balls promotes the balls to rotate, so that the oil in the oil outlet channel 352 is continuously sent out, and when the conduit 7 does not move forward any more, the balls do not rotate any more, namely the oil in the oil outlet channel 352 is not sent out any more, so that the automatic lubrication of the conduit 7 is realized, meanwhile, the good lubrication effect is ensured, and meanwhile, the usage amount of the lubricating oil is greatly reduced.
In other embodiments, the ball may be replaced by a contact sensor, and specifically, each of the oil outlets 352 is provided with a contact sensor, when the conduit 7 contacts the contact sensor, the oil nozzle 371 can be triggered to inject oil to lubricate the conduit 7, and both the amount and the number of times of oil injection can be controlled by the system program.
In the embodiment of the present invention, as shown in fig. 21 and 22, a plurality of first heating pipes 372 are further provided, a plurality of parallel third installation holes 351 are further provided on the blank-preventing die 35, the third installation holes 351 are in a front-back direction, and the plurality of first heating pipes 372 are installed in the third installation holes 351. Thus, the material performance of the conduit 7 with poor material extensibility in the normal temperature environment is greatly improved by heating, so that the qualified conduit 7 is bent.
Further preferably, a first temperature sensor is provided, which is used to detect the temperature of the blank holder 35.
More preferably, the blank holder 35 is made of high temperature resistant steel.
In the embodiment of the present invention, the adjustment method of the wrinkle resistance mechanism 3 is as follows:
the method comprises the following steps: according to the requirement of the catheter 7, the crease-resist die 35 is firstly rotated to a specified angle through the first adjusting motor 30, and when the specified angle is reached, an included angle which is not more than 2 degrees is formed between the crease-resist die 35 and the catheter 7, and preferably, an included angle which is not more than 1 degree is formed between the crease-resist die 35 and the catheter 7;
step two: and then the position of the crease-resist die 35 is finely adjusted by a small motor 364 and an adjusting screw 370.
In the embodiment of the present invention, as shown in fig. 9, 10 and 11, the automatic feeding and material transferring device 2 includes a mounting base 20 slidably mounted on the frame 1, and an inner sleeve 21, an outer sleeve 22, a material clamping assembly 23, a first driving assembly for driving the mounting base 20 to move back and forth on the frame 1, a second driving assembly for driving the outer sleeve 22 to move back and forth, and a third driving assembly for driving the inner sleeve 21 to rotate, which are mounted on the mounting base 20, wherein the outer sleeve 22 is hollow and sleeved on the inner sleeve 21;
the clamping assembly 23 comprises an outer cylinder 230, an inner cylinder 231 and a plurality of clamping blocks 232, the outer cylinder 230 is fixedly arranged at the front end of the outer sleeve 22, the inner cylinder 231 is fixedly connected with the front end of the inner sleeve 21, the outer cylinder 230 is sleeved on the inner cylinder 231 and can rotate along with the inner cylinder 231, the outer sleeve 22, the inner sleeve 21, the outer cylinder 230 and the inner cylinder 231 are coaxially distributed, and the plurality of clamping blocks 232 are fixedly arranged at the front end of the inner cylinder 231 and are uniformly distributed around the axial lead of the inner cylinder 231;
wherein the second driving component drives the outer sleeve 22 to move forwards to cause the clamping component 23 to clamp the conduit 7, and when the clamping component 23 clamps the conduit 7, the first driving component and the third driving component enter a working state; further, under the control of the control system in the embodiment of the present invention, the first driving assembly can drive the mounting base 20 to move back and forth on the frame 1 to drive the guide tube 7 to move back and forth, and the third driving assembly can drive the inner cylinder 231 to rotate to drive the guide tube 7 to rotate.
Therefore, before the automatic feeding and material transferring device 2 can feed and transfer materials, the guide pipe 7 is clamped by the clamping blocks in advance, and the automatic induction function of the automatic feeding and material transferring device 2 is further realized.
In the embodiment of the present invention, the first driving assembly drives the mounting base 20 to move on the frame 1 through the first servo motor 240, and the third driving assembly drives the inner sleeve 21 to rotate through the second servo motor 250.
In the embodiment of the present invention, a first electrode and a second electrode are further provided, the first electrode and the second electrode are arranged on the plurality of clamping blocks 232 at intervals, when the clamping assembly 23 clamps the conduit 7, the first electrode and the second electrode are in conductive connection through the conduit 7, so that a controller of the numerical control pipe bending apparatus obtains a feedback signal for clamping the conduit 7; specifically, the first electrode and the second electrode are connected in a sensing circuit, and when the first electrode and the second electrode are conducted, the sensing circuit generates a signal of the clamping conduit 7 and feeds the signal back to a controller of the numerical control pipe bending device.
Preferably, the inner sleeve 21 is provided with a first conducting ring, a second conducting ring and a change-over switch, the first electrode is in conductive connection with the induction circuit installed on the rack 1 through the first conducting ring and the first carbon brush, and the second electrode is in conductive connection with the induction circuit installed on the rack 1 through the second conducting ring and the second carbon brush; the switch converts the electrical signal into a digital signal and sends the digital signal to the controller, and the controller then controls the first servo motor 240 to drive the mounting base 20 to move on the frame 1, and controls the second servo motor 250 to drive the inner sleeve 21 to rotate according to the specific setting.
In the embodiment of the present invention, the first driving assembly further includes a walking gear and a rack, the mounting base 20 is slidably mounted on the frame 1 through the cooperation of a sliding block and a sliding groove, the walking gear is mounted on the mounting base 20, the rack is mounted on the frame 1, the walking gear is in meshing transmission with the rack, and the first servo motor 240 drives the walking gear to rotate so as to drive the mounting base 20 to move back and forth on the frame 1.
In the embodiment of the present invention, as shown in fig. 9 and 10, the second driving assembly includes a first oil cylinder 260, a first connecting member 261, two fork members 262 and two second connecting members 263, the two second connecting members 263 are fixedly mounted on the mounting base 20 and located below the outer sleeve 22, the extending rod of the first oil cylinder 260 is rotatably mounted on the mounting base 20, and the first oil cylinder 260 is located above the outer sleeve 22;
the first connecting piece 261 is H-shaped, the upper end of the first connecting piece 261 is hinged with the first oil cylinder 260, and the lower end of the first connecting piece 261 is hinged with the two second connecting pieces 263 respectively;
the outer sleeve 22 is provided with an annular groove 220; the two shifting fork members 262 are installed at the lower half section of the first connecting member 261, the two shifting fork members 262 are located in the annular groove 220 and located at the left and right sides of the outer sleeve 22, respectively, and the shifting fork members 262 are abutted against the front side wall and the rear side wall of the annular groove 220.
Thus, the extension and retraction of the extension rod of the first cylinder 260 can be converted into the rotation of the first link 261, and the rotation of the second link 263 can cause the two forks 262 to advance or retract the outer sleeve 22.
In the embodiment of the present invention, the third driving assembly further includes a first housing 27, a first driving tooth 251 and a first driven tooth 252, the first housing 27 is fixedly mounted on the mounting base 20, the second servo motor 250 is mounted on the first housing 27, and the first driving tooth 251 is located in the first housing 27; the first driving tooth 251 is mounted on an output shaft of the second servo motor 250 through a key connection, the first driven tooth 252 is mounted on the inner sleeve 21 through a key connection, and the first driving tooth 251 and the first driven tooth 252 are in meshing transmission.
Further preferably, the diameter of the first driving tooth 251 is smaller than that of the first driven tooth 252; with this arrangement, it is possible to reduce the rotation rate of the inner sleeve 21 and improve the rotation accuracy of the inner sleeve 21.
In the embodiment of the present invention, an oil injection mechanism is further provided, and the oil injection mechanism is mounted at the upper end of the first housing 27 and can be driven to inject oil into the first housing 27 when the third driving assembly drives the inner sleeve 21 to rotate.
Further preferably, the oil injection mechanism comprises an oil tank 280, a second driven tooth 281, a cam shaft 282, a cam plate 283 and an oil injection pin 284, wherein the oil tank 280 is arranged at the top of the first housing 27, an oil injection channel communicated with the interior of the first housing 27 is arranged in the oil tank 280, and the oil injection pin 284 is positioned in the oil injection channel;
the cam shaft 282 is rotatably mounted inside the first housing 27, the cam plate 283 and the second driven teeth 281 are both mounted on the cam shaft 282 through a key connection, the second driven teeth 281 are in meshing transmission with the first driving teeth 251, and during the rotation of the cam plate 283, the cam plate 283 can jack up the oiling pin 284 to open the oiling channel; and further realize the automatic oiling of oiling mechanism.
It is further preferable that the oil filling pin 284 includes a pin portion that can pass through the oil filling passage and contact the cam plate 283, and a stopper portion that has a diameter larger than that of the pin portion and blocks the oil filling passage.
Further preferably, a spring 285 is further provided, the spring 285 is located in the oil tank 280 and sleeved on the oil filling pin 284, the top end of the spring 285 abuts against the top of the oil tank 280, and the bottom end of the spring 285 abuts against the blocking part.
Further preferably, the cam plate 283 is positioned right above the first driving tooth 251, and the first driving tooth 251 is positioned right above the first driven tooth 252; thus, the lubricating effect can be further ensured.
In the embodiment of the present invention, as shown in fig. 12, the inner cylinder 231 includes a circular ring portion 2310, four first connection portions 2311 and four second connection portions 2312, which are integrally formed, the four first connection portions 2311 are located in front of the circular ring portion 2310 and are circumferentially and uniformly distributed, the four first connection portions 2311 are matched to form a cylindrical side surface, the four second connection portions 2312 are located in front of the four first connection portions 2311 and are circumferentially and uniformly distributed, the four second connection portions 2312 are matched to form a side surface of a circular truncated cone, and the diameter of the side surface of the circular truncated cone is gradually increased from the back to the front; thus, when the second driving assembly drives the outer sleeve 22 to move forward, the outer sleeve 22 pushes the outer cylinder 230 to move forward, thereby continuously compressing the four second connecting portions 2312, and achieving the purpose of clamping the catheter 7.
Further preferably, a bolt member 233 is further provided, and a guide hole is formed in a gap between adjacent two first connecting portions 2311, and the outer cylinder 230 is mounted in the guide hole by the bolt member 233.
A bent pipe processing method for inhibiting the bent pipe from becoming elliptical specifically comprises the following steps:
the method comprises the following steps: extending the front half section of the crease-resist die 35 into the third semicircular groove 600 and attaching the crease-resist die to the third semicircular groove 600, and enabling the fifth semicircular groove 350 to be communicated with the fourth semicircular groove;
step two; the automatic feeding and material transferring device 2 sends the conduit 7 to the positions among the crease-resist die 35, the supporting mechanism 4, the clamping die 51 and the bending die 60;
step three: the supporting mechanism 4 moves towards the direction close to the guide tube 7 until abutting against the crease-resist die 35 so that the first semicircular groove 40 and the fifth semicircular groove 350 cooperate to clamp the guide tube 7; and simultaneously the clamping die 51 moves towards the direction close to the conduit 7 until the clamping die abuts against the bending die 60 so that the second semi-circular groove 510 and the fourth semi-circular groove are matched to clamp the conduit 7;
step four: the bending die 60 rotates around the central axis thereof, and simultaneously, the rotating frame 50 rotates around the central axis of the bending die 60 and is consistent with the rotating direction of the bending die 60, so that the plurality of movable joint pressing blocks 42 are pulled to move through the clamping die 51, the plurality of movable joint pressing blocks 42 are sequentially abutted against the bending die 60, and the first semicircular groove 40 which is gradually bent is matched with the third semicircular groove 600 to clamp the guide pipe 7.
Further preferably, after the guide tube 7 is bent, the plurality of link pressing blocks 42, the clamping die 51 and the bending die 60 need to return to the initial positions, and the specific steps are as follows:
fifthly, the supporting mechanism 4 moves towards the direction far away from the conduit 7, and simultaneously the clamping die 51 moves towards the direction far away from the conduit 7;
step six: the bending die 60 rotates around the central axis thereof to an initial position, and simultaneously the rotating frame 50 rotates around the central axis of the bending die 60 to an initial position; thereby pushing the plurality of articulated pressing blocks 42 to move so that the plurality of articulated pressing blocks 42 return to the initial position;
and repeating the steps from two to six to finish the next pipe bending operation.
The control system for the numerical control elbow device for inhibiting the elbow from becoming elliptical is used for controlling the numerical control elbow device for inhibiting the elbow from becoming elliptical, and further comprises a control assembly, a first position sensor, a second position sensor, a third position sensor, a fourth position sensor, a fifth position sensor and a sixth position sensor, wherein the first position sensor, the second position sensor, the third position sensor, the fourth position sensor, the fifth position sensor and the sixth position sensor can be sensors in contact and can also be light and shadow sensors.
When the guide pipe 7 is conveyed to a designated position, the first position sensor sends a signal to the controller, and the controller controls the automatic feeding and material transferring device 2 to stop feeding and controls the supporting mechanism 4 to move towards the direction close to the guide pipe 7 until the supporting mechanism abuts against the crease-resist die 35 so that the first semicircular groove 40 and the fifth semicircular groove 350 are matched to clamp the guide pipe 7; and controlling the clamping die 51 to move towards the direction close to the conduit 7 until the clamping die abuts against the bending die 60 so that the second semi-circular groove 510 is matched with the fourth semi-circular groove to clamp the conduit 7;
when the supporting mechanism 4 and the clamping die 51 move to the designated positions, the second position sensor sends a signal to the controller, the controller controls the automatic feeding and transferring device 2 to push the guide pipe 7 to move forwards and controls the clamping die 51 and the bending die 60 to rotate around the central axis of the bending die 60 to bend the guide pipe 7, and meanwhile, the clamping die 51 can also drive the supporting mechanism 4 to move so that the first semicircular groove 40 can be attached to the outer side wall of the bent part of the guide pipe 7.
When the bending die 60 or the rotating frame 50 rotates to a designated position, the third position sensor sends a signal to the controller, and the controller controls the supporting mechanism 4 to move away from the conduit 7 and simultaneously controls the clamping die 51 to move away from the conduit 7;
when the supporting mechanism 4 and the clamping die 51 are retracted to the designated positions, the fourth position sensor sends signals to the controller, and the controller controls the clamping die 51 and the bending die 60 to rotate around the central shaft of the bending die 60 to the initial positions.
After the clamping die 51 and the bending die 60 rotate around the central shaft of the bending die 60 to the initial position, the fifth position sensor sends a signal to the controller, and the controller controls the automatic feeding and material transferring device 2 to push the guide pipe 7 forward, so that the next pipe bending operation is completed; further preferably, according to the preset input angle, after the fifth position sensor sends a signal to the controller, the controller controls the automatic feeding and material transferring device 2 to rotate the guide pipe 7 by the input angle around the central axis and then push the guide pipe 7 forward.
When the automatic feeding and material transferring device 2 moves to a designated position, the sixth position sensor sends a signal to the controller, and the controller controls the automatic feeding and material transferring device 2 to loosen the guide pipe 7 and retreat to an initial position, so that all pipe bending operations of the same guide pipe 7 are completed.
Example two
The difference between the present embodiment and the first embodiment is that the movable joint pressing block 42 and the guide holder 41 in the first embodiment are not used; but is replaced by a die guide mechanism.
It should be noted that the clamp die 51 in this embodiment is not hinged to the die guide mechanism.
In the embodiment of the present invention, as shown in fig. 17, 18, 19 and 20, the die guide mechanism includes a mounting bracket 80 and a fourth driving member 81 mounted on the frame 1, and a first guide die 82, a second guide die 83 and a third guide die 84 mounted on the mounting bracket 80 from top to bottom, a right end surface of the first guide die 82 is provided with a linear first arc surface 820, a right end surface of the second guide die 83 is provided with a linear second arc surface 830, and a right end surface of the third guide die 84 is provided with a linear third arc surface 840;
the fourth driving part 81 is used for driving two of the first guide die 82, the second guide die 83 and the third guide die 84 to move up and down; thereby separating or closing the first guide die 82, the second guide die 83 and the third guide die 84, and when the first guide die 82, the second guide die 83 and the third guide die 84 are closed, the first arc surface 820, the second arc surface 830 and the third arc surface 840 are matched to form a semi-elliptical groove with a semi-elliptical cross section.
In this way, before the pipe bending operation is performed on the pipe 7, the fourth driving member 81 drives the first guide die 82, the second guide die 83 and the third guide die 84 to close, so that the portion to be bent on the pipe 7 can be pressed to be oval first, the vertical height of the pipe 7 is reduced, and the horizontal width of the pipe 7 is widened;
when the pipe 7 is bent, the ellipse changing direction of the bending part is that the height of the upper part and the lower part is increased and the width of the left part and the right part of the pipe 7 is narrowed; namely, the guide die mechanism in the embodiment of the invention presses the guide pipe 7 to neutralize the deformation of the guide pipe 7 during the pipe bending operation, thereby finally achieving the purpose of reducing the ovality of the guide pipe 7.
In the embodiment of the present invention, the fourth driving part 81 drives the first guide die 82 and the third guide die 84 to approach or separate from the second guide die 83; by such arrangement, the catheter 7 can be better changed into an elliptical shape.
In the embodiment of the present invention, the fourth driving component 81 may be an oil cylinder or a servo motor; in this embodiment, the fourth driving element 81 is a servo motor, and further includes a second mounting plate 85, a second lead screw 86, and a plurality of guide rods 87, the mounting plate is fixedly mounted on the mounting frame 80 and located above the first guide die 82, the fourth driving element 81 and the plurality of guide rods 87 are fixedly mounted on the mounting plate, the first guide die 82 and the third guide die 84 are mounted on the plurality of guide rods 87 in a vertically movable manner, the second guide die 83 is fixedly mounted on the mounting frame 80, the mounting plate, or the plurality of guide rods 87, the second lead screw 86 is in positive thread fit with the first guide die 82, the second lead screw 86 is in reverse thread fit with the third guide die 84, and the fourth driving element 81 drives the second lead screw 86 to rotate so that the first guide die 82 and the third guide die 84 move closer to or farther away from the second guide die 83.
Preferably, the screw driver is further provided with an orthodontic nut 88 and an anti-orthodontic nut 89, wherein the orthodontic nut 88 is fixedly connected with the first guide die 82 and is in positive thread fit with the second screw rod 86, and the anti-orthodontic nut 89 is fixedly connected with the third guide die 84 and is in negative thread fit with the second screw rod 86.
In the embodiment of the present invention, the second driving element, i.e. the servo motor, can also drive the mounting frame 80 to slide left and right on the rack 1.
EXAMPLE III
The difference between this embodiment and the first embodiment is that the joint pressing block 42 and the guide seat 41 in the first embodiment are not used; but is replaced by a guide shoe 90.
It should be noted that the clamp die 51 of the present embodiment is not hinged to the guide die seat 90.
In this embodiment, as shown in fig. 21 and 22, a plurality of second heating pipes 91 are further provided, a plurality of parallel fourth mounting holes 900 are further provided on the guide die holder 90, the fourth mounting holes 900 are in the front-back direction, and the plurality of second heating pipes 91 are mounted in the fourth mounting holes 900.
Further preferably, a second temperature sensor is further provided, and the second temperature sensor is used for detecting the temperature of the guide die holder 90.
Preferably, the guide die holder 90 is made of high temperature resistant steel.
It should be noted that the second heating pipes 91 in the present embodiment can also be applied to the die guiding mechanism in the second embodiment, that is, the first guide die 82, the second guide die 83, and the third guide die 84 in the second embodiment together form the die guiding seat 90 in the present embodiment.
In the description herein, references to "one embodiment," "an example," "a specific example," or "some examples" or the like are intended to mean that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the invention. In this specification, the schematic representations of the terms used above do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
Although embodiments of the present invention have been shown and described above, it will be understood that the above embodiments are exemplary and not to be construed as limiting the present invention, and that those skilled in the art may make variations, modifications, substitutions and alterations within the scope of the present invention without departing from the spirit and scope of the present invention. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (8)

1. The utility model provides a crease-resistant mould angle governing mechanism, characterized in that, includes frame (1) and installs first adjusting motor (30), regulation seat (31), support (32), pillar (33) and crease-resistant module in frame (1), crease-resistant module includes a first mounting panel (34) and crease-resistant mould (35), be equipped with linear type fifth half-slot (350) on crease-resistant mould (35), still be equipped with an arc flexion that is used for with curved mould (60) laminating at the back that fifth half-slot (350) is relative, install on first mounting panel (34) crease-resistant mould (35) with the mode that can slide, first mounting panel (34) fixed mounting is on pillar (33), pillar (33) fixed mounting is on support (32), support (32) are installed on regulation seat (31) with the mode that can slide, it installs on frame (1) to adjust seat (31) rotation,
the anti-wrinkling device comprises a crease-resist die (35), a support (32), a first adjusting motor (30), a second adjusting motor and a third adjusting motor, wherein an included angle is formed between the sliding direction of the crease-resist die (35) and the sliding direction of the support (32), and the first adjusting motor (30) is used for driving an adjusting seat (31) to rotate on a rack (1);
the speed reduction device is characterized by further comprising a speed reduction assembly, the speed reduction assembly comprises a speed reduction shell (360), a large gear (361), a small gear (362) and a rotating shaft (363), the rotating shaft (363) is installed on the speed reduction shell (360), the top end of the rotating shaft (363) penetrates through the rack (1) and then is fixedly connected with the adjusting seat (31), the small gear (362) is installed on an output shaft of the first adjusting motor (30) in a sleeved mode, the large gear (361) is installed on the rotating shaft (363) in a sleeved mode, and the small gear (362) and the large gear (361) are in meshing transmission;
two parallel first sliding grooves (310) are formed in the adjusting seat (31), and the first sliding grooves (310) are T-shaped grooves;
the adjusting mechanism is characterized by further comprising a small motor (364), a first screw rod (365), a first sliding block (366) and a second sliding block (367), wherein the first sliding block (366) and the second sliding block (367) are T-shaped blocks, the first sliding block (366) and the second sliding block (367) are respectively installed in the two first sliding grooves (310) in a sliding mode and fixedly connected with the supporting seat (32), a threaded hole used for being matched with the first screw rod (365) is formed in the first sliding block (366), the first screw rod (365) and the small motor (364) are installed on the adjusting seat (31), and the small motor (364) drives the first screw rod (365) to rotate so that the supporting seat (32) can slide on the adjusting seat (31).
2. The crease-resist die angle adjusting mechanism according to claim 1, characterized in that the crease-resist die set further comprises a fixing clip (38), a clamping bolt and a clamping nut, the first mounting plate (34) is slidably mounted on the fixing clip (38), the fixing clip (38) comprises a first clamping portion (380) and a second clamping portion (381), a first gap (382), a clamping circular hole (383) and a second gap (384) are sequentially arranged between the first clamping portion (380) and the second clamping portion (381), and the first gap (382) and the second gap (384) are respectively located at two opposite ends of the clamping circular hole (383) and are communicated with the clamping circular hole (383); the fixing clamp (38) is preliminarily sleeved and installed on the support column (33) through the clamping round hole (383), the clamping bolt sequentially penetrates through the first clamping portion (380), the first gap (382) and the second clamping portion (381) and then is fixedly installed on the fixing clamp (38) through the clamping nut, and the fixing clamp (38) is clamped and installed on the support column (33).
3. The angle adjusting mechanism for the crease-resistant die is characterized in that a threaded rod (368) and a plurality of jacking nuts (369) arranged on the threaded rod (368) are further arranged, the threaded rod (368) is fixedly arranged on the support (32), three crease-resistant modules are arranged on the support (33), the diameter of a fifth semicircular groove (350) in each crease-resistant module (35) is different in size, fixing clamps (38) in the three crease-resistant modules are arranged on the threaded rod (368) through first mounting hole sleeves, and the jacking nuts (369) respectively abut against the upper end face and the lower end face of the fixing clamp (38) in the three crease-resistant modules.
4. The angle adjusting mechanism for the wrinkle-resistant die as claimed in claim 2, further comprising an adjusting screw (370), wherein a threaded hole is formed in the first mounting plate (34), a left side wall of the fixing clip (38) extends leftwards to form a first extension portion (385), and a second mounting hole is formed in the first extension portion (385); the adjusting screw (370) penetrates through the second mounting hole and then is in threaded fit with the threaded hole.
5. The wrinkle-resistant die angle adjustment mechanism as claimed in claim 2, wherein the wrinkle-resistant module further comprises a nozzle tip (371), the nozzle tip (371) being fixedly mounted on a fixing clip (38);
an oil inlet channel is arranged on the fixing clamp (38), and the oil inlet channel is connected with the oil nozzle (371);
a plurality of oil outlet channels (352) are arranged on the crease-resistant die (35), the oil outlet channels (352) are communicated with the oil inlet channel on the fixing clamp (38), and oil outlets of the oil outlet channels (352) are positioned on the wall of the fifth semicircular groove (350);
and the oil outlets of the oil outlet channels (352) are respectively provided with a ball, the ball forms spherical seal at the oil outlets, the ball protrudes out of the groove wall of the fifth semicircular groove (350), and when the ball is contacted with the conduit (7) and generates relative motion, the ball rotates around the spherical center of the ball so as to send out oil.
6. The wrinkle resistant die angle adjustment mechanism according to claim 2, characterized in that the wrinkle resistant module further comprises a nozzle tip (371), the nozzle tip (371) is fixedly mounted on the fixing clip (38);
an oil inlet channel is arranged on the fixing clamp (38), and the oil inlet channel is connected with the oil nozzle (371);
a plurality of oil outlet channels (352) are arranged on the crease-resist die (35), the oil outlet channels (352) are communicated with the oil inlet channel on the fixing clamp (38), and oil outlets of the oil outlet channels (352) are positioned on the wall of the fifth semicircular groove (350);
the oil outlets of the oil outlet channels (352) are respectively provided with a contact type sensor, and when the guide pipe (7) is in contact with the contact type sensors, the oil filling of the oil nozzle (371) can be triggered to lubricate and fill the guide pipe (7).
7. A wrinkle-resistant die angle adjusting method characterized by employing a wrinkle-resistant die angle adjusting mechanism according to any one of claims 1 to 6; the method comprises the following specific steps:
the method comprises the following steps: according to the requirement of the catheter (7), firstly, the crease-resist die (35) is rotated to a specified angle through the first adjusting motor (30), and an included angle which is not more than 2 degrees is formed between the crease-resist die (35) and the catheter (7) at the specified angle;
step two: and then the position of the crease-resist die (35) is finely adjusted through a small motor (364) and an adjusting screw rod (370).
8. A pipe bending apparatus comprising a wrinkle preventing die angle adjusting mechanism according to any one of claims 1 to 6.
CN202110880935.3A 2021-08-02 2021-08-02 Pipe bending equipment and crease-resist die angle adjusting mechanism and method thereof Active CN113458214B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110880935.3A CN113458214B (en) 2021-08-02 2021-08-02 Pipe bending equipment and crease-resist die angle adjusting mechanism and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110880935.3A CN113458214B (en) 2021-08-02 2021-08-02 Pipe bending equipment and crease-resist die angle adjusting mechanism and method thereof

Publications (2)

Publication Number Publication Date
CN113458214A CN113458214A (en) 2021-10-01
CN113458214B true CN113458214B (en) 2023-03-10

Family

ID=77883685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110880935.3A Active CN113458214B (en) 2021-08-02 2021-08-02 Pipe bending equipment and crease-resist die angle adjusting mechanism and method thereof

Country Status (1)

Country Link
CN (1) CN113458214B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289973A (en) * 2006-04-21 2007-11-08 Comco Corp Pipe bender
CN101972799A (en) * 2010-11-08 2011-02-16 肇庆市骏驰科技有限公司 Anti-crease bending processor for thin metal pipe
CN202199646U (en) * 2011-06-10 2012-04-25 江阴市宏业机械制造有限公司 Heading pipe bender
CN202270792U (en) * 2011-10-25 2012-06-13 浙江摩多巴克斯汽配有限公司 Anti-creasing board installation structure of pipe bender
CN105517724A (en) * 2013-08-01 2016-04-20 艾迪生麦基有限公司 Tie bar tensioning system
JP2018202455A (en) * 2017-06-05 2018-12-27 東亜工業株式会社 Method for bending pipe material and device for bending pipe material
CN210730631U (en) * 2019-08-15 2020-06-12 南京途时信息技术有限公司 Adjustable pipe bender
CN212884311U (en) * 2020-07-23 2021-04-06 和和机械(张家港)有限公司 Adjustable crease-resistance device of eccentric mandrel in pipe bending machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7134310B2 (en) * 2004-11-30 2006-11-14 Ying Lin Machine Industrial Col., Ltd. Tube bender

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289973A (en) * 2006-04-21 2007-11-08 Comco Corp Pipe bender
CN101972799A (en) * 2010-11-08 2011-02-16 肇庆市骏驰科技有限公司 Anti-crease bending processor for thin metal pipe
CN202199646U (en) * 2011-06-10 2012-04-25 江阴市宏业机械制造有限公司 Heading pipe bender
CN202270792U (en) * 2011-10-25 2012-06-13 浙江摩多巴克斯汽配有限公司 Anti-creasing board installation structure of pipe bender
CN105517724A (en) * 2013-08-01 2016-04-20 艾迪生麦基有限公司 Tie bar tensioning system
JP2018202455A (en) * 2017-06-05 2018-12-27 東亜工業株式会社 Method for bending pipe material and device for bending pipe material
CN210730631U (en) * 2019-08-15 2020-06-12 南京途时信息技术有限公司 Adjustable pipe bender
CN212884311U (en) * 2020-07-23 2021-04-06 和和机械(张家港)有限公司 Adjustable crease-resistance device of eccentric mandrel in pipe bending machine

Also Published As

Publication number Publication date
CN113458214A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
CN113458217B (en) Pipe bending equipment and crease-resist shape-preserving device thereof
CN113458219B (en) Numerical control pipe bending equipment for inhibiting deformation and wrinkle resistance of bent pipe
CN104138943A (en) Tube bending machine
CN113458214B (en) Pipe bending equipment and crease-resist die angle adjusting mechanism and method thereof
CN216095947U (en) Pipe bending equipment and crease-resist die angle adjusting mechanism thereof
CN215544277U (en) Pipe bending equipment and crease-resistant shape-preserving supporting device thereof
CN113617955B (en) Pipe bending equipment and automatic material conveying and transferring device thereof
CN113617899B (en) Pipe bending equipment and pipe bending method for inhibiting deformation of bent pipe
CN216096015U (en) Pipe bending equipment and automatic feeding and pipe rotating device thereof
CN115318895A (en) Hardware bending device with automatic arc degree calibration function
CN216065004U (en) Pipe bending equipment and pipe pressing and die clamping device thereof
CN113617900B (en) Numerical control elbow device and briquetting device for inhibiting elbow from changing into elliptical movable joint
CN216065005U (en) Pipe bending equipment and electric heating device inside pipe bending die thereof
CN216095778U (en) Numerical control elbow pipe equipment and flexible joint device for inhibiting elbow pipe from becoming elliptical chain
CN215543994U (en) Numerical control elbow device for inhibiting elbow from becoming elliptical
CN215879374U (en) Pipe bending equipment and anti-deformation mechanism for inhibiting pipe from deforming into ellipse multi-body arc die
CN113560385B (en) Elbow pipe equipment and mechanism for inhibiting arc reverse deformation of elbow pipe in variable ellipse guide mode
CN113458215A (en) Pipe bending equipment and pipe bending die heating device thereof
CN113458218A (en) Pipe bending equipment and die clamping device thereof
CN113458216A (en) Numerical control elbow equipment control system for inhibiting elbow from becoming elliptical
CN116833272A (en) Aluminum profile arc bending device
CN115106413A (en) Pipe bending device for electric bicycle pipe fitting production
CN211888443U (en) Crawler-type combined drawing machine set
CN211247866U (en) Three-dimensional roll bending forming device for triangular pipe beam
CN106111828A (en) A kind of heading pipe bender slope climbing type clamping device and using method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 321403 6 Xinyuan Road, Xinbi street, Jinyun, Lishui, Zhejiang

Applicant after: Zhejiang Kingmasun Intelligent Manufacturing Co.,Ltd.

Applicant after: AVIC BEIJING AERONAUTICAL MANUFACTURING TECHNOLOGY Research Institute

Address before: 321403 6 Xinyuan Road, Xinbi street, Jinyun, Lishui, Zhejiang

Applicant before: ZHEJIANG KING-MAZON MACHINERY Co.,Ltd.

Applicant before: AVIC BEIJING AERONAUTICAL MANUFACTURING TECHNOLOGY Research Institute

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220922

Address after: 321403 6 Xinyuan Road, Xinbi street, Jinyun, Lishui, Zhejiang

Applicant after: ZHEJIANG KING-MAZON MACHINERY Co.,Ltd.

Applicant after: AVIC BEIJING AERONAUTICAL MANUFACTURING TECHNOLOGY Research Institute

Address before: 321403 6 Xinyuan Road, Xinbi street, Jinyun, Lishui, Zhejiang

Applicant before: ZHEJIANG KING-MAZON MACHINERY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant