CN113457664A - D-CeO2:CQDs@WO3纳米复合空心材料、制备方法及其应用 - Google Patents

D-CeO2:CQDs@WO3纳米复合空心材料、制备方法及其应用 Download PDF

Info

Publication number
CN113457664A
CN113457664A CN202110553957.9A CN202110553957A CN113457664A CN 113457664 A CN113457664 A CN 113457664A CN 202110553957 A CN202110553957 A CN 202110553957A CN 113457664 A CN113457664 A CN 113457664A
Authority
CN
China
Prior art keywords
ceo
cqds
hollow material
composite hollow
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110553957.9A
Other languages
English (en)
Other versions
CN113457664B (zh
Inventor
白静怡
王鑫
张鲁丹
谢壮壮
刁国旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202110553957.9A priority Critical patent/CN113457664B/zh
Publication of CN113457664A publication Critical patent/CN113457664A/zh
Application granted granted Critical
Publication of CN113457664B publication Critical patent/CN113457664B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种D‑CeO2:CQDs@WO3纳米复合空心材料及其在光催化方面的应用,通过简单方便的方法合成了晶型良好,导电性能提升显著,降解性能增强明显的纳米D‑CeO2:CQDs@WO3纳米复合空心材料。本发明以双层空心球状CeO2纳米材料为模板,采用传统的水热方法,将WO3负载到双层空心球状CeO2纳米材料表面,并在二者的界面间引入了CQDs,使纳米材料的光吸收能力增强。通过材料的复合引入氧空位,从而使材料的带隙变窄,同时加速了光生电子的转移,降低了光生电子与空穴的复合,以此为原理激发材料在光降解应用上的潜能。

Description

D-CeO2:CQDs@WO3纳米复合空心材料、制备方法及其应用
技术领域
本发明属于光催化剂技术领域,涉及一种D-CeO2:CQDs@WO3纳米复合空心材料、制备方法及其在催化降解有机污染物中的应用。
背景技术
近年来,光催化技术作为一种先进的氧化方法,由于其能够产生还原电子和氧化空穴从而有效降解难处理的有机污染物而被广泛用于降解废水。虽然一些传统的光催化剂已被用于在模拟太阳光下降解废水,然而这些传统材料光催化活性受到其宽频带隙和光生电子空穴对高复合的影响,导致其实际应用受到限制,并且达不到一种物质降解多种废水的效果。
性能优异的光催化剂应该具有良好的太阳光利用率,较快的电子传输速率以及合适的带隙能,使得材料在受到光照时,能充分地利用处于各个波段的光线来激发材料内部的电子,更多的电子可以受到激发而跃迁,同时光生电子在激发后能及时的传输到外界,从而避免了与电子空穴重新复合。
将纳米颗粒与合适的材料结合,可以促使材料的吸收带边界红移或提升材料在可见光区的吸收强度,并尽可能地降低材料内部的带隙能与材料内阻,以促进电子的激发并加快传输电子的速率,抑制载流子在传导过程中复合,提高材料的降解能力。研究表明,CeO2可以通过紫外-可见光照射而被光活化,并在可见光或太阳光照射下分解水相中的有机物,提高对太阳光的利用率。虽然在实际研究中,已经有人将CeO2与WO3进行复合并应用于光催化降解NO,但是由于其合成的CeO2形貌无明显的特征,无法提升与待反应物的接触面积;同时WO3在可见光及近红外光响应较差,导致了合成的CeO2/WO3复合材料性能有限(XieW,Zhang G,Mu B,et al.The Effects of Surface Modification of ATP on thePerformance of CeO2-WO3/TiO2 Catalyst for the Selective Catalytic Reduction ofNOx with NH3[J].Catalysis Surveys from Asia,2021.)。
发明内容
本发明的目的在于提供一种能有效提升太阳光利用率并且降低光催化剂带隙能的D-CeO2:CQDs@WO3纳米复合空心材料、制备方法及其在催化降解有机污染物中的应用。本发明利用双层二氧化铈空心球(D-CeO2),提升复合材料与待降解污染物的接触面积,并通过煅烧及在复合材料界面间引入碳量子点(CQDs),提升材料的可见光响应,进一步提升材料对RhB、Cr(Ⅵ)及TC的降解效果。
实现本发明目的的技术方案如下:
D-CeO2:CQDs@WO3纳米复合空心材料的制备方法,包括如下步骤:
步骤1,将双层二氧化铈空心球(D-CeO2)加入到碳量子点(CQDs)溶液中,超声分散后搅拌,离心,得到D-CeO2:CQDs;
步骤2,将D-CeO2:CQDs加入乙醇中,分散均匀后,加入草酸及WCl6,搅拌至混合均匀;
步骤3,将步骤2的混合液进行水热反应,反应结束后冷却、离心清洗后,干燥;
步骤4,将步骤3所得样品在氩-氢混合气氛下,置于管式炉中煅烧,煅烧结束后降至室温,得到D-CeO2:CQDs@WO3纳米复合空心材料。
优选地,步骤2中,草酸与WCl6的质量比为10:1。
优选地,步骤3中,D-CeO2与WCl6的质量比为为1:1。
优选地,步骤3中,水热反应温度为150~220℃,更优选为180℃,反应时间为8~16h,更优选为12小时。
优选地,步骤4中,管式炉升温速率为5℃/分钟,煅烧温度为300~600℃,更优选为500℃,煅烧时间为1~3小时,更优选为2小时。
优选地,步骤4中,氩-氢混合气氛中氢气含量为5%。
进一步地,本发明提供上述制备方法制得的D-CeO2:CQDs@WO3纳米复合空心材料。
更进一步地,本发明提供上述D-CeO2:CQDs@WO3纳米复合空心材料在光催化降解罗丹明B(RhB)、Cr(Ⅵ)或四环素(TC)中的应用。
与现有技术相比,本发明具有以下优点:
本发明以成本低、无毒性、耐腐蚀的稀土氧化物为基础,合成分散性较好的片状WO3,将其负载于D-CeO2双层空心材料上,并在二者的接触的界面上引入CQDs,形成D-CeO2:CQDs@WO3纳米复合空心材料。当在D-CeO2双层空心材料上负载WO3后,由于二者的带隙差异,使得光生电子与空穴在二者之间传递并参与反应。同时在二者的界面间引入的CQDs,作为电子传输的桥梁,既接受电子又发射电子,这更加促进了电子的传输,降低了光生电子与空穴的复合,使得更多的电子参与整体的降解反应加速了整个降解进程。其次D-CeO2双层空心材料负载WO3后,增强了光催化剂对可见光的利用,更好地激发出光催化剂的潜力。
附图说明
图1为D-CeO2:CQDs@WO3纳米复合空心材料的XRD图。
图2为D-CeO2:CQDs@WO3纳米复合空心材料的紫外吸收光谱图。
图3为D-CeO2、WO3和D-CeO2:CQDs@WO3纳米复合空心材料的SEM图。
图4为D-CeO2:CQDs@WO3纳米复合空心材料的TEM及HRTEM图,其中a-d分别为D-CeO2,WO3,CQDs和D-CeO2:CQDs@WO3纳米复合空心材料的TEM图,e为D-CeO2:CQDs@WO3纳米复合空心材料的HRTEM图。
图5为D-CeO2:CQDs@WO3纳米复合空心材料在可见光照射下在光催化降解RhB结果图。
图6为D-CeO2:CQDs@WO3纳米复合空心材料在可见光照射下在光催化降解Cr(Ⅵ)结果图。
图7为D-CeO2:CQDs@WO3纳米复合空心材料在可见光照射下在光催化降解TC结果图。
具体实施方式
下面结合实施例和附图对本发明作进一步详述。
本发明中,所述的D-CeO2的制备参考现有方法,具体可以参考文献中国专利申请201610612318.4。具体为:
将1.3g尿素置于200mL超纯水中超声分散8min,加入10mM柠檬酸钠溶液95mL,剧烈搅拌下反应15min,加入1g氯化亚铈,搅拌20min后,以10mL/min的速度将1.2mL双氧水匀速滴入,持续搅拌30min。将反应形成的淡黄色混合溶液加入50mL聚四氟乙烯高压水热反应釜中,180℃反应22h,自然冷却后,离心清洗并于70℃下烘干,得到淡黄色的D-CeO2
本发明中,所述的CQDs的制备采用现有方法制备,具体可以为:
将0.4196g柠檬酸溶于10mL超纯水中,置于超声清洗机中超声20min使其分散完全;剧烈搅拌15min后,将透明液体加入到聚四氟乙烯高压水热反应釜中,200℃条件下反应5h,待其自然冷却后,将溶液以13000rmp/min转速离心20min,除去沉淀物,得到CQDs淡黄色溶液。
实施例1
D-CeO2:WCl6=1:1的D-CeO2:CQDs@WO3纳米复合空心材料的制备:
取D-CeO2置于20mLCQDs溶液中,超声分散30min,搅拌12h,使CQDs充分的附着于D-CeO2空心纳米材料上,将反应液以4000rmp/min转速离心并干燥待用。取0.1gD-CeO2:CQDs材料,置于60mL乙醇中,加入0.1gWCl6及1g草酸,搅拌30min后,将所得混合液密封在100mL聚四氟乙烯高压水热反应釜中,置于烘箱中180℃反应12h。待反应釜冷却至室温后,离心收集所得的产物,并用去离子水与乙醇洗涤数次。将干燥的D-CeO2:CQDs@WO3纳米复合空心材料置于管式炉中,氩气-氢气混合气氛下500℃煅烧2h(升温速率为5℃·min-1),待冷却到室温,取出,得到D-CeO2:CQDs@WO3纳米复合空心材料。
对比例1
本实施例与实施例1基本相同,唯一不同的是D-CeO2与WCl6的质量比为2:1。
对比例2
本对比例与实施例1基本相同,唯一不同的是D-CeO2与WCl6的质量比为3:2。
对比例3
本对比例与实施例1基本相同,唯一不同的是D-CeO2与WCl6的质量比为1:2。
对比例4
取0.2g的D-CeO2置于60mL乙醇中,加入0.2gWCl6及2g草酸,搅拌30min后,将所得混合液密封在100mL聚四氟乙烯高压水热反应釜中,置于烘箱中180℃反应12h。待反应釜冷却至室温后,离心收集所得的产物,并用去离子水与乙醇洗涤数次。将干燥的D-CeO2@WO3纳米复合空心材料置于管式炉中,氩气-氢气混合气氛下500℃煅烧2h(升温速率为5℃·min-1),待冷却到室温,取出,得到D-CeO2@WO3纳米复合空心材料。
图1为片状WO3纳米材料、D-CeO2双层空心材料、D-CeO2@WO3纳米复合空心材料和D-CeO2:CQDs@WO3纳米复合空心材料的X射线衍射图,图中,代表D-CeO2双层空心材料与片状WO3纳米材料曲线出现的特征衍射峰,分别与CeO2及WO3的特征衍射峰相对吻合,表明成功的合成了CeO2及WO3材料。同时由图中明显的观察到,由WO3、CQDs及D-CeO2复合而成的D-CeO2:CQDs@WO3纳米复合空心材料的XRD曲线中,既出现了CeO2的特征峰也出现了WO3的特征衍射峰,表明D-CeO2与WO3很好的结合成复合材料,由于CQDs的处在二者界面中,并且CQDs的引入量较少,故而D-CeO2:CQDs@WO3纳米复合空心材料的XRD曲线中未出现CQDs的代表性衍射峰。
图2为片状WO3纳米材料、D-CeO2双层空心材料、D-CeO2@WO3纳米复合空心材料和D-CeO2:CQDs@WO3纳米复合空心材料的紫外吸收光谱图,由图中可以明显的观察到,当D-CeO2、CQDs与WO3三者结合成D-CeO2:CQDs@WO3纳米复合空心材料后,紫外吸收强度较纯物质提升幅度巨大。特别是波长大于420nm的可见光区,D-CeO2:CQDs@WO3纳米复合空心材料的吸光度较纯物质提升数倍。表明当材料复合后,尤其增强了对可见光的吸收,侧面证明了D-CeO2:CQDs@WO3纳米复合空心材料可以更好的利用波长位于可见光区的光波,这可能是D-CeO2:CQDs@WO3纳米复合空心材料在光催化实验中表现出较好性能的原因。
图3分别为D-CeO2、WO3和D-CeO2:CQDs@WO3纳米复合空心材料的SEM图,明显的观察到合成的D-CeO2呈现出明显的球状结构,且分散性较好;合成的WO3显示出明显的片状结构;同时在D-CeO2:CQDs@WO3纳米复合空心材料的SEM图中明显的观察到在D-CeO2外层负载了片状WO3
图4为TEM及HRTEM图。a-d分别代表了D-CeO2,WO3,CQDs和D-CeO2:CQDs@WO3纳米复合空心材料的TEM图,e代表了D-CeO2:CQDs@WO3纳米复合空心材料的HRTEM图。通过观察,发现D-CeO2呈现出明显的双层空心结构;WO3显示出明显的片状结构;合成的CQDs粒径较小,约为2-5nm。更重要的是,图中直观的显示出D-CeO2:CQDs@WO3纳米复合空心材料的内部构造情况,WO3片状材料很好的负载在了D-CeO2上,并且结合D-CeO2:CQDs@WO3纳米复合空心材料的HRTEM图得出,D-CeO2、CQDs与WO3很好的复合在一起,共同组成了D-CeO2:CQDs@WO3纳米复合空心材料。
实施例2
取100mL模拟污染物溶液,在其中加入50mg光催化剂,在黑暗条件下将悬浮液持续搅拌60min,使催化剂与模拟污染物溶液达到吸附-解吸平衡。在一定的时间间隔内,取5mL悬浮液,离心除去沉淀后使用紫外分光光度计记录吸光度并进一步分析。
图5、6、7分别展示了复合材料的光催化降解RhB,光催化降解Cr(Ⅵ)及光催化降解TC的性能曲线。对比三张性能图后,发现,与纯D-CeO2及纯WO3相比,D-CeO2@WO3及D-CeO2:CQDs@WO3纳米复合空心材料光催化活性显著提高。对比不同D-CeO2与WCl6的质量比制备的样品后发现,D-CeO2与WCl6的质量比为1:1时D-CeO2@WO3显示出最佳的光催化活性,并且在光催化降解RhB,光催化降解Cr(Ⅵ)及光催化降解TC实验中D-CeO2与WCl6的质量比为1:1时,D-CeO2:CQDs@WO3纳米复合空心材料表现出最佳的性能。
综上所述,本发明制成的D-CeO2:CQDs@WO3纳米复合空心材料,增强了材料的光吸收能力;并且通过材料的复合引入氧空位,从而使材料的带隙变窄,加速了光生电子的转移,降低了光生电子与空穴的复合,明显的增强了材料的光催化活性,与降解废水的普遍适用性。

Claims (10)

1.D-CeO2:CQDs@WO3纳米复合空心材料的制备方法,其特征在于,包括如下步骤:
步骤1,将D-CeO2加入到CQDs溶液中,超声分散后搅拌,离心,得到D-CeO2:CQDs;
步骤2,将D-CeO2:CQDs加入乙醇中,分散均匀后,加入草酸及WCl6,搅拌至混合均匀;
步骤3,将步骤2的混合液进行水热反应,反应结束后冷却、离心清洗后,干燥;
步骤4,将步骤3所得样品在氩-氢混合气氛下,置于管式炉中煅烧,煅烧结束后降至室温,得到D-CeO2:CQDs@WO3纳米复合空心材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤2中,草酸与WCl6的质量比为10:1。
3.根据权利要求1所述的制备方法,其特征在于,步骤3中,D-CeO2与WCl6的质量比为1:1。
4.根据权利要求1所述的制备方法,其特征在于,步骤3中,水热反应温度为150~220℃,反应时间为8~16h。
5.根据权利要求1所述的制备方法,其特征在于,步骤3中,水热反应温度为180℃,反应时间为12小时。
6.根据权利要求1所述的制备方法,其特征在于,步骤4中,管式炉升温速率为5℃/分钟,煅烧温度为300~600℃,煅烧时间为1~3小时。
7.根据权利要求1所述的制备方法,其特征在于,步骤4中,煅烧温度为500℃,煅烧时间为2小时。
8.根据权利要求1所述的制备方法,其特征在于,步骤4中,氩-氢混合气氛中氢气含量为5%。
9.根据权利要求1至8任一所述的制备方法制得的D-CeO2:CQDs@WO3纳米复合空心材料。
10.根据权利要求9所述的D-CeO2:CQDs@WO3纳米复合空心材料在光催化降解罗丹明B、Cr(Ⅵ)或四环素中的应用。
CN202110553957.9A 2021-05-20 2021-05-20 D-CeO2:CQDs@WO3纳米复合空心材料、制备方法及其应用 Active CN113457664B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110553957.9A CN113457664B (zh) 2021-05-20 2021-05-20 D-CeO2:CQDs@WO3纳米复合空心材料、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110553957.9A CN113457664B (zh) 2021-05-20 2021-05-20 D-CeO2:CQDs@WO3纳米复合空心材料、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN113457664A true CN113457664A (zh) 2021-10-01
CN113457664B CN113457664B (zh) 2023-11-10

Family

ID=77871072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110553957.9A Active CN113457664B (zh) 2021-05-20 2021-05-20 D-CeO2:CQDs@WO3纳米复合空心材料、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113457664B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114146715A (zh) * 2021-12-14 2022-03-08 云南大学 一种异质结复合材料及其制备方法和应用
CN115555010A (zh) * 2022-08-17 2023-01-03 广州大学 富含氧空位的介孔纳米棒光催化剂、制备方法以及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2899929A1 (en) * 2010-09-07 2011-02-03 Cristal Usa Inc. Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
CN111085185A (zh) * 2019-12-11 2020-05-01 扬州大学 CeO2:CDs/TiO2纳米材料及其在光催化方面的应用
CN111644191A (zh) * 2020-06-09 2020-09-11 嵊州市汇业新材料科技有限公司 一种纳米WO3-g-C3N4-rGO异质结负载泡沫镍的光催化材料及其制法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2899929A1 (en) * 2010-09-07 2011-02-03 Cristal Usa Inc. Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
CN111085185A (zh) * 2019-12-11 2020-05-01 扬州大学 CeO2:CDs/TiO2纳米材料及其在光催化方面的应用
CN111644191A (zh) * 2020-06-09 2020-09-11 嵊州市汇业新材料科技有限公司 一种纳米WO3-g-C3N4-rGO异质结负载泡沫镍的光催化材料及其制法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114146715A (zh) * 2021-12-14 2022-03-08 云南大学 一种异质结复合材料及其制备方法和应用
CN114146715B (zh) * 2021-12-14 2023-01-31 云南大学 一种异质结复合材料及其制备方法和应用
CN115555010A (zh) * 2022-08-17 2023-01-03 广州大学 富含氧空位的介孔纳米棒光催化剂、制备方法以及应用
CN115555010B (zh) * 2022-08-17 2024-02-02 广州大学 富含氧空位的介孔纳米棒光催化剂、制备方法以及应用

Also Published As

Publication number Publication date
CN113457664B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
Adekunle et al. Potential of cobalt and cobalt oxide nanoparticles as nanocatalyst towards dyes degradation in wastewater
Qu et al. Carbon quantum dots/KNbO3 hybrid composites with enhanced visible-light driven photocatalytic activity toward dye waste-water degradation and hydrogen production
CN109482179A (zh) TiO2/石墨烯/纳米银复合光催化剂的制备及其对甲醛的降解
CN109876809A (zh) 一种复合金属氧化物中空多壳层材料及其制备方法和用途
Pan et al. Visible-light-active mesoporous ceria (CeO2) nanospheres for improved photocatalytic performance
CN113457664B (zh) D-CeO2:CQDs@WO3纳米复合空心材料、制备方法及其应用
CN111085227A (zh) CeO2-BiOCl纳米材料及其在光催化方面的应用
Mu et al. Visible light photocatalytic activity of Cu, N co-doped carbon dots/Ag3PO4 nanocomposites for neutral red under green LED radiation
Yang et al. rGO/Fe-doped g-C3N4 visible-light driven photocatalyst with improved NO removal performance
Ghanei-Zare et al. A metal-organic framework-derived CuO microrods for fast photocatalytic degradation of methylene blue
Krishnegowda et al. Hydrothermal processing of interfacial BiCeO3/MWCNTs photocatalyst for rapid dye degradation and its biological interest
Dos Santos et al. Investigation of the photocatalytic and optical properties of the SrMoO4/g-C3N4 heterostructure obtained via sonochemical synthesis with temperature control
Prabhavathy et al. Visible light-induced Silver and Lanthanum co-doped BiVO4 nanoparticles for photocatalytic dye degradation of organic pollutants
Manikandan et al. Synthesis, structural and optical properties of phosphorus doped MnO2 nanorods as an under sunlight illumination with intensify photocatalytic for the degradation of organic dyes
Qu et al. A new visible-light-induced Z-scheme photocatalytic system: Er3+: Y3Al5O12/(MoS2/NiGa2O4)-(BiVO4/PdS) for refractory pollutant degradation with simultaneous hydrogen evolution
Yang et al. Core–shell CoTiO3@ MnO2 heterostructure for the photothermal degradation of tetracycline
An et al. The multiple roles of rare earth elements in the field of photocatalysis
Xie et al. Preparation of a novel Bi3. 64Mo0. 36O6. 55 nanophotocatalyst by molten salt method and evaluation for photocatalytic decomposition of rhodamine B
Fouda et al. Photocatalytic degradation of methylene blue and rhodamine B using one-pot synthesized nickel oxide grafted glycine (NiO@ GLY) nanostructured: Oxygen vacancies effect
Gomathi et al. Pioneering superior efficiency in Methylene blue and Rhodamine b dye degradation under solar light irradiation using CeO2/Co3O4/g-C3N4 ternary photocatalysts
Shagolsem et al. Green synthesis and magnetically separable Fe3O4/SnO2/g-C3N4 ternary nanocomposite for degradation of Rhodamine B
Wang et al. Enhanced simulated sunlight induced photocatalytic activity by pomegranate-like S doped SnO2@ TiO2 spheres
CN105214637B (zh) 一种钛酸硅酸铯光催化剂及其制备方法和应用
CN114471707B (zh) 含催化剂水凝胶球、其制备方法及其在光催化处理有机污染物方面的应用
Souza et al. Influence of preparation methodology on the photocatalytic activity of nitrogen doped titanate and TiO2 nanotubes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant